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The rigorous finite-temperature QED formalism of the polarization tensor is used to study the combined
effect of nonzero mass gap m and chemical potential μ on the Casimir force and its thermal correction in the
experimentally relevant configuration of a Au sphere interacting with a real graphene sheet or with graphene-
coated dielectric substrates made of different materials. It is shown that for both a free-standing graphene sheet
and for graphene-coated substrates the magnitude of the Casimir force decreases as m is increased, while it
increases as μ is increased, indicating that these parameters act in opposite directions. According to our results,
the impact of m and/or μ on the Casimir force for graphene-coated plates is much smaller than for a free-standing
graphene sheet. Furthermore, computations show that the Casimir force is much stronger for graphene-coated
substrates than for a free-standing graphene sample, but the thermal correction and its fractional weight in the
total force are smaller in the former case. These results are applied to a differential setup that was recently
proposed to observe the giant thermal effect in the Casimir force for graphene. We show that this experiment
remains feasible even after taking into account the influence of the nonzero mass-gap and chemical potential of
real graphene samples. Possible further applications of the obtained results are discussed.
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I. INTRODUCTION

Recent trends are toward increased use of carbon nanos-
tructures, such as buckyballs, nanotubes, nanowires, and
graphene, in a variety of applications to microelectronics [1,2].
Graphene occupies a prominent place among these new
materials since its investigation led to many important exper-
imental and theoretical discoveries [2,3]. Specifically, several
fascinating effects have been found for graphene interacting
with magnetic and electric fields [4–9]. A consensus on the
value of the universal electrical conductivity of graphene
e2/(4h̄) expressed in terms of the electron charge e and
Planck constant h̄ has been achieved [10–18]. The reflectivity
properties of graphene and graphene-coated substrates have
been investigated as functions of frequency and temperature
revealing some unusual properties [13,19–25].

The Casimir effect in graphene systems has attracted
widespread attention shortly after the advent of graphene.
The Casimir force arises between two closely spaced material
surfaces as a result of zero-point and thermal fluctuations of
the electromagnetic field [26]. In the framework of the Lifshitz
theory [26,27] the Casimir force between two dissimilar 3D
materials at any temperature T is routinely represented as
a functional of their reflection coefficients evaluated at the
pure imaginary Matsubara frequencies. These coefficients
are usually expressed in terms of the frequency-dependent
dielectric permittivities of both materials. Since graphene is a
one-atom-thick hexagonal sheet of carbon atoms, its response
to external electromagnetic fields is, strictly speaking, nonlocal
and cannot be described by a dielectric permittivity depending
only on frequency. That is why early applications of the Lif-
shitz theory to graphene adopted a hydrodynamic approach in
which graphene was modeled as a two-dimensional electronic

fluid characterized by some typical wave number [28–30]. At a
later time, the hydrodynamic model was used for a theoretical
description of the Casimir and Casimir-Polder interactions
with different carbon nanostructures [31–34]. Unfortunately,
it turned out [35] that theoretical predictions obtained using
the hydrodynamic model are excluded by measurements of the
gradient of Casimir force between an Au-coated sphere and a
graphene-coated SiO2 film deposited on a Si plate [36].

The literature on the Casimir effect in graphene systems
is quite extensive. Currently most of the used calculation
approaches are based on the Dirac model for graphene.
According to this model, at energies below a few electron
volts the quasiparticles in graphene are massless and satisfy
a linear dispersion relation in which the speed of light c

is replaced with the Fermi velocity vF ≈ c/300 [2,3,37,38].
Calculations of the Casimir (Casimir-Polder) force between
two graphene sheets, a graphene sheet and a 3D-material plate,
graphene-coated substrates, and an atom and a graphene sheet
have been performed using the density-density correlation
functions in the random phase approximation, by modeling
the conductivity of graphene as a combination of Lorentz-type
oscillators, and within the Kubo formalism [39–54]. Some of
the results obtained in these ways were reviewed in Ref. [55].
The most impressive result for the Casimir force was obtained
in Ref. [40], where it was found that the thermal correction to
the force becomes dominant at much shorter separations, as
compared to the case of 3D interacting bodies.

The fundamental approach for obtaining the response
function for a material body to electromagnetic field consists
in the calculation of its polarization tensor [56,57]. For a
graphene sheet described by the Dirac model the polariza-
tion tensor in (2+1)-dimensional space time (and, thus, the
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in-plane and out-of-plane nonlocal dielectric permittivities
and conductivities of graphene) can be worked out exactly.
This was done at T = 0 in Ref. [58] and at nonzero T in
Ref. [59] for graphene in the cases of both vanishing and
nonvanishing quasiparticle mass m corresponding to a gap
� = 2mc2 (it should be noted that for T �= 0 the expression for
the polarization tensor of Ref. [59] is valid only at the discrete
imaginary Matsubara frequencies occurring in the Lifshitz
formula). The reflection coefficients of graphene have been
expressed via the components of the polarization tensor and
used to calculate the Casimir force between a graphene sheet
and an ideal metal plane [58,59]. At a later time, the results of
Refs. [58,59] have been used to calculate the thermal Casimir
and Casimir-Polder force in many physical systems including
two graphene sheets, a graphene sheet and a plate made of
various real materials, graphene-coated substrates, atom and
graphene or graphene-coated substrates etc. [60–68]. In so
doing, the role of a nonvanishing mass gap of graphene was
investigated, and the existence of a giant thermal effect at short
separations [40] was confirmed. It was shown [69] that the
formalism of the polarization tensor is in fact equivalent to the
formalism of the density-density correlation functions, but the
former is somewhat preferable because the latter quantities
have not been known precisely. The theoretical predictions
for the gradient of the Casimir force computed using the
polarization tensor have been shown to be in a very good
agreement [70] with the measurement data of Ref. [36].

A different representation for the polarization tensor of
graphene allowing this time for an analytic continuation
to the entire plane of complex frequencies was derived in
Ref. [22] for both zero and nonzero mass gap. The novel
representation was applied to the investigation of the giant
thermal effect [71,72] and to test the validity of the Nernst heat
theorem for the Casimir entropy in graphene systems [73].
After an analytic continuation to the real frequency axis,
the polarization tensor of Ref. [22] has been used to de-
scribe the electrical conductivity and reflectivity properties
of graphene [17,18,22–25]. In Ref. [74] this tensor was further
generalized to the case of doped graphene with nonzero
chemical potential. It was shown that for doped but gapless
graphene characterized by nonzero chemical potential the
thermal Casimir force between a graphene sheet and an ideal
metal plane can be enhanced up to 60% as compared to the
case of a pristine (undoped) graphene.

