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Spin-charge separation in an Aharonov-Bohm interferometer

A. P. Dmitriev,1 I. V. Gornyi,1,2 V. Yu. Kachorovskii,1,2,3 and D. G. Polyakov2

1A. F. Ioffe Physico-Technical Institute, 194021 St. Petersburg, Russia
2Institut für Nanotechnologie, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany

3L. D. Landau Institute for Theoretical Physics, 119334 Moscow, Russia
(Received 22 May 2017; revised manuscript received 17 August 2017; published 11 September 2017)

We study manifestations of spin-charge separation (SCS) in transport through a tunnel-coupled interacting
single-channel quantum ring. We focus on the high-temperature case (temperature T larger than the level
spacing �) and discuss both the classical (flux-independent) and interference contributions to the tunneling
conductance of the ring in the presence of magnetic flux. We demonstrate that the SCS effects, which arise
solely from the electron-electron interaction, lead to the appearance of a peculiar fine structure of the electron
spectrum in the ring. Specifically, each level splits into a series of sublevels, with their spacing governed by the
interaction strength. In the high-T limit, the envelope of the series contains of the order of T/� sublevels. At
the same time, SCS suppresses the tunneling width of the sublevels by a factor of �/T . As a consequence, the
classical transmission through the ring remains unchanged compared to the noninteracting case: the suppression
of tunneling is compensated by the increase of the number of tunneling channels. On the other hand, the
flux-dependent contribution to the conductance depends on the interaction-induced dephasing rate which is
known to be parametrically increased by SCS in an infinite system. We show, however, that SCS is not effective
for dephasing in the limit of weak tunneling. Moreover, generically, in the almost closed ring, the dephasing rate
does not depend on the interaction strength and is determined by the tunneling coupling to the leads. In certain
special symmetric cases, dephasing is further suppressed. Similarly to the spinless case, the high-T conductance
shows, as a function of magnetic flux, a sequence of interaction-induced sharp negative peaks on top of the
classical contribution.
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I. INTRODUCTION

Spin-charge separation (SCS) is a hallmark of non-Fermi-
liquid behavior [1–4]. The essence of SCS is that single-
electron excitations factorize in space-time into two parts
which independently exhibit dynamics of, respectively, the
spin and charge degrees of freedom. In one-dimensional
(1D) systems, SCS is inherently linked to the decoupling
of two types of elementary bosonic spin and charge density
excitations which separately carry either spin or charge and
propagate with different velocities, v and u, respectively.
Experimental evidence of SCS in nanowires was demonstrated
in electron tunneling [5,6], thermal transport [7], and, more
recently, in spin-filtering [8] experiments. The effect of SCS
is most pronounced in the “spin-incoherent regime” [9–13]
which is realized in 1D systems with strongly different spin
and charge velocities.

One of the key problems that are related to SCS concerns
the manifestation of SCS in the quantum interference of
electron waves. This is the subject of the present paper.
We focus on the, perhaps, conceptually simplest device
for specifically probing the interference—a single-channel
quantum ring tunnel-coupled to the leads (see Fig. 1) and
threaded with the magnetic flux �. The conductance of the
ring G(φ) exhibits the Aharonov-Bohm (AB) effect [14,15],
i.e., changes periodically with the dimensionless magnetic flux
φ = �/�0, where �0 = hc/e is the flux quantum—with a
period 1—because of the interference of electron trajectories
winding around the hole. The sensitivity of the phase of an
electron wave function to the flux enables the design of AB
interferometers [15–31] that can be tuned by the external
magnetic field. The peculiar predictions that we make in this
paper appear to be amenable to experimental verification on

many-electron nanorings, with a few or single conducting
channels, which have already been produced [32–36].

We consider a clean ring without disorder, so that electrons
only experience scattering on the contacts—and because of
interactions with each other. Consider first the noninteracting
limit. Transmission of an electron through the ring can occur
along paths with different numbers and different sequences
of clockwise and anticlockwise windings between the left
and right contacts, characterized by different transmission
amplitudes Ai , where i is the index for a particular path. The
classical and interference contributions to the transmission
coefficient are then proportional to

∑
i |Ai |2 and

∑
i �=j AiA

∗
j ,

respectively. The classical contribution does not depend on
φ, so that an efficient manipulation of the AB interferometer
by the external magnetic field relies on the existence of the
interference contribution.

