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Faraday rotation spectrum of magneto-optical nanoparticle aggregates
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The interaction of light with a cluster of gyrotropic spherical particles is studied in view of a miniaturized
Faraday rotator. The electromagnetic fields are expanded in terms of the vector multipole fields and the expansion
of the scattered field is related to that of the incident field. An incident linearly polarized light with polarization
azimuth ψ becomes elliptically polarized upon scattering from the cluster. The polarization azimuth rotation
and ellipticity angle variation are almost sinusoidal functions of 2ψ . With planar disordered clusters of bismuth-
substituted yttrium iron garnet nanoparticles of radius 50 nm, polarization rotations about ±4◦ are achievable.
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I. INTRODUCTION

In 1845 Faraday discovered that a magnetic field affects
the propagation of light in a block of flint glass. He observed
rotation of the plane of polarization of a linearly polarized
light passing through glass along the magnetic field. Unlike
optical activity, Faraday rotation is a nonreciprocal effect.
Indeed optically active and magneto-optical media rotate the
polarization relative to the direction of the wave vector and the
magnetic field, respectively. Since Faraday’s discovery, many
researches have been devoted to magneto-optics [1–5]. A wide
number of magneto-optical materials are thoroughly studied,
including bismuth-, cerium-, lead-, and cobalt-substituted
yttrium iron garnets [3]. Now bulk magneto-optical isolators,
circulators, deflectors, intensity modulators, and bistable opti-
cal switches are of wide application [3]. Thin magneto-optical
films are used to develop eddy-current imaging devices to
detect cracks, flux-penetration imaging in high-temperature
superconductors, current sensors, and magnetometers, to name
a few [4]. Magneto-optical waveguides are employed to realize
integrated nonreciprocal devices [5].

The polarization of light can be utilized as an information
carrier in optical communications, sensing, and imaging. For
these applications, there is a strong trend towards downsized
optical components that manipulate the polarization of light.
Most waveguide-type isolators and circulators are based
on thin films of iron garnet grown on gadolinium gallium
garnet substrate [5]. But in integrated optics technologies,
common substrates are III–V semiconductors, silica, and
silicon. To overcome such limitations, embedding magneto-
optical nanoparticles in a matrix has gained attention. Com-
posites containing γ -Fe2O3, Fe3O4, Co, Fe, Ni, and bismuth-
substituted yttrium iron garnet (Bi:YIG) nanoparticles are
studied [6–13].

It is now known that optical properties of nanoscopic
materials differ from their bulk counterparts. Quite surpris-
ingly, even at low fields (<104 G), gold nanoparticles do
exhibit sizable magneto-optical response [14]. This effect is
due to an increase of the magnetic Lorentz force induced by
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the collective motion of the conduction electrons when the
surface plasmon resonance is excited [14]. Magnetoplasmonic
nanostructures composed of ferromagnets and noble metals
are also promising [15]: The metallic constituent sustains
surface plasmons, thus enhancing electromagnetic fields inside
the ferromagnetic constituent which exhibits the magneto-
optical response. Along this line of thought, core-shell Co-Ag,
Fe-Ag, Au-coated Fe2O3 nanoparticles, and dumbbell-like
Ag-CoFe2O4 nanoparticle pairs are studied [16–20].

The Mie theory for wave scattering from one isotropic par-
ticle is extended to the case of one gyrotropic particle [21–23].
But this does not immediately shed light on the properties
of periodic arrays, random gases, and fractal clusters of
nanoparticles. The coupled-dipole equations provide a picture
of wave interaction with a populous cluster: Each particle
behaves as a point dipole. The local field acting on any dipole
is a superposition of the incident field and secondary fields
produced by other dipoles. Since dipole-dipole interactions
depend on the positions of particles, the geometrical characters
of the cluster affect its optical response. Within the dipole
approximation, the magneto-optical response of gold and
silver nanoparticle aggregates are studied [24,25]. However,
the dipole approximation is not reliable when the particles are
too close. Using an extension of the layer-multiple-scattering
method, periodic structures of gyrotropic particles are stud-
ied [26–30]. This rigorous full electrodynamic calculation
takes advantage of the Bloch theorem; thus it is not applicable
to the disordered and fractal aggregates.

In this paper, we study the interaction of light with
an aggregate of gyrotropic spherical particles, in view of
application as a miniaturized Faraday rotator. We present a
multiparticle Mie theory applicable to ordered, disordered,
and fractal aggregates. We expand all electromagnetic fields
in terms of the vector multipole fields [31] and relate the
expansion of the scattered field to that of the incident field.
We consider linear, rectangular, and disordered clusters of
Bi:YIG nanoparticles (see Fig. 1). Here the gap between
neighbor particles may be even smaller than the radius of the
particles. The incident linearly polarized light is specified by
the polarization azimuth ψ . Using the azimuth χ and ellipticity
angle β to characterize the vibration ellipse of the scattered
field, we find that the polarization azimuth rotation χ − ψ and
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FIG. 1. Schematics of (a) a dimer, (b) a linear cluster, (c) a
rectangular array, and (d) a disordered cluster of particles.

ellipticity angle variation β are almost sinusoidal functions
of 2ψ :

χ − ψ ≈ χaniso sin(2ψ − 2ψ0) + χgyro,

β ≈ βaniso sin(2ψ − 2ψ ′
0) + βgyro, (1)

where χaniso, χgyro, βaniso, and βgyro depend on the composition,
radius, and arrangement of particles, host medium dielectric
constant, and light wavelength. For an ordered linear cluster,
we find that χaniso = βaniso = 0 when the light wave vector,
gyration vector, and cluster axis are parallel. For rectangular
and disordered clusters, we find that χgyro �= 0 and βgyro �= 0.
Quite remarkably, χ − ψ and β of a disordered cluster may
be larger than that of a rectangular cluster. This facilitates the
design of small polarization rotators. We remind that in the
case of a bulk gyrotropic medium, the azimuth rotation and
ellipticity angle variation are almost sinusoidal functions of
2ψ . The amplitudes χaniso and βaniso, and the offsets χgyro and
βgyro, are largely controlled by the anisotropy and gyrotropy of
the bulk medium, respectively [32]. Interestingly, nanoparticle
aggregates also obey expression (1).