In this paper, we investigate the thermal Casimir force in the
experimentally relevant configuration of an Au-coated sphere
above a real graphene sheet characterized by nonzero values
of the mass gap m and/or the chemical potential μ. The case
of a dielectric plate coated with a real graphene sheet is also
considered. Using the polarization tensor of graphene in the
form of Refs. [22,74], we perform calculations of both the
Casimir force and its room-temperature thermal correction for
a free-standing graphene characterized by nonzero values of m

and μ, as well as for graphene deposited on SiO2 and Si plates.
It is shown that with fixed μ and increasing m the magnitude
of the Casimir force decreases. By contrast, with fixed m and
increasing μ the magnitude of the Casimir force increases. This
means that for real graphene (both free-standing and deposited
on a substrate) the impacts of nonzero mass gap and chemical

potential on the Casimir force partially compensate each other.
Another important result found is that the impacts of both
nonzero m and μ on the Casimir force for graphene-coated
substrates are much smaller than the corresponding effects for
a free-standing graphene. Qualitatively, all the above results
are quite expected and have a simple physical explanation. It
is interesting also that the thermal correction to the Casimir
force is a nonmonotonous function of both m and μ.

We also investigate the impact of nonzero m and μ in
the recently proposed differential measurement scheme [75]
which allows for a clear observation of the giant thermal effect
for the Casimir force in graphene systems at short separations.
For this purpose the differences among the Casimir forces
between an Au-coated sphere and the two halves of a Si
plate, one uncoated and the other coated with graphene
characterized by nonzero m and μ, are calculated at both room
and zero temperature. It is shown that the possible presence of
nonvanishing m and μ does not prevent a clear observation
of the giant thermal effect for graphene in the proposed
experiment at separation distances exceeding 220 nm.

The paper is organized as follows. In Sec. II we present
the general formalism describing the Casimir force between a
metallic sphere and a real graphene or graphene-coated plate
in terms of the polarization tensor with nonzero m and μ. In
Sec. III the role of nonzero m and μ is investigated for the
case of a free-standing graphene sheet. Section IV contains
the computational results demonstrating a suppressed impact
of nonzero m and μ in the case of a graphene sheet deposited
on dielectric plate made either of silica or silicon. Section V
investigates the influence of nonzero m and μ in the differential
measurement scheme, which was proposed to measure the
thermal effect in graphene systems. In Sec. VI the reader will
find our conclusions and discussion.

II. GENERAL FORMALISM FOR METALLIC SPHERE
INTERACTING WITH GRAPHENE OR

GRAPHENE-COATED SUBSTRATE

We consider an Au-coated sphere of radius R spaced at a
height a above a dielectric plate coated by a real graphene sheet
with nonzero quasiparticle mass m and chemical potential
μ. In practice an Au coating with a thickness larger than
a few tens of nanometers allows us to consider the sphere
as all gold in calculations of the Casimir force [26]. The
plate is assumed to be of sufficient thickness to consider it
as a semispace. The Casimir force between a sphere and a
graphene-coated plate at temperature T in thermal equilibrium
with the environment can be expressed by using the Lifshitz
formula and the proximity force approximation [26,27]

F (a,T ) = kBT R

∞∑
l=0

′ ∫ ∞

0
k⊥ dk⊥

×
∑

α

ln
[
1 − r (1)

α (iξl,k⊥)R(n)
α (iξl,k⊥)e−2qla

]
. (1)

Here, kB is the Boltzmann constant, the prime in the first
summation sign means that the term with l = 0 is taken
with weight 1/2, k⊥ is the magnitude of the in-plane wave
vector, ξl = 2πkBT l/h̄ with l = 0, 1, 2, . . . are the Matsubara
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frequencies, and ql =
√

k2
⊥ + ξ 2

l /c2. The summation in α is
over two independent polarizations of the electromagnetic
field, transverse magnetic (α = TM) and transverse electric
(α = TE).

The reflection coefficients rα on the boundary between Au
and vacuum are given by [26]

r
(1)
TM(iξl,k⊥) = ε

(1)
l ql − k

(1)
l

ε
(1)
l ql + k

(1)
l

,

r
(1)
TE(iξl,k⊥) = ql − k

(1)
l

ql + k
(1)
l

, (2)

where ε
(1)
l ≡ ε(1)(iξl) is the dielectric permittivity of Au

calculated at the pure imaginary Matsubara frequencies, and

k
(1)
l =

√
k2
⊥ + ε

(1)
l ξ 2

l /c2. The reflection coefficients R(n)
α on

the boundary between vacuum and the graphene-coated plate
made of a dielectric material (denoted by the superscript n)
take the form [68,70,71]

R
(n)
TM(iξl,k⊥) = h̄k2

⊥
(
ε

(n)
l ql − k

(n)
l

) + qlk
(n)
l �00,l

h̄k2
⊥
(
ε

(n)
l ql + k

(n)
l

) + qlk
(n)
l �00,l

,

R
(n)
TE(iξl,k⊥) = h̄k2

⊥
(
ql − k

(n)
l

) − �l

h̄k2
⊥
(
ql + k

(n)
l

) + �l

, (3)

where ε
(n)
l ≡ ε(n)(iξl), n = 1, 2 are the dielectric permittivities

of the two plate materials and k
(n)
l =

√
k2
⊥ + ε

(n)
l ξ 2

l /c2. The
quantities �βγ,l ≡ �βγ (iξl,k⊥,T ,m,μ) with β, γ = 0, 1, 2
are the components of the polarization tensor of graphene
in (2+1)-dimensional space time, and �l is defined as

�l = k2
⊥�tr,l − q2

l �00,l . (4)

Here, �tr = �
β

β is the trace of the polarization tensor.
If the sphere interacts with a free-standing graphene sheet,

one has ε
(n)
l = 1, k

(n)
l = ql and the reflection coefficients (3)

transform to [69,70]

RTM(iξl,k⊥) = ql�00,l

ql�00,l + 2h̄k2
⊥

,

RTE(iξl,k⊥) = − �l

�l + 2h̄k2
⊥ql

. (5)

Note that the proximity force approximation used in the
derivation of Eq. (1) is valid under the condition a 	 R.
Direct calculations show that the relative correction to the
PFA result (1) is smaller than a/R [76–81].

Here we use the explicit expressions for the quantities �00,l

and �l in the case of graphene with nonzero m and μ which
allow analytic continuation to the entire plane of complex
frequencies. It is convenient to present them as sums of two
contributions [74]

�00(iξl,k⊥,T ,m,μ) = �
(0)
00 (iξl,k⊥,m) + �

(1)
00 (iξl,k⊥,T ,m,μ),

�(iξl,k⊥,T ,m,μ) = �(0)(iξl,k⊥,m) + �(1)(iξl,k⊥,T ,m,μ).