A key obstacle hindering the AB interference is interaction-
induced dephasing of the electron waves. In the presence of
interactions, electrons on the ring form a Luttinger liquid
(LL) in the ground state, with SCS being one of the inherent
properties of the spinful LL. A “natural expectation” would
be that SCS enhances, possibly strongly, dephasing of the
AB oscillations. Indeed, the single-electron excitation that is
created in the ring after tunneling from the lead splits into
the charge and spin components which start propagating with
different velocities, as illustrated in Fig. 1. This decomposition
of an electron into spatially separated charge and spin pieces is
known to increase the decay rate of single-electron excitations
in an infinite system to a value of the order of αT (see, e.g.,
Refs. [37–39]), compared to the decay rate of the order of
α2T for the spinless case. Here, α > 0 is the dimensionless
constant characterizing the strength of repulsive interaction,
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FIG. 1. Quantum ring threaded with magnetic flux �. An electron
(e) that tunnels from the left Fermi lead to the ring splits into the charge
(c) and spin (s) excitations propagating with different velocities u and
v, respectively. The factorized spin and charge parts of the electron
combine again at the tunnel contact to the right Fermi lead, possibly
after many rotations, in order that the electron be able to pass through
the ring and escape to the right lead.

which we assume to be small, α � 1 (experimentally, the
value of α is controlled by the electrostatic environment; in
particular, by the distance to the metallic gate). For spinful
electrons, the same decay rate governs dephasing of the
quantum interference conductivity correction in an infinite
disordered Luttinger liquid [39]. One might thus expect a
similar enhancement of dephasing by SCS in the spinful ring.

In the present paper, we show that, in fact, in the weakly
tunnel-coupled interferometers, the “AB dephasing rate” �ϕ is
insensitive to SCS. Moreover, generically, �ϕ does not depend
on the interaction strength and is determined by the tunneling
coupling to the leads. In certain special symmetric cases,
dephasing is further suppressed. In particular, this happens
for the case of fully isotropic (in spin and chirality spaces)
interaction.

To an extent, the insensitivity of �ϕ to the strength of
generic interactions in the weak-tunneling limit is similar to
the spinless case. Indeed, apart from Ref. [39], our approach
to the SCS effects in the ring geometry builds upon the earlier
work on transport of spinless electrons through a quantum
ring [40,41]. As was shown there, the dephasing rate in an
almost closed spinless ring is given by the total tunneling rate,
namely the rate at which the ring exchanges electrons with
the leads. In the present work, we find that, generically, the
dominant mechanism of dephasing in the spinful ring is the
same—the so-called zero-mode (ZM) dephasing [40]. This, in
turn, means that �ϕ is determined by the total tunneling rate
as in the spinless case, thus vanishing in the limit of weak
tunneling. We also find that this mechanism is not effective in
the symmetric cases mentioned above.

There is one more point of similarity—now only at the
qualitative level—between the spinless and spinful systems:
we show that the destructive interference between right-
and left-moving electrons leads, in the presence of SCS, to
a series of sharp interaction-induced negative peaks in the
high-T conductance as a function of magnetic flux, bearing
resemblance to the interference pattern in the spinless case
[40]. Importantly, however, the width and depth of the envelope
of the AB conductance peaks are strongly modified by SCS.

To be more specific, it is useful to recall the origin of the
interference pattern in the high-T limit in the case of spinless
electrons. To begin with, for noninteracting electrons (on a
disorder-free ring weakly tunnel-coupled to the contacts), the
sharp antiresonances in the function G(φ) in the high-T limit
occur at φ = 1/2 + n, where n is integer [42]. The antireso-
nances originate from the destructive interference in tunneling
via pairs of quantum levels inside the ring for electrons of
opposite chirality. At φ = 1/2, the levels of electrons rotating
clockwise and anticlockwise are pairwise exactly degenerate
and the tunneling amplitudes for two levels in each pair are
of opposite sign. The total transmission coefficient at φ = 1/2
is thus exactly zero for an arbitrary energy of the tunneling
electron, which explains the survival of the interference pattern
as T increases in the noninteracting case. Electron-electron
interactions change the picture dramatically. As shown in
Ref. [40], interactions between spinless electrons of opposite
chirality can be incorporated into an effective magnetic flux
dependent on the circular current inside the ring. Tunneling-
induced fluctuations of the circular current and, in turn, of the
effective flux split the antiresonance at φ = 1/2 into a series of
peaks (“persistent-current blockade”). This is the “interference
pattern” for spinless electrons that we referred to in the above.