Our multiparticle Mie theory can be used to study other
optical properties of a gyrotropic nanoparticle aggregate. In
particular, absorption, linear dichroism, and circular dichroism
spectra of the cluster are easily accessible. We briefly discuss
the circular dichroism spectrum of linear clusters.

II. THEORY

We study the interaction of light with a cluster composed
of N identical gyrotropic spherical particles (see Fig. 1). The
radius a and position Rα of the αth particle characterize
the geometric properties of the cluster. We assume that the
gyration vector of each particle is along the z axis. The electric
permittivity tensor and the magnetic permeability of particles

are

↔
ε g = εz

⎛
⎝ εr −iεk 0

iεk εr 0
0 0 1

⎞
⎠ (2)

and μg , respectively. The electric permittivity and the magnetic
permeability of the host medium are εh and μh, respectively.

We assume that all the fields depend on time through e−iωt .
We denote the polarization vector and the wave vector of the
incident plane wave by ûIη (η = 1,2) and k̂I , respectively. We
use ûSη (η = 1,2) and k̂S to characterize the scattered field. We
denote an incident (scattered) field polarized along ûIη (ûSη)
by EIη (ESη).

A. The electromagnetic fields inside a gyrotropic sphere

First we consider one gyrotropic sphere located at the center
of coordinates. The fields inside the sphere obey the constitu-

tive equations DT (r) = ↔
ε gET (r) and BT (r) = μgHT (r), and

the Maxwell equations

∇ · DT (r) = 0, (3)

∇ × ET (r) = i
ω

c
BT (r), (4)

∇ · BT (r) = 0, (5)

∇ × HT (r) = −i
ω

c
DT (r), (6)

where c is the velocity of light in vacuum. It turns out that DT

satisfies the wave equation

∇ × ∇ × [
εz

↔
ε g

−1
DT (r)

] − k2
gDT (r) = 0, (7)

where k2
g = ω2

c2 μgεz.
The solution of the wave equation (7) can be expanded

in terms of the vector multipole fields whose properties are
summarized in Appendix A:

DT(r) = k2
in

k2
g

∑
lm

[
C

(1)
lm J(1)

lm(r,kin) + C
(2)
lm J(2)

lm(r,kin)
]
. (8)

Note that the absence of Llm in the above expansion is enforced
by the Maxwell equation (3). It can be shown that

εz

↔
ε g

−1 · J(1)
lm =

∑
qp

(
g̃lm

qpJ(1)
qp + ẽlm

qpJ(2)
qp + f̃ lm

qp Lqp

)
, (9)

εz

↔
ε g

−1 · J(2)
lm =

∑
qp

(
ḡlm

qpJ(1)
qp + ēlm

qpJ(2)
qp + f̄ lm

qp Lqp

)
. (10)

Explicit expressions for the coefficients g̃lm
qp , ẽlm

qp , f̃ lm
qp , ḡlm

qp , ēlm
qp ,

and f̄ lm
qp are in Appendix B. It follows from Eqs. (7)–(10) that

∑
lml′m′

[
C

(1)
l′m′ g̃

l′m′
lm + C

(2)
l′m′ ḡ

l′m′
lm − k2

g

k2
in

C
(1)
lm

]
J(1)

lm(r,kin)

+
[
C

(1)
l′m′ ẽ

l′m′
lm + C

(2)
l′m′ ē

l′m′
lm − k2

g

k2
in

C
(2)
lm

]
J(2)

lm(r,kin) = 0.
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Thus the coefficients C
(p)
l′m′ and the wave number kin can be

determined from the following eigenvalue problem:

∑
p′l′m′

Splm;p′l′m′C
(p′)
l′m′ = k2

g

k2
in

C
(p)
lm (p,p′ = 1,2), (11)

where S1lm;1l′m′ = g̃l′m′
lm , S1lm;2l′m′ = ḡl′m′

lm , S2lm;1l′m′ = ẽl′m′
lm ,

and S2lm;2l′m′ = ēl′m′
lm . We perform multipole expansions of

the fields up to a multipole order lmax to guarantee the
numerical stability of the calculation. We use the subscript
j = 1,2, . . . ,2lmax(lmax + 2) to enumerate the eigenvalues and
eigenvectors of the matrix S. The general solution of the wave
equation (7) is

DT(r) =
∑

j

bj

k2
j

k2
g

∑
lm

[
C

(1)
lm;j J(1)

lm(r,kj ) + C
(2)
lm;j J(2)

lm(r,kj )
]
,

(12)

where the coefficients bj are determined by the boundary
conditions.