(6)

The first terms on the right-hand sides of Eq. (6), �
(0)
00

and �(0), are the contributions to the polarization tensor

describing undoped (μ = 0) graphene with nonzero mass gap
at zero temperature calculated at the imaginary Matsubara
frequencies. They were obtained in Ref. [58] and can be
equivalently presented in the form

�
(0)
00,l = αh̄k2

⊥
q̃l




(
2mc

h̄q̃l

)
,

�
(0)
l = αh̄k2

⊥q̃l 


(
2mc

h̄q̃l

)
, (7)

where


(x) = 2

[
x + (1 − x2) arctan

1

x

]
,

q̃l =
√

v2
F

c2
k2
⊥ + ξ 2

l

c2
, (8)

and α = e2/(h̄c) is the fine structure constant.
The second terms on the right-hand sides of Eq. (6) take

into account both the thermal effect and the dependence
of the polarization tensor on the chemical potential. For
doped graphene the latter may remain different from zero
in the limiting case of vanishing temperature. The resulting
μ-dependent contributions to the polarization tensor depend
also on m (see below). The explicit expressions for the second
terms on the right-hand sides of Eq. (6), �

(1)
00 and �(1), were

derived in Ref. [74]. They can be equivalently presented as

�
(1)
00,l = 4αh̄c2q̃l

v2
F

∫ ∞

Dl

du

(
1

e
Blu+ μ

kB T + 1
+ 1

e
Blu− μ

kB T + 1

)

×
⎡
⎣1 − Re

1 − u2 + 2i
ξl

cq̃l
u(

1 − u2 + 2i
ξl

cq̃l
u + v2

F k2
⊥

c2q̃2
l

D2
l

)1/2

⎤
⎦,

�
(1)
l = −4αh̄q̃lξ

2
l

v2
F

∫ ∞

Dl

du

(
1

e
Blu+ μ

kB T + 1
+ 1

e
Blu− μ

kB T + 1

)

×
⎡
⎣1 − Re

1 − q̃2
l

c2

ξ 2
l

u2 + 2i
cq̃l

ξl
u + v2

F k2
⊥

ξ 2
l

D2
l(

1 − u2 + 2i
ξl

cq̃l
u + v2

F k2
⊥

c2q̃2
l

D2
l

)1/2

⎤
⎦, (9)

where

Dl = 2mc

h̄q̃l

, Bl = h̄cq̃l

2kBT
. (10)

Note that in the framework of quantum field theory at
nonzero temperature the chemical potential is introduced by
the substitution [82]

1

exp(Blu) + 1
→ 1

2

(
1

e
Blu+ μ

kB T + 1
+ 1

e
Blu− μ

kB T + 1

)
. (11)

Using this equation, the results (9) follow also from the
respective equations of Ref. [22] obtained for the case m �= 0,
μ = 0.

It is convenient to consider separately the zero-frequency
contribution to Eq. (1), l = 0, and the contributions of
nonzero Matsubara frequencies with l � 1. Equations (6),
(7), and (9) for the polarization tensor at l = 0 take
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the form

�00,0 = αh̄c
k⊥
vF




(
2mc2

h̄vF k⊥

)
+ 8αkBT c

v2
F

ln
[(

e
μ

kB T + e
− mc2

kB T

)(
e
− μ

kB T + e
− mc2

kB T

)]

− 4αh̄ck⊥
vF

∫ √
1+D2

0

D0

du

(
1

e
Blu+ μ

kB T + 1
+ 1

e
Blu− μ

kB T + 1

)
1 − u2√

1 − u2 + D2
0

,

�0 = αh̄
vF k3

⊥
c




(
2mc2

h̄vF k⊥

)
+ 4αh̄

vF k3
⊥

c

∫ √
1+D2

0

D0

du

(
1

e
Blu+ μ

kB T + 1
+ 1

e
Blu− μ

kB T + 1

) −u2 + D2
0√

1 − u2 + D2
0

, (12)

where, according to Eq. (10),

D0 = 2mc2

h̄vF k⊥
, B0 = h̄vF k⊥

2kBT
. (13)

The exact expressions (7) and (9) for the polarization tensor
at l � 1 are more complicated. Fortunately, much simpler
approximate expressions for them can be obtained in the
region of parameters interesting from the experimental point
of view. The matter is that for room temperature (T = 300 K)
and at separations a > 100 nm already the first Matsubara
frequency satisfies the condition ξ1 � vF /(2a). Taking this in-
equality into account and repeating the respective derivation of
Ref. [71] in our case of nonzero m and μ, one obtains for l � 1

�00,l ≈ αh̄
ck2

⊥
ξl

[



(
2mc2

h̄ξl

)
+ Ỹl(T ,m,μ)

]
,

�l ≈ αh̄
ξlk

2
⊥

c

[



(
2mc2

h̄ξl

)
+ Ỹl(T ,m,μ)

]
, (14)

where

Ỹl(T ,m,μ) = 2
∫ ∞

2mc2/(h̄ξl )
du

(
1

e
Blu+ μ

kB T + 1
+ 1

e
Blu− μ

kB T + 1

)

×
u2 + (

2mc2

h̄ξl

)2

u2 + 1
. (15)

We have performed numerical computations of the Casimir
force using the exact polarization tensor (6), (7) and (9) at
all l and, alternatively, the exact expression (12) at l = 0 and
the approximate expressions (14) at l � 1. At T = 300 K,
a � 100 nm the obtained results turned out to differ by less
than 0.01%.

Below we also consider the thermal correction to the
Casimir force acting between a Au sphere and a graphene

sheet or graphene-coated substrate. It is defined as

�T F (a,T ) = F (a,T ) − F (a,0). (16)

The Casimir force at zero temperature, F (a,0), is calculated
by the Lifshitz formula (1) where summation in discrete
Matsubara frequencies is replaced with an integration over
the imaginary frequency axis according to

kBT

∞∑
l=0

′ → h̄

2π

∫ ∞

0
dξ. (17)

Along with this substitution, the Matsubara frequencies ξl in
Eqs. (1)–(5) are replaced with ξ and ql , k

(1)
l , k

(n)
l , �00,l , and

�l are, respectively, replaced with q, k(1), k(n), �00, and �.
To calculate the reflection coefficients (3) and (5) at T = 0

we need to find the limits of �
(1)
00,l and �

(1)
l for vanishing

temperature. It is easily seen that the first fractions among the
round brackets, which contain exponents in the denominators,
on the right-hand sides of both quantities in Eq. (9) become
zero in the limit T → 0. As to the second fractions, in the limit
T → 0 they become equal to unity for

Blu − μ

kBT
< 0, (18)

and vanish elsewhere. Taking into account that u � Dl , where
Dl is defined in Eq. (10), it follows that in the limit T → 0
the quantities �

(1)
00 and �(1) are nonzero only for mc2 < μ.

Summing up the above considerations, in the limit T → 0 one
can replace the fractions between the round brackets in Eqs. (9)
by θ (μ − mc2), where θ (x) is the Heaviside step function
equal to zero for x � 0 and unity for x > 0, and restrict the
integration over u of the quantity between the square brackets
to the interval (2/h̄)[mc/q̃,μ/(cq̃)]. After evaluating the latter
elementary integral, and performing identical transformations,
one arrives at the formula:

�
(1)
00 (iξ,k⊥,0,m,μ) = θ (μ − mc2)

{
8αcμ

v2
F

− αh̄k2
⊥

q̃

[
2MIm

(
ym,μ

√
1 + y2

m,μ

) + 4mc

h̄q̃

]

− αh̄k2
⊥

q̃
(2 − M)

[
2Im ln

(
ym,μ +

√
1 + y2

m,μ

) − π + 2 arctan

(
h̄q̃

2mc

)]}
. (19)
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Here, the following notations are introduced

M = 1 + 4m2c2

h̄2q̃2
, ym,μ = h̄ξ + 2iμ

h̄vF k⊥
√

M
. (20)