The picture based on the introduction of the effective flux
controlled by the circular current [40] is no longer valid in the
presence of SCS. It is thus the fate of the persistent-current
blockade in the presence of the spin degree of freedom that is
one of the subjects of this paper. As already mentioned above,
SCS does not wipe out the splitting of the “noninteracting”
antiresonance in G(φ) into a series of sharp peaks. Rather,
SCS brings about new physics behind the emergence of the
resonant structure and, consequently, modifies its parameters.
Moreover, SCS determines the characteristic transparency of
the tunnel contacts at which the fine structure in G(φ) blurs
out as the tunneling rate is increased: this occurs when the
dephasing rate �ϕ becomes of the order of the “spin-charge
collision rate” 1/τsc, at which the paths of the spin and charge
components cross each other. For larger �ϕ , all resonances
overlap and form a single dip in G(φ) with a width given by
the single-particle decay rate αT in units of the level spacing
in the absence of interaction �.

Another nontrivial result of this work is for the classical part
of the tunneling conductance. In a simple-minded approach
to the problem, one would think that also the classical
transmission through the tunnel-coupled ring is suppressed
because of SCS—indeed, for essentially the same reason as in
the case of the interference term in the transmission coefficient.
The rationale would be that the tunneling escape from the ring
can only happen if the spin and charge components of the
single-electron excitation collide in the vicinity of the contacts
to the lead, and these collisions are rare (see Fig. 1). We show
that this expectation is not true, either—in fact, independently
of the strength of tunneling. The subtle point is that the
electron-electron interaction between spinful electrons splits
each level in the ring into a series of sublevels. This is a direct
consequence of SCS. As we demonstrate below, although the
tunneling width of the sublevels is indeed suppressed by SCS,
this effect is compensated in the conductance by the increase
of the number of tunneling channels, as illustrated in Fig. 2.
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FIG. 2. SCS induces splitting of each electron level of a non-
interacting ring (enumerated by index n) into a series of sublevels
(index m). The characteristic number of the sublevels that have a
large contribution to the tunneling amplitude for given n is of the
order of T/�. The sublevels have different widths which decrease
from the center of the group, as schematically illustrated by lines
of different thickness. The distance between the nearest sublevels is
proportional to the interaction strength.

Let us clarify the last point in more detail. The key
ingredient of the underlying physics here is the multiple
windings and, consequently, multiple returns to the contacts
in the finite-size system. The characteristic time between
spin-charge collisions near the contact τsc is given for α � 1
by τsc = 2πv/(u − v)� � π/α� (the difference between the
charge and spin velocities, u and v, is linear in α for small
α). For T � �, the characteristic “dwelling time” τd during
which the spin and charge excitations run together as a
whole (and, therefore, can tunnel out of the ring) is much
shorter and given by τd = 2πv/(u − v)T � π/αT (note a
similarity between τd and the electron lifetime in an infinite
system). As a consequence, the tunneling rate is suppressed
by the factor τd/τsc � �/T , independent of α for α � 1.
On the other hand, as we show below, the spin-charge
collisions are, in essence, correlated even if the spin and
charge velocities are not commensurate; namely the spin and
charge collide periodically, with a period given by τsc. It is
this periodicity that leads to the formation of a fine structure
in the electron spectrum and to the resulting increase of the
number of tunneling channels by a factor of T/� (Fig. 2). As
a consequence, the classical transmission coefficient through
the ring does not change, and nor does the dephasing rate for
the AB oscillations.

Note that the emergence of the SCS-induced fine structure
of AB resonances was discussed earlier in Refs. [43–46] for
strongly interacting electrons, with emphasis on the effects of
commensurability between v and u. In particular, Refs. [44]
and [46] considered the “spin-incoherent” limit of the t-J
model (which corresponds to the limit of a strong on-site
Hubbard repulsion) for a quantum ring made of a finite number
of sites filled with N particles, with the ratio v/u being small

in the parameter 1/N but finite. The suppression of transport
through the ring for certain φ in the limit of strong Hubbard
interactions was associated in Ref. [46] with level crossings in
the ground state of N particles. By contrast, in our continuous
Luttinger-liquid model, similar—in this respect—to that of
Refs. [43] and [45], the 1/N effects are irrelevant for the
relation between v and u—and altogether for the emergence
of the SCS-induced structure in the AB resonances.