B. Scattering of electromagnetic waves by a cluster
of gyrotropic particles

It is wise to expand the incident field EIη = E0ûIηe
ik·r and

the scattered field ESη in terms of the vector multipole fields:

EIη = E0

∑
plm

J(p)
lm (r,k)W (p)

Iηlm,

ESη = E0

∑
α

∑
plm

H(p)
lm (rα,k)A(p)

ηαlm, (13)

where W
(p)
Iηlm ≡ W

(p)
lm (ûIη,k̂I ), rα = r − Rα , k = ω

c

√
μhεh,

and p = 1,2. Indeed W
(p)
lm (ê,k̂) = 4πip+l−1ê · Z(p)�

lm (k̂). The
properties of transverse vector harmonics Z(p)

lm are summarized
in Appendix A. In Eq. (13) the scattered field is a sum of
multipole fields with different origins, whereas the incident
field is a sum of multipole fields centered at R0 = 0. Using
the celebrated addition theorem, all fields can be rewritten in
terms of multipole fields centered at Rα:

EIη = E0

∑
plm

∑
p′l′m′

J(p)
lm (rα,k)J (pp′)

αlm0l′m′W
(p′)
Iηl′m′ , (14)

ESη = E0

∑
plm

[
H(p)

lm (rα,k)A(p)
ηαlm

+
∑

α′p′l′m′
J(p)

lm (rα,k)H(pp′)
αlmα′l′m′A(p′)

ηα′l′m′

]
, (15)

where H(pp′)
αlmα′l′m′ and J (pp′)

αlm0l′m′ are given in Ref. [31].
The scattered field can also be written as ESη =
E0

∑
plm H(p)

lm (r,k)A(p)
ηlm, where

A
(p)
ηlm =

∑
α′

∑
p′l′m′

J (pp′)
0lmα′l′m′A(p′)

ηα′l′m′ . (16)

As clarified before, the electric displacement vector within
the αth sphere is

DT =
∑

j

bαj k
2
j

k2
g

∑
lm

[
C

(1)
ηlm;j J(1)

lm(rα,kj ) + C
(2)
ηlm;j J(2)

lm(rα,kj )
]
.

(17)

Using Eqs. (9)–(11) it is straightforward to write the electric
field as

ET = ↔
ε g

−1 · DT

=
∑

j

bαj

{
k2
jωη00;j

k2
g

L00(rα,kj ) +
∑
lm

[
k2
jωηlm;j

k2
g

Llm(rα,kj )

+C
(1)
ηlm;j J(1)

lm(rα,kj ) + C
(2)
ηlm;j J(2)

lm(rα,kj )

]}
, (18)

where ωηlm;j = ∑
l′m′(C

(1)
ηl′m′;j f̃

l′m′
lm + C

(2)
ηl′m′;j f̄

l′m′
lm ) and

ωη00;j = −√
2/3ε′

kC
(1)
η10;j + i

√
2/15(ε′

r − 1)C(2)
η20;j . The

Maxwell equation (4) and identities (A5) then imply that

HT =
∑
j,l,m

−icbαj kj

ωμg

[
C

(1)
ηlm;j J(2)

lm(rα,kj ) + C
(2)
ηlm;j J(1)

lm(rα,kj )
]
.

(19)
The boundary conditions across the surface of the αth

sphere can be written as∫
(HIη + HSη) · Z(p)∗

lm d� =
∫

HT η · Z(p)∗
lm d�, (20)∫

(EIη + ESη) · Z(p)∗
lm d� =

∫
ET η · Z(p)∗

lm d�, (21)

where p = 1,2. The multipole expansion of the fields and
identities (A7) then yield

W (1)
Iηαlm = −hl(x)

jl(x)
A(1)

ηαlm −
∑

α′p′l′m′
H(1p′)

αlmα′l′m′A(p′)
ηα′l′m′

+
∑

j

bαj

jl(xj )

jl(x)
C

(1)
ηlm;j , (22)

W (2)
Iηαlm = −hl(x)

jl(x)
A(2)

ηαlm −
∑

α′p′l′m′
H(2p′)

αlmα′l′m′A(p′)
ηα′l′m′

+ μh

μg

∑
j

bαj kj

k

jl(xj )

jl(x)
C

(2)
ηlm;j , (23)

W (1)
Iηαlm = − [xhl(x)]′

[xjl(x)]′
A(1)

ηαlm −
∑

α′p′l′m′
H(1p′)

αlmα′l′m′A(p′)
ηα′l′m′

+ μh

μg

∑
j

bαj

[xj jl(xj )]′

[xjl(x)]′
C

(1)
ηlm;j , (24)

W (2)
Iηαlm = − [xhl(x)]′

[xjl(x)]′
A(2)

ηαlm −
∑

α′p′l′m′
H(2p′)

αlmα′l′m′A(p′)
ηα′l′m′

+
∑

j

bαj

[
k[xj jl(xj )]′

kj [xjl(x)]′
C

(2)
ηlm;j

− i
√

l(l + 1)kkj jl(xj )

k2
g[xjl(x)]′

ωηlm;j

]
. (25)
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Here W (p)
Iηαlm = ∑

p′l′m′ J (pp′)
αlm0l′m′W

(p)
Iηl′m′ , x = ka, and xj =

kja. The above equations suggest to define

σ
(p)
Iηαlm = W (p)

Iηαlm +
∑

α′p′l′m′
H(pp′)

αlmα′l′m′A(p′)
ηα′l′m′ . (26)

To represent Eqs. (22)–(25) in a more compact form,
the following notations are used. Here l = 1,2, . . . ,lmax and
−l � m � l. A combined index is n = l(l + 1) + m, where
n = 1,2, . . . ,n̄ = lmax(lmax + 2). We let A, b, and σ denote
column matrices. For example, A = [Aα1

Aα2
], where Aα1 =

[
Aα1

...
Aαn̄

] and Aα2 = [
Aα,n̄+1

...
Aα,2n̄

]. IndeedA(1)
ηαlm → Aα1 andA(2)

ηαlm →

Aα2. We let U = [U11 U12

U21 U22], V = [V 11 V 12

V 21 V 22], � = [�
11 0
0 �22],

and � = [�
11 0

0 �22], where U11, U12, etc. are n̄ × n̄ matrices.
Now Eqs. (22)–(25) can be written as

�A + Ub = σ ,

�A + Vb = σ . (27)