Then, for μ > mc2 combining Eqs. (6), (7), and (19) one obtains the following expression for the total 00 component of the
polarization tensor in the limit T → 0

�00(iξ,k⊥,0,m,μ) = 8αcμ

v2
F

− αh̄k2
⊥

q̃

{
2MIm

(
ym,μ

√
1 + y2

m,μ

) + (2 − M)
[
2Im ln

(
ym,μ +

√
1 + y2

m,μ

) − π
]}

. (21)

Note that in the final expression (21) two of the terms in Eq. (19) are exactly canceled against the contribution of �
(0)
00 in

Eq. (7). In the alternative case mc2 � μ, the quantity �
(1)
00 in Eq. (19) is identically zero and the complete expression of �00 in

the limit T → 0 reduces to

�00(iξ,k⊥,0,m,μ) = �
(0)
00 (iξ,k⊥,m), (22)

i.e., it does not depend on μ.
Similar results are obtained in the limit T → 0 for the quantity �

(1)
l defined in Eq. (9). Calculating the integral over the same

finite interval, as for �
(1)
00,l , after identical transformations one obtains

�(1)(iξ,k⊥,0,m,μ) = θ (μ − mc2)

{
−8αξ 2μ

cv2
F

+ 2αh̄q̃k2
⊥

[
−2mc

h̄q̃
+ MIm

(
ym,μ

√
1 + y2

m,μ

)

− (2 − M)Im ln
(
ym,μ +

√
1 + y2

m,μ

) + (2 − M) arctan

(
2mc

h̄q̃

)]}
. (23)

In the case μ > mc2 the complete expression of � in the limit T → 0 follows from Eqs. (6), (7), and (23)

�(iξ,k⊥,0,m,μ) = −8αξ 2μ

cv2
F

+ 2αh̄q̃k2
⊥
[
MIm

(
ym,μ

√
1 + y2

m,μ

) − (2 − M)Im ln
(
ym,μ +

√
1 + y2

m,μ

) + π

2
(2 − M)

]
. (24)

Here, again, the contribution of �(0) is canceled against two
terms in the right-hand side of Eq. (23). In the alternative case
mc2 � μ the contribution of �(1) from Eq. (23) is equal to
zero and one arrives at

�(iξ,k⊥,0,m,μ) = �(0)(iξ,k⊥,m). (25)

Thus, we see from Eqs. (22) and (25) that in the limiting case
of zero temperature for a sufficiently small chemical potential
satisfying the condition μ � mc2, the polarization tensor of
graphene in Eq. (7) receives no corrections and therefore it
depends only on the mass of quasiparticles. In order to affect
the polarization tensor of graphene in the limit T → 0 (and,
thus, the reflection coefficients and the Casimir force) the
chemical potential must satisfy the inequality μ > mc2. In this
case the additional terms to the polarization tensor of graphene
in the limit T → 0 are given by Eqs. (19) and (23) and
depend on both μ and m. One can say that the case μ � mc2

corresponds to the interband transitions when only �
(0)
00 and

�(0) contribute to the polarization tensor. For μ > mc2 the
additional terms �

(1)
00 and �(1) in the polarization tensor have

to be considered, which means that the intraband transitions
come into play.

III. THE ROLE OF NONZERO MASS GAP AND
CHEMICAL POTENTIAL FOR FREE-STANDING

GRAPHENE

In this section we calculate the Casimir force and its thermal
correction for a Au sphere interacting with a graphene sheet

characterized by nonzero mass gap m and chemical potential
μ. Calculations are performed at room temperature T = 300 K
over the separation region from 100 nm to 1.5 μm for a sphere
radius R = 150 μm, as is typical for experiments measuring
the Casimir force [83].

To compute the Casimir force, one needs the value of ε
(1)
l

for Au and m and μ for a graphene sheet. It is well known that
ε

(1)
l can be determined on the basis of the tabulated optical data

of Au [84], suitably extrapolated down to zero frequency by
either the lossy Drude or the lossless plasma model [26,83].
Although the Drude model, which takes into account the
dissipation of free electrons, may seem more realistic, all
precise measurements of the Casimir force between metallic
test bodies turned out to be in very good agreement with the
predictions of the Lifshitz theory using the plasma model
to extrapolate the optical data to zero frequency [85–92].
The corresponding predictions using the Drude model have
been experimentally excluded nearly at 100% confidence
level [85–92].

A deep theoretical understanding of why the lossless plasma
model works well at low frequencies in calculations of the
fluctuation-induced Casimir force is still missing. However,
calculations of the Casimir force in graphene systems, consid-
ered in this paper, are unaffected by the Drude-plasma dilemma
which only leads to negligibly small differences in the obtained
results [60,75]. The reason is that the difference among
the theoretical predictions of the Drude or plasma models
originates mainly from the TE zero-frequency contribution
to the Lifshitz formula (1). The latter contribution involves the
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product of the reflection coefficients r
(1)
TE(0,k⊥) and RTE(0,k⊥)

for Au and graphene. If the Drude model is used, the reflection
coefficient r (1)

TE(0,k⊥) of Au is found to be zero, while a nonzero
result is obtained if the plasma model is employed. Since,
however, the reflection coefficient RTE(0,k⊥) for graphene is
negligibly small due to the smallness of �0 in Eq. (12), it
follows at once that the value of the reflection coefficient
r

(1)
TE(0,k⊥) is irrelevant, whether it is zero or nonzero. As a

result, the Drude and the plasma models lead to practically
undistinguishable values for the Casimir force acting between
a metallic test body and graphene. Below an experimentally
consistent extrapolation of the optical data for Au to zero
frequency by means of the plasma model [26,83] is used in all
computations.

Now we discuss possible values of the mass gap mc2 and the
chemical potential μ. It is common knowledge that in pristine
graphene the Dirac-type electronic excitations are massless.
However, definite conditions existing in real samples, such as
electron-electron interactions, structure defects, the presence
of a substrate, and some other effects give rise to a nonzero
mass gap [37,93–95]. The exact value of mc2 for a specific
graphene sample usually remains unknown. Realistic esti-
mates bound the mass gap to the region mc2 < 0.1 eV for
free-standing graphene, while for a graphene sheet deposited
on a substrate the bound is mc2 < 0.2 eV.

Similar to the mass-gap parameter, for pristine graphene the
chemical potential is equal to zero. For real graphene samples,
however, there is always some fraction of extraneous atoms,
i.e., real graphene samples are always doped with some doping
concentration n. At zero temperature the respective chemical
potential is given by [96]

μ(T = 0) = h̄vF

√
πn. (26)

In so doing it is almost independent on the temperature [96].
For nearly undoped graphene films in high vacuum used in
the Casimir experiment [36] the value of n ≈ 1.2×1010 cm−2

was estimated based on measurements of two-dimensional
mobility. The corresponding maximum value of the chemical
potential obtained from Eq. (26) is μ = 0.02 eV. As two
more examples, the values of chemical potential for doping
concentrations n ≈ 7.5×1011 and 2×1013 cm−2 are equal
to μ = 0.1 and 0.5 eV, respectively. Note also that in the
measurement of the optical conductivity of graphene reported
in Ref. [97] a representative value of μ = 0.1 eV was used for
a graphene sheet on the top of a SiO2 substrate.