It is worth noting that Refs. [43–45] presented their results
in terms of the zero-T conductance averaged over the period
of the energy spectrum. Although such a quantity shows
interaction-induced splitting of the resonances, this approach
does not produce a solution of the finite-T problem, not
even in the high-T limit, where typical excitations have
energies much larger than the characteristic level spacing.
This is because it does not include important aspects of
the finite-T dynamics of the system, namely the interaction-
induced decay of single-particle excitations at finite T and
the effect of dephasing. Below, we develop an analytical
theory for the high-T AB conductance, taking account for both
effects.

The paper is organized as follows. Section II covers some
of the basic aspects of SCS in an infinite system (Sec. II A), in
the isolated ring (Sec. II B), and in the ring tunnel-coupled
to the leads (Sec. II C). In Sec. III, we discuss the two-
particle dynamical properties of the spin-charge separated
ring in the absence (Sec. III A) and presence (Sec. III B) of
tunneling. In Sec. IV, we calculate the classical (Sec. IV A)
and interference (Sec. IV B) contributions to the conductance,
and the dephasing rate that governs the latter (Sec. IV D),
with the main results for the case of isotropic interactions
summarized in Sec. IV C. Our conclusions are presented
in Sec. V. Some of the technical details are placed in the
Appendices.

II. BASICS

Below, we study the linear response conductance of the AB
interferometer which consists of a spinful LL ring weakly
coupled by tunneling contacts to the leads (for details of
the tunneling coupling, see Appendix A). We consider a
symmetric setup with both pointlike contacts having the same
tunneling rate and both arms of the interferometer having the
same length. We assume that the Coulomb interaction between
electrons on the ring is screened by a ground plane and take
the interaction to be pointlike. Throughout the paper we focus
on the regime of relatively high temperatures

EF � T � � � �0,

where �0 is the tunneling rate in the absence of electron-
electron interactions and EF is the Fermi energy, in which
there emerges the new interesting physics, discussed already
at the qualitative level in Sec. I, related to the interplay of SCS
and tunneling. Let us estimate � for realistic systems. For
example, for a single-channel GaAs ring of the radius R =
L/2π = 200 nm, where L is the circumference of the ring,
in the range of EF = 0.02–0.2 eV, we find the level spacing
at the Fermi level � � (0.1–0.4) × 10−2 eV. The condition
T > � is seen to be easily satisfied for realistic experimental
conditions.
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One of the consequences of taking the high-T limit T � �

(for α � 1) is that the classical effect of Coulomb blockade of
charge transport through the ring can be neglected. Moreover,
in this limit, the number of tunneling channels in the temper-
ature window around the Fermi level is large, of the order of
T/�. Most importantly in the context of SCS, the condition
T � � also means that the spin and charge components of the
electron propagator inside the ring each have a characteristic
spatial extent (v/T and u/T , respectively) which is much
smaller than the distance between the contacts to the leads.
That is, the spin and charge excitations propagate ballistically
with velocities v and u and only rarely “collide” with the
contacts and with each other (see Fig. 1), in accordance with
the picture outlined in Sec. I [47]. This essentially simplifies
the two-particle dynamic correlation functions and we use this
condition extensively from the very beginning.

For a discussion of the general case of an arbitrary relation
between T and the characteristic level spacing in an isolated
finite-length spinful LL, see Ref. [49] for a piece of the LL
between two hard walls (“quantum dot”) and Refs. [50,51] for a
quantum ring made of it. The role of SCS in transport through
a 1D quantum dot in the regime of Coulomb blockade was
intensively studied in Refs. [52–55]. The transport properties
of a ring weakly coupled to the leads in the presence of
SCS were investigated in the limit T � � (and away from
the transmission resonances, i.e., in the valleys of Coulomb
blockade) in Refs. [51,56]. Focusing on either isolated systems
or transport in the low-T limit, these studies do not discuss the
peculiar interplay between SCS and tunneling that becomes
apparent for T � � and is the subject of the present work.
As already mentioned in Sec. I, the effect of finite T � �

on the AB oscillations in a spinful LL cannot be mimicked
by averaging [43–45] the zero-T transmission coefficient
over energy, which misses the interaction-induced decay of
single-electron excitations at finite T as well as the ZM
dephasing.