Here

�11
nn′ = �22

nn′ = −hl(x)

jl(x)
δnn′ ,

�11
nn′ = �22

nn′ = − [xhl(x)]′

[xjl(x)]′
δnn′ ,

U11
ni = jl(xi)

jl(x)
C

(1)
ηlm;i ,

U12
ni = jl(xi+n̄)

jl(x)
C

(1)
ηlm;i+n̄,

U21
ni = μhkijl(xi)

μgkjl(x)
C

(2)
ηlm;i ,

U22
ni = μhki+n̄jl(xi+n̄)

μgkjl(x)
C

(2)
ηlm;i+n̄, (28)

V 11
ni = μh[xijl(xi)]′

μg[xjl(x)]′
C

(1)
ηlm;i ,

V 12
ni = μh[xi+n̄jl(xi+n̄)]′

μg[xjl(x)]′
C

(1)
ηlm;i+n̄,

V 21
ni = k[xijl(xi)]′

ki[xjl(x)]′
C

(2)
ηlm;i − i

√
l(l + 1)kkijl(xi)

k2
g[xjl(x)]′

ωηlm;i ,

V 22
ni = k[xi+n̄jl(xi+n̄)]′

ki+n̄[xjl(x)]′
C

(2)
ηlm;i+n̄

− i
√

l(l + 1)kki+n̄jl(xi+n̄)

k2
g[xjl(x)]′

ωηlm;i+n̄.

Note that in the above equations n = l(l + 1) + m and 1 �
i � n̄. Introducing the matrices

R = (�V − �U)−1(� − �),

T = �−1 − �−1VR, (29)

the solution of the set of equations (27) can be written as
b = Rσ and A = Tσ . In other words,[

Aα1

Aα2

]
=

[
T 11 T 12

T 21 T 22

]{[
Wα1

Wα2

]

+
∑
α′

[
H11 H12

H21 H22

][
Aα′1
Aα′2

]}
, (30)

whose solution provides the amplitudes of the scattered fields.

III. NUMERICAL RESULTS

The scattering of electromagnetic waves from one gy-
rotropic sphere is studied in detail [21–23]. We reproduced
some numerical results of Ref. [23] as a test of our code.

We study optical response of magnetically saturated Bi:YIG
nanoparticles embedded in air. Indeed Bi:YIG nanoparticles
have been synthesized by a variety of methods [11–13]. We
obtain the dielectric tensor spectra of Y3−xBixFe5O12 with
x = 1.07 from Doormann, Krumme, and Lenz [33].

We consider linear, rectangular, and disordered clusters
of nanoparticles (see Fig. 1). We assume that the radius
of particles is a = 50 nm. In linear clusters, the centers of
adjacent particles are at a distance 2a + d. The rectangular
and disordered clusters, each composed of 64 particles, are in
the xOz plane. The array has 16 rows and 4 columns. The
columns (rows) of the rectangle are parallel to the ẑ (x̂) axis.
Two vectors 2.4aẑ and 4.5ax̂ specify the rectangular unit cell.
The particles of the disordered cluster are uniformly distributed
in a square of length 27a.

A. Rotation of light polarization plane

We assume that the cluster interacts with a linearly polarized
light EI = E0(cos ψ ê1 + sin ψ ê2)eikI·r. Here kI = kk̂I =
k(sin θ cos φ, sin θ sin φ, cos θ ) is the wave vector, and ê1 =
(cos θ cos φ, cos θ sin φ, −sin θ ) and ê2 = (−sin φ, cos φ,0)
are the polarization vectors. We calculate ES = ES1ê1 +
ES2ê2, the electric field scattered by the cluster. In the far
(radiation) zone(

ES1

ES2

)
= E0e

ikr

r

(
f11(k̂S,k̂I ) cos ψ + f12(k̂S,k̂I ) sin ψ

f21(k̂S,k̂I ) cos ψ + f22(k̂S,k̂I ) sin ψ

)
,

(31)

where the elements of the scattering amplitude matrix are [31]

fη′η = −i

4πk

∑
plm

W
(p)∗
lm (ûSη′ ,k̂S)A(p)

lm (ûIη,k̂I ). (32)

The scattered field is elliptically polarized. The vibration
ellipse can be described by the azimuth χ , the angle between
the semimajor axis and the unit vector ê1, and ellipticity tan β,
the ratio of the length of the semiminor axis to that of the
semimajor axis. Indeed

χ = 1

2
arctan

(
−U

Q

)
,

β = 1

2
arcsin

(
−V

I

)
, (33)
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FIG. 2. (a) χ − ψ and (b) β as a function of ψ for a dimer of
Bi:YIG nanoparticles. The dimer is along the ŷ axis, a = 50 nm,
λ = 365 nm, k̂I ‖ ẑ, and k̂S ‖ ẑ.

where I = |ES1|2 + |ES2|2, Q = |ES1|2 − |ES2|2, U =
−2Re(ES1E

∗
S2), and V = 2Im(ES1E

∗
S2) are the Stokes param-

eters [31,34]. The azimuth and the ellipticity angle of the
incident wave are ψ and zero, respectively. The polarization
azimuth rotation χ − ψ and the ellipticity angle variation β

are of immediate interest.
Figure 2 shows χ − ψ and β as a function of ψ for a dimer

of Bi:YIG nanoparticles. The dimer is along the ŷ axis; λ =
365 nm, and k̂I ‖ ẑ and k̂S ‖ ẑ are assumed. We find that χ − ψ

and β are almost sinusoidal functions of 2ψ . For example, χ −
ψ ≈ 5.66◦ sin(2ψ + 1.02◦) + 0.55◦ and β ≈ 7.37◦ sin(2ψ +
0.29◦) − 0.35◦ when d = 10 nm. On increasing the gap d, the
amplitudes of χ − ψ and β decrease. Even at d = 50 nm,
maximum azimuth rotation 2.87◦ and maximum ellipticity
angle variation 4.17◦ are considerable. But one must notice
that χ − ψ and β are not completely due to the gyrotropy of
particles. In the case of d = 10 nm, the results for gyrotropic
particles with εk �= 0 and anisotropic particles with εk = 0 are
shown as dashed (black) and thin solid (red) lines, respectively.
On introducing the gyrotropy, the maximum of χ − ψ and β