Computations of the Casimir force between an Au sphere
and a free-standing graphene sheet are conveniently done using
the dimensionless variables

y = 2aql, ζl = 2aξl

c
. (27)

In terms of these variables the Lifshitz formula (1) takes the
form

F (a,T ) = kBT R

4a2

∞∑
l=0

′ ∫ ∞

ζl

ydy

×
∑

α

ln
[
1 − r (1)

α (iζl,y)R(n)
α (iζl,y)e−y

]
. (28)

Here, the reflection coefficients (2) for an Au surface take the
form

r
(1)
TM(iζl,y) =

ε
(1)
l y −

√
y2 + (

ε
(1)
l − 1

)
ζ 2
l

ε
(1)
l y +

√
y2 + (

ε
(1)
l − 1

)
ζ 2
l

,

r
(1)
TE(iζl,y) =

y −
√

y2 + (
ε

(1)
l − 1

)
ζ 2
l

y +
√

y2 + (
ε

(1)
l − 1

)
ζ 2
l

. (29)

The reflection coefficients (5) for a graphene sheet are given
by

RTM(iζl,y) = y�̃00,l

y�̃00,l + 2
(
y2 − ζ 2

l

) ,

RTE(iζl,y) = − �̃l

�̃l + 2y
(
y2 − ζ 2

l

) , (30)

where the dimensionless polarization tensor is defined as

�̃00,l = 2a�00,l

h̄
, �̃l = (2a)3�l

h̄
. (31)

In doing so the quantities (12), (14), (21), and (24) are also
rewritten in terms of the dimensionless variables (27).

First, we investigate the relative impact of nonzero m and
μ on the Casimir force, as compared to the case of pristine
graphene with mc2 = μ = 0. For this purpose we calculate
the quantity

δm,μF = F (a, T ,m,μ) − F (a, T , 0, 0)

F (a, T , 0, 0)
. (32)

Numerical computations have been performed at T = 300 K
by using Eqs. (28)–(30), (12) and (14). The computational
results in percents as functions of separation are shown in
Fig. 1(a) by the five lines 1, 2, 3, 4, and 5 corresponding,
respectively, to the following five combinations of val-
ues of m and μ: m = 0, μ = 0.5 eV; m = 0, μ = 0.1 eV;
mc2 = 0.1 eV, μ = 0; mc2 = 0.15 eV, μ = 0; and mc2 =
0.2 eV, μ = 0. [Note that Figs. 1(b) and 1(c), which refer
to the case of graphene deposited on a substrate, are discussed
in Sec. IV.] As is seen in Fig. 1(a), the presence of nonzero
mass gap and chemical potential acts on the Casimir force
in opposite directions. The magnitude of the Casimir force
decreases with increasing m, while it increases with increasing
μ. This result finds a simple physical explanation. An increase
of the chemical potential essentially increases graphene’s
conductivity, so that one should expect the force to grow. On
the other hand, by increasing the mass gap one is lowering the
mobility, which in turn lowers the conductivity and brings the
force down. The relative impact of both parameters decreases
with increasing separation distance between the sphere and the
graphene sheet.

We next consider the dependence of the Casimir force
between an Au sphere and a graphene sheet and its thermal
correction (16) on the value of the mass gap for different values
of the chemical potential. When doing that, the Casimir force
F (a,0) is computed using the Lifshitz formula at zero temper-
ature, i.e., Eq. (1) with the replacement (17), together with the
expressions for the polarization tensor in Eqs. (21), (22), (24),

115430-6



THERMAL EFFECT IN THE CASIMIR FORCE FOR . . . PHYSICAL REVIEW B 96, 115430 (2017)

0.2 0.4 0.6 0.8 1.0 1.2 1.4
60

40

20

0

20

40

a (μm)

δ m
,μ
F

(%
)

1

2

3 4

5

0.2 0.4 0.6 0.8 1.0 1.2 1.4

8

6

4

2

0

2

4

a (μm)

δ m
,μ
F

(%
)

1

2

3
4

5

0.2 0.4 0.6 0.8 1.0 1.2 1.4
6

5

4

3

2

1

0

1

a (μm)

δ m
,μ
F

(%
)

1
2

3

4

5
(c)

(b)

(a)

FIG. 1. The relative differences of the Casimir force for real
and pristine graphene between (a) an Au sphere and a graphene
sheet, (b) an Au sphere and a graphene-coated SiO2 plate, and
(c) an Au sphere and a graphene-coated Si plate are shown as
functions of separation at T = 300 K. The lines 1, 2, 3, 4, and 5
correspond to the following five combinations of values of m and
μ: m = 0, μ = 0.5 eV; m = 0, μ = 0.1 eV; mc2 = 0.1 eV, μ = 0;
mc2 = 0.15 eV, μ = 0; and mc2 = 0.2 eV, μ = 0, respectively.

and (25). The computational results for the Casimir force F

are shown for a = 0.1 μm and T = 300 K in Fig. 2(a) as
functions of the mass gap for three different values of chemical
potential μ = 0, 0.1, and 0.5 eV, corresponding to lines 1, 2,
and 3, respectively. The computational results for the thermal
correction to the Casimir force, �T F , and for the fractional
weight of the thermal correction in the total force, �T F/F ,
are displayed in Figs. 2(b) and 2(c) for the same values of the
parameters as in Fig. 2(a).

As is seen in Fig. 2(a), the magnitude of the Casimir force
decreases monotonously with increasing m and increases with
an increase of μ in accordance with Fig. 1(a). The values of F
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FIG. 2. (a) The Casimir force, (b) its thermal correction, and
(c) the fractional weight of the thermal correction in the Casimir force
for an Au sphere interacting with a graphene sheet for a = 0.1 μm,
T = 300 K are shown as functions of the mass-gap parameter. The
lines 1, 2, and 3 are for μ = 0, 0.1, and 0.5 eV, respectively.

in Fig. 2(a) at m = 0 are in agreement with the computational
results of Ref. [74], where the enhanced thermal Casimir force
for nonzero μ was found. The dependence of the thermal
correction to the Casimir force on m in Figs. 2(b) and 2(c) is
nonmonotonous (this effect was already noted in Ref. [60] for
the case μ = 0). The characteristic discontinuity displayed by
the derivative of the μ = 0.1 eV curves in Figs. 2(b) and 2(c)
for mc2 = 0.1 eV is explained by the fact that for μ = 0.1 eV
the contributions �

(1)
00 and �(1) to the polarization tensor at

T = 0 both turn into zero for mc2 � 0.1 eV (see Sec. II).
Note that for free-standing graphene values of mc2 exceeding
0.1 eV are somewhat unrealistic. This region is shown in
Figs. 2(b) and 2(c) only for comparison purposes with the
case of graphene deposited on a substrate (see Sec. IV). On
the whole, under the condition mc2 < μ the thermal effect
decreases in magnitude with increasing chemical potential,
and its relative role in the Casimir force drops down.
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For comparison purposes, the 300 K thermal Casimir force
between an Au sphere and a free-standing graphene sheet
[Fig. 3(a)], its thermal correction [Fig. 3(b)], and the fractional
weight of the thermal correction in the total thermal force
[Fig. 3(c)] are shown as functions of the mass gap for the
larger separation a = 1 μm for three different values of the
chemical potential μ = 0, 0.1, and 0.5 eV corresponding,
respectively, to lines 1, 2, and 3 in the figures. As can be seen
by a comparison of Figs. 2 and 3, both the Casimir force and
its thermal correction have a similar qualitative behavior for
the two different separations. Although the magnitudes of the
thermal correction at a = 1 μm are smaller than those found
for a = 0.1 μm [compare Figs. 3(b) and 2(b)], they represent
larger fractions of the total force at a = 1 μm [see Figs. 3(c)
and 2(c)]. As is seen in Fig. 3(c), for a sufficiently large mass
gap a chemical potential not exceeding 0.1 eV makes almost

no impact on the fractional weight of the thermal correction in
the total Casimir force.