We assume that electron-electron backscattering is absent
and consider a ring made of a single-channel wire with
otherwise generic interactions characterized by four coupling
constants: α2‖,α2⊥,α4‖, and α4⊥ [4]. For the most part, the
paper is focused on the study of a symmetric model, isotropic in
chirality and spin spaces, with α2‖ = α2⊥ = α4‖ = α4⊥ ≡ α.
Importantly, the isotropic model fully captures the physics
of SCS. However, as already mentioned in Sec. I, the ZM
dephasing mechanism, which was shown to be dominant in the
spinless case [40], is ineffective in the case of full isotropy. For
this case, we obtain an analytical result for the conductance in
terms of a phenomenologically introduced dephasing rate �ϕ

(which may arise from an external bath). By going beyond this
model, we demonstrate that a violation of isotropic symmetry
leads to two effects: an additional ZM-induced splitting of
the AB resonances and the emergence of ZM dephasing.
Remarkably, the dephasing action is then described by an
equation analogous to that in the spinless case.

A. SCS: Green’s functions in an infinite system

We start by considering the fully isotropic (in spin and
chirality spaces) model introduced above. We write first the
corresponding expression for the coordinate-time Green’s

function per spin in the Matsubara representation in an infinite
spinful LL [1,2],

G(x,τ ) = G+(x,τ ) + G−(x,τ ),

where + and − denote right- and left-moving fermions,
respectively (here and below, h̄ = 1):

G+(x,τ ) = G−(−x,τ )

= − i

2π
√

uv

×
{

πT

sinh[πT (x/v + iτ )]

πT

sinh[πT (x/u+ iτ )]

}1/2

×
{

πT/D

sinh[πT (x/u+iτ )]

πT/D

sinh[πT (x/u−iτ )]

}αb/4

.

(1)

Here, D is the ultraviolet cutoff in energy space,

αb = (u − v)2/2uv, u = v(1 + 4α)1/2, (2)

and

α = V0/2πv, (3)

with V0 being the zero-momentum Fourier component of the
interaction potential.

The main (“chiral” or “square-root”) approximation below,
which we make following Ref. [43] (but, in contrast to it, not
focusing on the case of “commensurate” v/u given by a simple
fraction) and Ref. [39], is to keep, in the electron self-energy,
only the terms of leading (linear) order in α � 1. That is, we
retain the difference between u and v,

u � (1 + 2α)v, (4)

and put αb ∼ O(α2) to zero in Eq. (1). Note that it is the
appearance of the two velocities for each chirality in the
single-particle correlator G± that signifies SCS. Within this
approximation, the right and left electrons are chiral, and the
charge and spin velocities enter the electron Green’s function
for each chirality in a symmetric way. From the point of view
of symmetry in chirality space, the approximation becomes
exact when only interactions between electrons of the same
chirality are kept (see the discussion of the generic model in
Sec. IV D below). It is worth noting that the consistency of
the square-root approximation within the isotropic LL model
requires that the difference of the two velocities is small
[Eq. (4)].

Relying on the chiral approximation, which fully captures
SCS, allows us to obtain closed analytical expressions for
the conductance and the dephasing rate without sacrificing
anything of importance as far as the essence of the effect of SCS
on the AB oscillations is concerned. Importantly, the neglected
higher-order effects, which produce asymmetry between the
spin and charge in Eq. (1), correspond to “fractionalization”
[57–64] of the charge sector in much the same way as in the
spinless case [40], and likewise do not lead to a suppression of
the interference. Indeed, the fractionalized charges emitted at
one contact, moving in the opposite directions with the same
velocity u, collide every time they pass by the contacts. They
sum up to the “unfractionalized” electron charge at the contact,
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so that charge fractionalization does not manifests itself in the
ring geometry [65]. This should be contrasted with spin-charge
separated excitations (plasmons and spinons) which move in
the same direction with different velocities and, therefore, pass
by a contact at the same time only rarely. The dynamical
properties of charge fractionalization on the one hand and
those of SCS on the other are thus essentially different.

In the real-time representation, the retarded Green’s func-
tions [66] corresponding to the square-root approximation read

G+
R (x,t)

= G−
R (−x,t) � iθ (t)

π
√

uv

× Im
πT√

sinh[πT (x/u − t + i0)] sinh[πT (x/v − t + i0)]

(5)

(in the energy-momentum representation, the expressions for
the spin-charge separated Green’s functions for α � 1 can
be found in Ref. [39]). Note that within the square-root
approximation, the time dependence of the Green’s functions
G±

R (x,t) at x = 0, which determines the tunneling density
of states, coincides with that for the noninteracting Green’s
functions.