change by 0.54◦ and −0.36◦, respectively.
Figures 3(a)–3(f) show χ − ψ and β as a function of ψ

for linear, rectangular, and disordered clusters composed of
64 Bi:YIG nanoparticles. The linear cluster is along the ẑ
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FIG. 3. (a) χ − ψ and (b) β versus ψ for a linear cluster. The cluster is along the ẑ axis. d = 0.4a = 20 nm. (c) χ − ψ and (d) β versus ψ

for a rectangular cluster. (e) χ − ψ and (f) β versus ψ for a disordered cluster. The clusters are composed of 64 Bi:YIG nanoparticles of radius
a = 50 nm. k̂I ‖ ẑ and k̂S ‖ ẑ are assumed. For clusters composed of anisotropic particles with εk = 0, the corresponding plots are shown in
(g)–(l).
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FIG. 4. (a) �χ and (b) �β as a function of λ. Here ψ = 0◦. The
plots corresponding to ψ = 45◦ are shown in (c) and (d), respectively.
k̂I ‖ ẑ and k̂S ‖ ẑ are assumed.

axis. Here d = 0.4a = 20 nm, k̂I ‖ ẑ, and k̂S ‖ ẑ. We find
that χ − ψ and β of a linear cluster are independent of ψ .
χ − ψ and β exhibit both positive and negative values as the
wavelength λ varies. For example, χ − ψ becomes +0.68◦
at wavelength 400 nm, and reaches −0.85◦ at wavelength
485 nm. β becomes +0.29◦ at wavelength 365 nm, and reaches
−1.14◦ at wavelength 450 nm. In the case of rectangular
and disordered clusters, χ − ψ and β are almost sinusoidal
functions of 2ψ . Note that at ψ = 0 and wavelengths 365, 400,
450, and 485 nm, χ − ψ of a rectangular cluster are 0.45◦,
0.45◦, −0.35◦, and −0.64◦, respectively. Quite remarkably,
the disordered cluster may offer large values of χ − ψ and β.
For example, at wavelength 485 nm, the maximum χ − ψ of a
disordered cluster is 3.68◦, while that of a rectangular cluster is
1.40◦. At wavelength 450 nm, the maximum β of a disordered
cluster is 5.60◦, while that of a rectangular cluster is 1.71◦.
Note that at ψ = 0 and wavelengths 365, 400, 450, and 485 nm,
χ − ψ of a disordered cluster are 0.5431◦, 0.2861◦, −0.4653◦,
and −0.5775◦, respectively. Figures 3(g)–3(l) show χ − ψ and
β for clusters composed of anisotropic particles with εk = 0.
Here χ − ψ and β of a linear cluster are both zero. χ − ψ and
β of rectangular and disordered clusters are almost sinusoidal
functions of 2ψ , but with χgyro = βgyro = ψ0 = ψ ′

0 = 0 [see
expression (1)].

To better see the influence of gyrotropy,

�χ ≡ χ (εk) − χ (εk = 0),

�β ≡ β(εk) − β(εk = 0), (34)

are of use. Figure 4 shows �χ and �β as a function of λ for
linear, rectangular, and disordered clusters. Here k̂I ‖ ẑ and
k̂S ‖ ẑ. �χ and �β of these three clusters have the same order
of magnitude, whether ψ = 0◦ or ψ = 45◦. For a disordered
cluster, the maximum and minimum of �χ are 0.56◦ and
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FIG. 5. σCD/(πNa2) for a monomer, dimer, and octamer of
Bi:YIG nanoparticles. Here a = d = 50 nm and k̂I ‖ ẑ. The dimer
and octamer are along the ẑ axis.

−0.62◦ when ψ = 0◦. The maximum and minimum of �β

are 0.23◦ and −0.76◦ when ψ = 45◦. These examples show
that, even in the case of disordered clusters, the gyrotropy of
constituent particles manifests in the optical response.

B. Circular dichroism

The extinction cross section σT , the scattering cross section
σS , and the absorption cross section σA of a cluster are [31]

σT = − 1

k2
Re

[ ∑
plm

W
(p)∗
lm (ûI ,k̂I )A(p)

lm (ûI ,k̂I )

]
,

σS = 1

k2

∑
plm

A
(p)
lm (ûI ,k̂I )A(p)∗

lm (ûI ,k̂I ), (35)

σA = σT − σS.

For a cluster of N particles, we use the geometrical cross
section πNa2 as a natural unit of area. We first assume that
k̂I ‖ ẑ; i.e., the incident wave propagates along the gyration
vector. We consider the absorption cross sections σ+ and σ−
corresponding to the polarization vectors ûI1 = (x̂ + iŷ)/

√
2

and ûI2 = (x̂ − iŷ)/
√

2, respectively. ûI1 and ûI2 describe
the left and right circularly polarized light, respectively. The
circular dichroism of the system is σCD = σ+ − σ−.

Figure 5 shows σCD/(πNa2) for a monomer, dimer, and
octamer of Bi:YIG nanoparticles. Here a = d = 50 nm. The
overall behavior of the scaled dichroism spectra are the same.
In particular, for 570 < λ < 600 nm we find that σCD/(πNa2)
is about 0.002. However, the spectra are distinguishable
from each other. Indeed σCD/(πNa2) of a monomer (dimer,
octamer) reaches its minimum −0.0482 (−0.055, −0.0593) at
wavelength 365 (365, 376) nm and gains its maximum 0.0583
(0.0625, 0.0757) at wavelength 460 (461, 463) nm.