IV. SUPPRESSED IMPACT OF THE MASS GAP AND
CHEMICAL POTENTIAL FOR GRAPHENE-COATED

DIELECTRIC SUBSTRATES

Here, we consider the Casimir force and its thermal
correction for an Au-coated sphere of R = 150 μm radius
interacting with a real graphene sheet deposited on a dielectric
plate. Numerical computations were performed at T = 300 K
by using the Lifshitz formula (28) for plates made of
SiO2 (vitreous silica) and high-resistivity Si. The reflection
coefficients (3) are expressed in terms of dimensionless
variables (27) as

R
(n)
TM(iζl,y) =

ε
(n)
l y

(
y2 − ζ 2

l

) +
√

y2 + (
ε

(n)
l − 1

)
ζ 2
l

[
y�̃00,l − (

y2 − ζ 2
l

)]
ε

(n)
l y

(
y2 − ζ 2

l

) +
√

y2 + (
ε

(n)
l − 1

)
ζ 2
l

[
y�̃00,l + (

y2 − ζ 2
l

)] ,

R
(n)
TE(iζl,y) =

(
y2 − ζ 2

l

)[
y −

√
y2 + (

ε
(n)
l − 1

)
ζ 2
l

] − �̃l(
y2 − ζ 2

l

)[
y +

√
y2 + (

ε
(n)
l − 1

)
ζ 2
l

] + �̃l

. (33)

We begin with the case of a SiO2 substrate.

A. Silica plate

The dielectric permittivity of SiO2 along the imaginary fre-
quency axis, ε

(2)
l ≡ ε(2)(iξl), can be described very accurately

by a simple analytic formula [26,98,99]. The four numerical
coefficients involved in this formula have been determined
from a fit to the tabulated optical data of SiO2 [84]. The
resulting static dielectric permittivity of SiO2 is ε

(2)
0 = 3.81.

Numerical computations of the Casimir force F , and its
thermal correction �T F , have been performed at T = 300 K
using Eqs. (28), (29), and (33) together with the expressions
for the polarization tensor of graphene presented in Sec. II for
both nonzero and zero temperature.

First, we calculate the relative difference δm,μF among
the Casimir forces between an Au sphere and a SiO2 plate
coated either with real graphene characterized by nonzero m

and μ, or with pristine graphene for which mc2 = μ = 0 [see
Eq. (32)]. The computational results for δm,μF in percents
are presented in Fig. 1(b) as functions of separation by the
five lines 1, 2, 3, 4, and 5 corresponding to the following
combinations of parameters: m = 0, μ = 0.5 eV; m = 0, μ =
0.1 eV; mc2 = 0.1 eV, μ = 0; mc2 = 0.15 eV, μ = 0; and
mc2 = 0.2 eV, μ = 0, respectively. As is seen in Fig. 1(b),
for the graphene-coated substrate the presence of a nonzero
mass gap and chemical potential has an opposite effect on
the magnitude of the Casimir force similar to the case of
a free-standing graphene sheet [see Fig. 1(a)]. The striking
difference between the two cases is, however, that for a
graphene-coated substrate the impact of nonzero m and μ

is up to an order of magnitude smaller than for a free-standing
graphene sheet. This is explained by the fact that the substrate
material provides the dominant contribution to the reflection
coefficient of the graphene-coated substrate (see a discussion
in the next paragraph for more details). It is notable also that
for the largest mass considered (mc2 = 0.2 eV) the magnitude
of δm,μF increases with increasing separation, while this
phenomenon is not observed for free-standing graphene with
any mass.

Next, we present the computational results for the Casimir
force between an Au sphere and a graphene-coated SiO2 plate
for T = 300 K, a = 0.1 μm [Fig. 4(a)], its thermal correction
[Fig. 4(b)], and the fractional weight of the thermal correction
in the Casimir force [Fig. 4(c)] as functions of the mass gap for
μ = 0, 0.1, and 0.5 eV (lines 1, 2, and 3, respectively). As is
seen from the comparison of Figs. 2(a)–2(c) and 4(a)–4(c), the
Casimir force, its thermal correction, and the fractional weight
of the thermal correction in the force have the same qualitative
behavior in the cases of a free-standing graphene and for a
graphene-coated SiO2 substrate. One should note, however,
that for a graphene-coated SiO2 plate the magnitude of the
Casimir force is several times larger than for a free-standing
graphene [see Figs. 2(a) and 4(a)]. Physically this is explained
by the fact that for a graphene-coated substrate the reflection
coefficient is much larger than for a free-standing graphene
sheet. Specifically, for a free-standing graphene the reflection
coefficient is proportional to the fine structure constant. Upon
including a substrate, the overall reflection coefficient of the
substrate and graphene system is dominated by the large
contribution from the substrate material. The latter depends on
its dielectric permittivity and corresponds to the zeroth order
term in an expansion in powers of the fine structure constant.
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FIG. 3. (a) The Casimir force, (b) its thermal correction, and
(c) the fractional weight of the thermal correction in the Casimir force
for an Au sphere interacting with a graphene sheet for a = 1 μm,
T = 300 K are shown as functions of the mass-gap parameter. The
lines 1, 2, and 3 are for μ = 0, 0.1, and 0.5 eV, respectively.

The magnitude of the thermal correction for a graphene-coated
substrate is somewhat smaller and its fractional weight in the
total Casimir force is much smaller than for a free-standing
graphene sheet. This is seen from the comparison of Fig. 2(b)
with Fig. 4(b) and Fig. 2(c) with Fig. 4(c), respectively. One
can say that a substrate acts on the zero-temperature force and
on the thermal correction to it in opposite directions.