B. SCS: Isolated ring

Let us now discuss the SCS effects in a single-channel
quantum ring of length L threaded with the magnetic flux φ.
We first consider an isolated (not coupled to the leads) ring.
In the finite-size system, in addition to plasmons and spinons,
one should take into account homogeneous ZM excitations.
Such excitations are characterized by eigenenergies EZM that
are determined by the total numbers Ns

± of right- and left-
moving (±) particles with a given spin projection s = ↑,↓ and
the chemical potential μ (the same for all sorts of particles)
fixed by the leads. Under the assumption of full isotropy of
interactions in chirality and spin spaces within the ring, the
ZM energy is given by [45,51]

EZM = �uKρ

8

[
1

K2
ρ

(Nc − 4N0)2 + (Jc − 4φ)2

+ 2(N↑
+ − N

↓
+)2 + 2(N↑

− − N
↓
−)2

]
, (6)

where

Nc = N
↑
+ + N

↓
+ + N

↑
− + N

↓
−, (7)

Jc = N
↑
+ + N

↓
+ − N

↑
− − N

↓
−, (8)

�u = 2πu/L, and Kρ = v/u � 1 − 2α is the Luttinger con-
stant (for the charge sector). The current and spin contributions
to EZM are characterized by the “noninteracting” spacing � =
�uKρ = 2πv/L. It is worth noting that the ZM excitations
are not factorizable into independent charge and spin parts.
The total number of electrons in the ring is controlled by N0

(which, in turn, is determined by μ).
The equilibrium value of an observable O is averaged over

ZM fluctuations (in a grand canonical ensemble of isolated

rings) according to

〈O〉ZM ≡
∑

N ONe−EZM(N)/T∑
N e−EZM(N)/T

, (9)

where

ON = O
↑
N + O

↓
N (10)

is the sum of the observable for spin-up and spin-down
electrons and a given set of N = (N↑

+,N
↓
+,N

↑
−,N

↓
−). We do

not discuss here the spin-orbit and Zeeman couplings, so that
spin-rotational symmetry is preserved: O

↑
N = O

↓
N . Therefore,

below we omit the spin index.
For a given spin projection, the retarded Green’s function of

right movers G+
R (x,t) is given, in the closed ring, by a product

G+
R (x,t) = G+

ZM(x,t) G+
SC(x,t) (11)

of the ZM factor G+
ZM(x,t) and the factor G+

SC(x,t) which
describes excitations with nonzero momenta and, in turn,
factorizes into a product of the spin and charge parts (hence
“SC”), similarly to Eq. (5). For given N+, the ZM factor in
Eq. (11) is written as

G+
ZM(x,t) = exp[−iδE+

ZMt + 2πix(N+ + 1)/L], (12)

where

δE+
ZM = EZM(N+ + 1) − EZM(N+) (13)

is the variation of the ZM energy with changing N+ by unity.
The retarded Green’s function for left movers G−

R (x,t) is
obtainable fromG+

R (x,t) by changing x → −x and N+ → N−.
Within the chiral approximation (5), the factor G+

SC reads

G+
SC(x,t) � iθ (t)

π
√

uv
Im

√ ∑
nm

Au(xn,t − i0)Av(xm,t − i0),

(14)

where

Au(x,t) = πT

sinh[πT (x/u − t)]
; (15)

Av(x,t) is given by the same expression with u substituted
with v. The argument

xn = x + nL

in Au,v(xn,t) corresponds to the paths with multiple revolutions
around the ring and the summation is taken over all integers n

and m. Equation (14) is obtained from Eq. (5) by “replicating”
the spin and charge factors, namely by replacing x → xn in the
plasmon factor and x → xm in the spinon one, and summing
over n and m. Importantly, the spin and charge factors are
replicated independently—this follows most directly from the
bosonization approach, where each of these factors is deter-
mined by an independent bosonic field, spinon or plasmon,
which is periodic in real space with the period L. In this way,
we obtain a double sum over n and m under the square-root
sign in Eq. (14). Note that Eq. (11) with G+

SC(x,t) from Eq. (14)
reproduces the Green’s function of a noninteracting closed ring
by equating u = v and using the property

Im Av(x,t − i0) = −πδ(t − x/v).