We also studied the case k̂I ‖ ŷ and find that σCD of
monomer, dimer, and octamer are zero. This shows that the
circular dichroism depends on the directions of the gyration
vector and light wave vector with respect to the cluster axis.
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IV. REMARKS

A few remarks are in order.
(i) We have assumed that the gyration vectors of all

nanoparticles are parallel. This is not out of reach. Indeed using
a sol-gel process, γ -Fe2O3 nanoparticle-doped silica matrix
is obtained [7]. Noting that the magnetic nanoparticles are
intrinsically anisotropic, a magnetic field is applied during the
gelation process to orient the nanoparticles. After the gelation,
nanoparticles stay locked in the matrix. Here one expects
almost all nanoparticles to have the same optical orientation.

(ii) Linear clusters depicted in Fig. 1 deserve attention:
A ferrofluid consisting of Fe3O4 nanoparticles dispersed in a
hydrocarbon carrier exhibits terahertz Faraday rotation. In the
absence of an external magnetic field, the nanoparticles are
randomly distributed. A magnetic field triggers the particles to
form chainlike clusters along the field direction [35].

(iii) For applications in integrated optics, one can envisage
constructing a Faraday rotator by doping Bi:YIG nanoparticles
in a small part of the waveguide. Intuitively, one expects the
particles to spread randomly in the host material. Since the
penetration depths of the particles are almost the same, a planar
disordered cluster of particles may serve as a primitive model.
Here we have shown that a cluster of 64 Bi:YIG particles
exhibits considerable Faraday activity. Hence, in practice, only
a small part of the waveguide must be lightly doped.

(iv) We perform multipole expansion of the fields up to a
multipole order lmax. We choose 6 � lmax � 10 to guarantee
the numerical stability of our calculations. Note that the dipole
approximation lmax = 1 may reveal salient features of the
optical response of small particles if d > 3a.

(v) Relying on the dipole approximation, the Faraday
rotation spectrum of nanoparticle aggregates is studied [24].
It is shown that analytical expressions for χ − ψ and β

of a dimer can be approximated as sinusoidal functions of
2ψ . For nanoparticles positioned on a helix, and a three-
dimensional random gas of nanoparticles, a similar numerical
result is obtained. Here we consider clusters with d < a,
where the multipole interactions between nanoparticles are
strong. Nevertheless, we observe that χ − ψ and β are almost
sinusoidal functions of 2ψ .

(vi) For some parameters d, a, ω, etc., χ − ψ and β are
nonsinusoidal functions of 2ψ [see, for example, Fig. 3(e) for
wavelengths 365 and 400 nm]. However, still one can use the
well-defined quantities [24]

χgyro = 1

π

∫ π

0
(χ − ψ) dψ,

βgyro = 1

π

∫ π

0
β dψ, (36)

to distinguish nanoparticle aggregates of different magneto-
optical activity.

(vii) In the limit εk = 0, our theory describes light scatter-
ing from an aggregate of uniaxial anisotropic nanoparticles.
The effect of anisotropy ratio εr on the scattering cross section
of one particle is pronounced [36]. Thus the optical properties
of an aggregate are expected to depend on the anisotropy
ratio εr .

(viii) From a geometrical point of view, a cluster of
nanoparticles is anisotropic to some extent. One can quantify

anisotropy of a set of points through various geometrical
measures. For example, one can calculate the moment-of-
inertia tensor Iα,β = ∑N

i=1 δα,β r i · r i − (r i)α(r i)β and its three
real eigenvalues I1 � I2 � I3. I1/(I1 + I2 + I3) and I2/(I1 +
I2 + I3) may quantify anisotropy. From an optical point of
view, not only the positions of the particles but also parameters
such as a, ω, and εr influence the interaction of light and
cluster. Here we suggest well-defined quantities

χ aniso,s = 2

π

∫ π

0
(χ − ψ) sin(2ψ) dψ,

χ aniso,c = 2

π

∫ π

0
(χ − ψ) cos(2ψ) dψ,

βaniso,s = 2

π

∫ π

0
β sin(2ψ) dψ,

βaniso,c = 2

π

∫ π

0
β cos(2ψ) dψ, (37)

to distinguish nanoparticle aggregates of different optical
anisotropy.

(ix) We mentioned that the anisotropy of the cluster
contributes to the polarization azimuth rotation χ − ψ and the
ellipticity angle variation β. But one must notice that a cluster
of nongyrotropic particles does not lead to a nonreciprocal
effect such as the Faraday rotation. Indeed the time-reversal
symmetry breaking is due to the presence of the (saturating)
magnetic field that induces gyrotropy in the particles.

(x) Through a wise choice of the geometry, a set of
spherical scatterers may approximate a nonspherical scatterer.
Thus our multiparticle Mie theory can be used immediately to
study the magneto-optical response of a nonspherical particle.

We have considered clusters composed of 64 Bi:YIG
nanoparticles. For an ordered linear cluster, we find that
χ − ψ = χgyro and β = βgyro when light wave vector, gyration
vector, and cluster axis are parallel [see Figs. 3(a) and 3(b)].
Here χgyro and βgyro are about ±0.5◦. For planar rectangular
and disordered clusters, we observe that expression (1) works
well in a large domain of parameter space. χ − ψ and β of
a disordered cluster may be larger than that of a rectangular
cluster [see Figs. 3(c)–3(f)]. This considerably simplifies the
design of small polarization rotators. Indeed at wavelength
485 nm, polarization rotations about ±4◦ are achievable [see
Fig. 3(e)].