Similar to Fig. 4, in Fig. 5 the computational results for
F , �T F , and �T F/F in the case of a graphene-coated SiO2

plate are presented at T = 300 K, but at the larger sphere-plate
separation a = 1 μm. All notations in Fig. 5 are the same
as in Fig. 4. As is seen in Fig. 5, the qualitative features of
the dependence of all considered quantities on the mass-gap
parameter do not change. The magnitude of the Casimir force
in Fig. 5(a) is larger and the magnitude of its thermal correction
in Fig. 5(b) is smaller than in Figs. 3(a) and 3(b) plotted at
the same separation for a free-standing graphene sheet. The
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FIG. 4. (a) The Casimir force, (b) its thermal correction, and
(c) the fractional weight of the thermal correction in the Casimir
force for an Au sphere interacting with a graphene-coated SiO2 plate
for a = 0.1 μm, T = 300 K are shown as functions of the mass-gap
parameter. The lines 1, 2, and 3 are for μ = 0, 0.1, and 0.5 eV,
respectively.

fractional weight of the thermal correction in the total force in
Fig. 5(c) is up to a factor of 3 smaller than in Fig. 3(c). These
results remain valid for any considered value of the chemical
potential and mass-gap parameter.

B. Silicon plate

The dielectric permittivity of high-resistivity Si along the
imaginary frequency axis ε

(3)
l ≡ ε(3)(iξl) was obtained from

the optical data for its complex index of refraction [84]. Unlike
SiO2, Si possesses a rather large static dielectric permittivity
ε

(3)
0 = 11.66, and this influences both the Casimir force and its

thermal correction. All computations are performed using the
same equations as in Sec. IV A.

Specifically, the relative deviations of the Casimir force
between an Au sphere and a Si plate coated with either real
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FIG. 5. (a) The Casimir force, (b) its thermal correction, and
(c) the fractional weight of the thermal correction in the Casimir
force for an Au sphere interacting with a graphene-coated SiO2 plate
for a = 1 μm, T = 300 K are shown as functions of the mass-gap
parameter. The lines 1, 2, and 3 are for μ = 0, 0.1, and 0.5 eV,
respectively.

or pristine graphene as functions of separation are shown in
Fig. 1(c) by the five lines for the same pairs (mc2, μ) for real
graphene as in Figs. 1(a) and 1(b). It is again seen that nonzero
m and μ influence the Casimir force in opposite directions.
This impact, however, is further decreased as compared to the
case of the SiO2 plate.

In Figs. 6(a)–6(c) the computational results for the Casimir
force between an Au sphere and a graphene-coated Si plate,
for its thermal correction and for the fractional weight of the
thermal correction in the force are presented for a = 0.1 μm,
T = 300 K as functions of the mass gap by the lines 1, 2, and
3 plotted for μ = 0, 0.1, and 0.5 eV, respectively. As is seen in
Fig. 6(a), the magnitudes of the Casimir force are much larger
than for the case of the SiO2 plate shown in Fig. 4(a), as a
result of the larger value ε

(3)
0 of the static permittivity of Si as

compared to ε
(2)
0 of SiO2. From Figs. 6(b) and 6(c) it follows,
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FIG. 6. (a) The Casimir force, (b) its thermal correction, and
(c) the fractional weight of the thermal correction in the Casimir
force for an Au sphere interacting with a graphene-coated Si plate
for a = 0.1 μm, T = 300 K are shown as functions of the mass-gap
parameter. The lines 1, 2, and 3 are for μ = 0, 0.1, and 0.5 eV,
respectively.

however, that both the thermal correction and its fractional
weight in the total force are smaller than for a SiO2 plate.
Hence, for substrates with larger ε0 the impact of graphene
coating with nonzero m and μ becomes smaller. This effect
was reported in Ref. [67] for dielectric plates coated with
pristine graphene.

The analogous computational results for F , �T F , and
�T F/F for the larger separation a = 1 μm between an Au
sphere and a graphene-coated Si plate are shown in Figs. 7(a)–
7(c). Notations are the same as in Fig. 6. From Fig. 7(a) one
can see that the magnitudes of the Casimir force are much
larger than those shown in Fig. 5(a), which refer to the case of
a graphene-coated SiO2 plate. The magnitudes of the thermal
correction in Fig. 7(b) and its fractional weight in the total force
in Fig. 7(c) are smaller, compared to the case of a SiO2 substrate
at the same separation distance [see Figs. 5(b) and 5(c)].
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FIG. 7. (a) The Casimir force, (b) its thermal correction, and
(c) the fractional weight of the thermal correction in the Casimir
force for an Au sphere interacting with a graphene-coated Si plate
for a = 1 μm, T = 300 K are shown as functions of the mass-gap
parameter. The lines 1, 2, and 3 are for μ = 0, 0.1, and 0.5 eV,
respectively.

V. ROLE OF NONZERO MASS GAP AND CHEMICAL
POTENTIAL IN DIFFERENTIAL MEASUREMENTS OF

THE THERMAL EFFECT FOR GRAPHENE

It has long been known that differential measurements
allow us to achieve a very high precision and reliability.
In Casimir physics they were used to measure the optically
modulated Casimir force between an Au sphere and a Si
plate illuminated with laser pulses [100] and in the so-
called Casimir-less experiments searching for Yukawa-type
corrections to Newton’s gravitational law [101,102]. Recently
it was found that differential measurement schemes allow for
a huge amplification of the difference among the theoretical
predictions of the Lifshitz theory using either the Drude or the
plasma model in the extrapolation of optical data down to zero
frequency [103–105]. Using one of these differential schemes,
in which the difference among the alternative theoretical

predictions could be made as large as by a factor of 1000,
the experiment of Ref. [92] confirmed the plasma model
approach to the Casimir force between metallic test bodies and
undeniably excluded the Drude model. This result provided
further support to several previous measurements in favor of
the plasma model [85–91], in which, however, the predicted
difference between the two approaches did not exceed a few
percent. Very recently, a universal differential measurement
has been proposed which allows for a clear discrimination
between different theoretical approaches to the Casimir force
not only for metallic, but also for dielectric test bodies [106].

In this section, we consider the role of nonzero mass gap
and chemical potential in the differential setup aiming at the
observation of the giant thermal effect in graphene systems,
proposed by us in Ref. [75]. In that work it was shown that
the thermal effect can be observed, using a feasible adaptation
of a currently available experimental setup, by measuring the
difference among the Casimir forces between an Au-coated
sphere and the two halves of a Si plate, one of which is
coated and the other is uncoated with a graphene sheet [75].
Since in Ref. [75] the parameters for pristine graphene have
been used in the computations, it is now important to check
whether the encouraging conclusions reached there concerning
the feasibility of this experiment remain valid for real graphene
samples which possess nonzero mass gap and chemical
potential.

We recall that in Ref. [75] we proposed to measure the
differential force

Fdiff(a,T ) = FSi(a,T ) − F (a,T ), (34)

where F (a,T ) is the Casimir force between an Au-
coated sphere and a graphene-coated Si plate expressed by
Eqs. (28), (29), and (33), and FSi(a,T ) is the Casimir force
between an Au sphere and uncoated Si plate. The latter force
is also expressed by the Lifshitz formula (28), in which the
reflection coefficients (29) remain unchanged. The reflection
coefficients R(3)

α are replaced with coefficients of the uncovered
Si plate having a form analogous to Eq. (29) in which,
however, the dielectric permittivity ε

(1)
l of Au is replaced by

the permittivity ε
(3)
l of Si.

Using these formulas we have performed numerical compu-
tations of Fdiff as a function of separation. The computational
results for T = 300 K are shown in Fig. 8(a) by the top
and bottom solid lines plotted for mc2 = 0, μ = 0.02 eV
and mc2 = 0.2 eV, μ = 0, respectively. The top and bottom
dashed lines in this figure show the computational results
for Fdiff at T = 0 for the same two combinations of values
(m,μ). We remind that μ = 0.02 eV represents the value of
the chemical potential for the graphene samples used in the
experiment [36], which measured the gradient of the Casimir
force between an Au-coated sphere and graphene-coated
substrate, whereas mc2 = 0.2 represents the estimated upper
bound on the value of mc2 for graphene-coated substrates.
Therefore, one can confidently conclude that for realistic
samples the thermal correction to the differential force (34),

�T Fdiff(a,T ) = Fdiff(a,T ) − Fdiff(a,0), (35)

belongs to the band defined by the difference between the
two bands bounded, respectively, by the two pairs of solid
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FIG. 8. (a) The difference among the Casimir forces between an
Au sphere and uncoated and graphene-coated Si plate is shown as a
function of separation. The top and bottom solid lines are plotted
at T = 300 K for mc2 = 0, μ = 0.02 eV and for mc2 = 0.2 eV,

μ = 0, respectively. The top and bottom dashed lines are plotted
at T = 0 K for the same respective pairs of values for mc2 and μ.
The top and bottom dotted lines are plotted for the pristine graphene
at T = 300 K and T = 0 K, respectively. (b) The region of short
separations from (a) is shown on an enlarged scale. (c) The difference
between the bottom solid and top dashed lines in (a) is shown by
the top solid line in comparison with the experimental error (the
horizontal line) as a function of separation.

and dashed lines in Fig. 8(a). The upper bound on the band for
�T Fdiff is therefore equal to the difference among the top solid
and bottom dashed lines in Fig. 8(a), while its lower bound is
equal to the difference among the bottom solid and top dashed
lines of that figure.

The top and bottom dotted lines in Fig. 8(a) were computed
supposing that half of the Si plate is coated not with a real,
but rather with a pristine graphene for T = 300 K and T = 0,
respectively. The difference among these lines was used as

an estimate of �T Fdiff in Ref. [75]. As is seen in Fig. 8(a),
the top solid line (T = 300 K, mc2 = 0, μ = 0.02 eV) and
the top dotted line (T = 300 K, pristine graphene) are almost
coinciding. This indicates that the chemical potential μ =
0.02 eV does not influence the value of the Casimir force. For a
better visualization, in Fig. 8(b) the region of short separations
is shown on an enlarged scale.

Now we are in a position to determine the feasibility of the
proposed experiment on measuring the giant thermal effect in
graphene systems with full account of the nonzero mass gap
and chemical potential of real samples. For this purpose, in
Fig. 8(c) we plot the minimum value of the thermal correction
in Fdiff ,

�Fdiff(a,T ) = min �T Fdiff(a,T ), (36)

which is equal to the difference between the bottom solid and
top dashed lines in Fig. 8(a). The horizontal line in Fig. 8(c)
indicates the magnitude of the experimental error of 1 fN
achieved in a differential measurement of the Casimir force
that has been performed already [92]. As is seen in Fig. 8(c),
even taking into account the mass gap and chemical potential,
the minimum possible value of the thermal correction �Fdiff

far exceeds the experimental error over the wide separation
region from 220 nm to 1.5 μm. Thus, the proposed experiment
allows for a reliable observation of the giant thermal effect for
real graphene samples.

VI. CONCLUSIONS AND DISCUSSION

In the foregoing we have investigated the impact of nonzero
mass gap and chemical potential on the Casimir force and its
thermal correction for graphene systems. The experimentally
relevant configurations of an Au-coated sphere interacting
with either a free-standing graphene sheet or graphene-coated
dielectric substrates made of different materials have been
the focus of our attention. It was found that the mass gap
and chemical potential produce pronounced effects on both
the Casimir force and its thermal correction, indicating that
both quantities should be taken into account in investigations
of fluctuation-induced phenomena in graphene and other 2D
materials, as well as in prospective applications of these
phenomena to nano- and micromechanical systems.

According to our results, which were derived in the
framework of the rigorous QED approach based on the exact
finite-temperature polarization tensor of graphene, the mass
gap and chemical potential act in opposite directions on the
magnitude of the Casimir force. Specifically, it was shown
that with increasing m and fixed μ the magnitude of the
Casimir force decreases, whereas it increases with increasing
μ and fixed m. This behavior, which is observed both for a
free-standing graphene sheet and for graphene deposited on
a substrate, leads to a partial compensation of both effects
when the Casimir force is worked out taking into account
the simultaneous influence of nonzero m and μ. Although,
as discussed in Secs. III and IV, the above results are quite
expected on physical grounds, a precise quantitative evaluation
requires the use of the formalism presented in this work.

Another important property demonstrated in this paper is
that the impacts of nonzero mass gap and chemical potential
on the Casimir force for graphene-coated plates are both
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much smaller than for a free-standing graphene sheet. Since
most applications use graphene-coated substrates, our results
suggest that the possibility of controlling the Casimir force by
means of the chemical potential is somewhat problematic.

Our computational results show that the magnitude of the
Casimir force for graphene-coated substrates is much larger
than for a free-standing graphene, but the thermal correction
and its fractional weight in the total force are smaller. The
computations made for SiO2 and Si plates demonstrate that
the influence of the graphene coating on the Casimir force
and its thermal correction decreases when the substrate has a
higher static dielectric permittivity. Our investigation of the
dependence of the thermal correction on the mass gap for
different values of the chemical potential revealed the existence
of a discontinuity of the derivative of the Casimir force with
respect to mc2 for mc2 = μ. The origin of this discontinuity
resides in the fact that for values of the chemical potential
such that μ � mc2 the zero-temperature polarization tensor of
graphene is independent of μ.

Finally, we have determined the role of nonzero m and μ

in a differential experiment recently proposed by us [75] to
observe the giant thermal effect in the Casimir force at short
separations. For this purpose, the differential Casimir force
between an Au sphere and the two halves of a Si plate, one
uncoated and the other coated with graphene, was computed
as a function of separation, taking into account the influence
of m and μ. We estimated the minimum value of the thermal

correction to the Casimir force as a function of separation
with the same value of the chemical potential as for graphene
samples in a recent experiment probing the Casimir force
between an Au sphere and a graphene-coated substrate [36].
In this computation we conservatively used the maximum
possible value for the mass-gap parameter. Comparison with
the force sensitivity of state-of-the-art differential Casimir
setups confirms the feasibility of the proposed experiment with
account of m and μ.

The formalism for the calculation of the thermal Casimir
force in graphene systems accounting for nonzero m and μ,
presented in this work, opens many novel opportunities in
both fundamental and applied research. For example, it may
allow for a determination of the mass gap of a graphene sheet
by fitting the experimental data for the giant thermal effect
to the theoretical results obtained with different values of m.
A direct observation of the giant thermal effect in graphene,
combined with first-principle computations, might open novel
opportunities for the modification and control of the Casimir
force in graphene-based micromechanical systems.
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