Our work can be extended in other directions: We assumed
that all particles have the same radius, but the size polydisper-
sity is expected to influence the Faraday rotation as well as the
absorption spectrum [37]. Clusters of core-shell magnetoplas-
monic particles are of immediate interest. Dichroism of two-
and three-dimensional arrangements of gyrotropic particles
deserves another study [25,38,39]. Many studies are devoted
to light propagation in turbid media. It is known that Faraday
rotation destroys coherent backscattering [40,41]. To further
investigate this phenomenon, our multiparticle Mie theory is
of use.

APPENDIX A: VECTOR MULTIPOLE FIELDS

The vector function Xlm = [l(l + 1)]−1/2LYlm, where the
spherical harmonic Ylm is the simultaneous eigenfunction
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of the angular momentum operators L2 and Lz. It is
convenient to introduce transverse vector harmonics
Z(1)

lm(k̂) = Xlm(k̂) and Z(2)
lm(k̂) = Xlm(k̂) × k̂. The

vector multipole fields are solutions of the Maxwell
equations that are eigenvectors of L2 and Lz:

Llm(r,k) = 1

k
∇[jl(kr)Ylm],

J(1)
lm(r,k) = jl(kr)Xlm(r̂),

J(2)
lm(r,k) = 1

k
∇ × J(1)

lm(r,k),

H(1)
lm(r,k) = hl(kr)Xlm(r̂),

H(2)
lm(r,k) = 1

k
∇ × H(1)

lm(r,k), (A1)

where jl and hl are spherical Bessel and spherical Hankel
functions of the first kind, respectively [31].

We represent the vector multipole fields as

Llm =
[√

(l + m)(l − m)

(2l − 1)(2l + 1)
Yl−1,mjl−1(kr) −

√
(l + m + 1)(l − m + 1)

(2l + 1)(2l + 3)
Yl+1,mjl+1(kr)

]
ξ 0

+
[√

(l + m + 2)(l + m + 1)

2(2l + 1)(2l + 3)
Yl+1,m+1jl+1(kr) +

√
(l − m)(l − m − 1)

2(2l − 1)(2l + 1)
Yl−1,m+1jl−1(kr)

]
ξ−1

+
[√

(l − m + 2)(l − m + 1)

2(2l + 1)(2l + 3)
Yl+1,m−1jl+1(kr) +

√
(l + m)(l + m − 1)

2(2l − 1)(2l + 1)
Yl−1,m−1jl−1(kr)

]
ξ+1, (A2)

J(1)
lm = jl(kr)√

l(l + 1)

[
mYlmξ 0 +

√
(l − m)(l + 1 + m)

2
Yl,m+1ξ−1 −

√
(l + m)(l + 1 − m)

2
Yl,m−1ξ+1

]
, (A3)

J(2)
lm = i

√
l

l + 1

[√
(l + m + 1)(l − m + 1)

(2l + 1)(2l + 3)
Yl+1,mjl+1 + l + 1

l

√
(l + m)(l − m)

(2l + 1)(2l − 1)
Yl−1,mjl−1

]
ξ 0

+ i

√
l

l + 1

[
−

√
(l + m + 2)(l + m + 1)

2(2l + 1)(2l + 3)
Yl+1,m+1jl+1 + l + 1

l

√
(l − m)(l − m − 1)

2(2l − 1)(2l + 1)
Yl−1,m+1jl−1

]
ξ−1

+ i

√
l

l + 1

[
−

√
(l − m + 2)(l − m + 1)

2(2l + 1)(2l + 3)
Yl+1,m−1jl+1 + l + 1

l

√
(l + m)(l + m − 1)

2(2l + 1)(2l − 1)
Yl−1,m−1jl−1

]
ξ+1, (A4)

where ξ±1 = ∓ 1√
2
(êx ± iêy) and ξ 0 = êz are spherical basis

vectors.
The following identities are of great use:

∇ · J(p)
lm (r,k) = ∇ × Llm(r,k) = 0,

1

k
∇ × J(1)

lm(r,k) = J(2)
lm(r,k), (A5)

1

k
∇ × J(2)

lm(r,k) = J(1)
lm(r,k).

We repeatedly encounter these integrals:∫
Llm · L∗

l′m′d� = [
lj 2

l−1(kr) + (l + 1)j 2
l+1(kr)

]δll′δmm′

2l + 1
,∫

J(1)
lm · J(1)∗

l′m′ d� = j 2
l (kr)δll′δmm′ ,∫

J(2)
lm · J(2)∗

l′m′ d� = [
(l + 1)j 2

l−1(kr) + lj 2
l+1(kr)

]δll′δmm′

2l + 1
,∫

J(2)
lm · L∗

l′m′d� = [
j 2
l−1(kr) − j 2

l+1(kr)
] i

√
l(l + 1)δll′δmm′

2l + 1
,∫

Llm · J(1)∗
l′m′ d� = 0. (A6)

To derive boundary conditions (22)–(25), we use the following
integrals:

∫
Z(p′)

l′m′ · Z(p)∗
lm d� = δpp′δll′δmm′ ,

∫
J(1)

lm · Z(1)∗
l′m′ d� = jl(kr)δll′δmm′ ,

∫
J(1)

lm · Z(2)∗
l′m′ d� = 0,

∫
J(2)

lm · Z(1)∗
l′m′ d� = 0,

∫
J(2)

lm · Z(2)∗
l′m′ d� = − 1

kr
[krjl(kr)]′δll′δmm′ ,

∫
Llm · Z(1)∗

l′m′ d� = 0,

∫
L00 · Z(2)∗

l′m′ d� = 0,

∫
Llm · Z(2)∗

l′m′ d� = i
√

l(l + 1)

kr
jl(kr)δll′δmm′ . (A7)
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APPENDIX B: COEFFICIENTS g̃lm
q p , ẽlm

q p , f̃ lm
q p , ḡlm

q p , ēlm
q p , AND f̄ lm

q p

The inverse of the permittivity tensor (2) is

εz

↔
ε g

−1 =
⎛
⎝ ε′

r −iε′
k 0

iε′
k ε′

r 0
0 0 1

⎞
⎠,

= (ε′
k − ε′

r )ξ−1ξ+1 − (ε′
r + ε′

k)ξ+1ξ−1 + ξ 0ξ 0, (B1)

where ε′
r = εr/(ε2

r − ε2
k ) and ε′

k = −εk/(ε2
r − ε2

k ). The explicit expressions (A3) and (B1) allow us to write

εz

↔
ε g

−1 · J(1)
lm = jl(kr)√

l(l + 1)

[
mYlmξ 0 −

√
(l − m)(l + 1 + m)

2
(ε′

k − ε′
r )Yl,m+1ξ−1 −

√
(l + m)(l + 1 − m)

2
(ε′

r + ε′
k)Yl,m−1ξ+1

]
.

(B2)

Now using Eqs. (A3) and (B2) and ξμ · ξ ∗
μ′ = (−1)μ

′
ξμ · ξ−μ′ = δμμ′ , it is straightforward to obtain

∫
[εz

↔
ε g

−1 · J(1)
lm] · J(1)∗

l′m′ d�.
Using Eqs. (9) and (A6) to calculate the same scalar, one finds

g̃lm
l′m′ = (l2 + l − m2)ε′

r + mε′
k + m2

l(l + 1)
δll′δmm′ . (B3)

Calculating
∫

[εz

↔
ε g

−1 · J(1)
lm] · L∗

l′m′ d� and
∫

[εz

↔
ε g

−1 · J(1)
lm] · J(2)∗

l′m′ d� using the equivalent expressions (9) and (B2), one finds

ẽlm
l′m′a0 + f̃ lm

l′m′b0 = A0j
2
l′+1(kr)δl,l′+1δmm′ + B0j

2
l′−1(kr)δl,l′−1δmm′ ,

ẽlm
l′m′c0 + f̃ lm

l′m′d0 = i

√
l′

l′ + 1
A0j

2
l′+1(kr)δl,l′+1δmm′ − i

√
l′ + 1

l′
B0j

2
l′−1(kr)δl,l′−1δmm′ ,

where

a0 = i
√

l′(l′ + 1)

(2l′ + 1)

[
j 2
l′−1(kr) − j 2

l′+1(kr)
]
, b0 = 1

(2l′ + 1)

[
l′j 2

l′−1(kr) + (l′ + 1)j 2
l′+1(kr)

]
,

c0 = 1

(2l′ + 1)

[
(l′ + 1)j 2

l′−1(kr) + l′j 2
l′+1(kr)

]
, d0 = −i

√
l′(l′ + 1)

(2l′ + 1)

[
j 2
l′−1(kr) − j 2

l′+1(kr)
]
,

A0 =
√

(l′ + m′ + 1)(l′ − m′ + 1)

(l′ + 1)(l′ + 2)(2l′ + 1)(2l′ + 3)
[m′(ε′

r − 1) − (l′ + 2)ε′
k], B0 = −

√
l′2 − m′2

l′(l′ − 1)(4l′2 − 1)
[m′(ε′

r − 1) + (l′ − 1)ε′
k].

The solution of the above set of equations is

ẽlm
l′m′ = i

√
(l − 1)(l2 − m2)

(l + 1)(4l2 − 1)

[m(ε′
r − 1) − (l + 1)ε′

k]

l
δl−1,l′δmm′ + i

√
(l + 2)[(l + 1)2 − m2]

l(2l + 1)(2l + 3)

[m(ε′
r − 1) + lε′

k]

l + 1
δl+1,l′δmm′ ,

f̃ lm
l′m′ =

√
l2 − m2

l(l + 1)(4l2 − 1)
[m(ε′

r − 1) − (l + 1)ε′
k]δl−1,l′δmm′ −

√
(l + 1)2 − m2

l(l + 1)(2l + 1)(2l + 3)
[m(ε′

r − 1) + lε′
k]δl+1,l′δmm′ . (B4)

Following the same procedure, we obtain

ḡlm
l′m′ = −i

l + 1

√
l[(l + 1)2 − m2]

(l + 2)(2l + 1)(2l + 3)
[m(ε′

r −1)−(l + 2)ε′
k]δl+1,l′δmm′ − i

l

√
(l + 1)(l2 − m2)

(l − 1)(4l2 − 1)
[m(ε′

r −1) + (l−1)ε′
k]δl−1,l′δmm′ ,

ēlm
l′m′ = δll′δmm′ + [(2l2 + 2l + 3)m2 + (2l2 + 2l − 3)l(l + 1)](ε′

r − 1) + (4l2 + 4l − 3)mε′
k

l(l + 1)(2l − 1)(2l + 3)
δll′δmm′

−
√

(l−2)(l + 1)[(l−1)2−m2](l2 − m2)

(l−1)l(2l−3)(2l + 1)

ε′
r −1

2l−1
δl−2,l′δmm′ −

√
l(l + 3)[(l + 1)2−m2][(l + 2)2−m2])

(l + 1)(l + 2)(2l + 1)(2l + 5)

ε′
r −1

2l + 3
δl+2,l′δmm′ ,

f̄ lm
l′m′ = i

√
(l + 1)[(l − 1)2 − m2](l2 − m2)

l(2l − 3)(2l + 1)

ε′
r − 1

2l − 1
δl−2,l′δmm′ − i

√
l[(l + 1)2 − m2][(l + 2)2 − m2]

(l + 1)(2l + 1)(2l + 5)

ε′
r − 1

2l + 3
δl+2,l′δmm′

− i
(l2 + l − 3m2)(ε′

r − 1) − (2l − 1)(2l + 3)mε′
k√

l(l + 1)(2l − 1)(2l + 3)
δll′δmm′ . (B5)
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