115417-5



DMITRIEV, GORNYI, KACHOROVSKII, AND POLYAKOV PHYSICAL REVIEW B 96, 115417 (2017)

In the limit T � �, the calculations can be simplified by
noticing that the function Au(x,t) [and similarly Av(x,t)]
is then sharply peaked in time and space, within the small
time and space intervals of width δt ∼ 1/T and δx ∼ u/T ,
respectively. Namely, δt � 1/� and δx � L. This, in turn,
means that the peaks associated with different terms in the
sum over n in Eq. (14) are well separated in space and time,
and similarly for the sum over m. This allows us to commute
the square root of the sum in Eq. (14) into a sum of square
roots, √∑

nm

(. . . ) →
∑
nm

√
(. . . ),

and write G+
SC(x,t) as [67]

G+
SC(x,t) � θ (t)

2π
√

uv

×
∑
nm

∑
η=±1

η
√

Au(xn,t − iη 0)Av(xm,t − iη 0).

(16)

Equations (11), (12), and (16) define the spin-charge separated
electron Green’s function in a closed ring for α � 1 and
T � �. An important property of the spin-charge factor in
the Green’s functions of right and left movers, which we use
below, is

G+
SC(L/2,t) = G−

SC(L/2,t). (17)

The time Fourier transform of the functionsG±
R (x,t) defines the

Green’s functions G±
R (ε,x) in the energy-space representation.

The explicit form of G±
R (ε,x) is derived in Appendix B.

C. SCS: Tunneling conductance of a ring

Now we include the tunnel coupling between the ring and
the leads (Fig. 1). Both the ZM and plasmon-spinon SCS
factors are modified by the “opening” of the ring. Before we
proceed to a discussion of these modifications (this will be
done in Sec. III B), let us see in what combination the ZM
and SCS factors enter the conductance through the ring. In
what follows, we assume for simplicity that the Fermi velocity
in the leads vF is equal to the velocity of excitations in the
noninteracting ring: vF = v.

We formalize our approach to transport of interacting
electrons through the ring tunnel-coupled to two Fermi
reservoirs in terms of the Kubo formula, in which the process
of single-electron tunneling across the ring is accompanied
by tunneling of other electrons which serve as a dephasing
environment for the tunneling electron. In the noninteracting
limit, the conductance G(φ) is written as the energy-averaged
single-electron transmission coefficient T (φ):

G(φ) = 2 × e2

2π
T (φ) = e2

π
〈T(φ,ε)〉T , (18)

where T(φ,ε) is the transmission coefficient at energy ε, the
factor of 2 accounts for spin, and

〈· · · 〉T =
∫

dε (−∂εf )(· · · ) (19)

denotes the thermal averaging over ε with the Fermi distribu-
tion function, f = {1 + exp[(ε − μ)/T ]}−1, characterized by
the chemical potential μ in the leads.

Importantly, as was shown in Ref. [40] (see also Ap-
pendix A), in the vicinity of φ = 1/2, backscattering by the
tunnel contacts can be neglected (both in the noninteracting
and interacting spinless cases). Within the square-root approx-
imation of Sec. II A, this is also true for spinful interacting
electrons. As a result, the right and left sectors of our model
are decoupled (for given N±). This allows us to use Eq. (18)
(averaged over ZM fluctuations) in which SCS modifies the
energy dependence of T(φ,ε).

Since we assumed the arms of the interferometer to be of
equal length (with the coordinates of the pointlike contacts x =
0 and x = L/2), the transmission coefficient is expressible in
terms of the retarded Green’s function in the energy-coordinate
representation as

T(φ,ε) = v2|ttun|2|tout|2〈|G+
R (ε,L/2) + G−

R (ε,L/2)|2〉ZM,

(20)

where we used the short-hand notation G±
R (ε,L/2) for the

Green’s function G±
R (ε,0,L/2) that connects the contacts and

takes into account tunneling to the leads. In Eq. (20), electron-
electron interactions are accounted for within the square-root
approximation for the Green’s functions forming the fermion
loop for the density-density response function and through
the ZM averaging. The dimensionless bare (noninteracting)
amplitudes ttun and tout in Eq. (20) describe tunneling of an
electron to and out of the ring, respectively (see Appendix A)
[68]. If, as assumed, the contacts are pointlike and right-left
symmetric (which together means time-reversal symmetry for
scattering at the contact),

ttun = tout,

independently of the strength of tunneling. The tunneling rate
for the noninteracting ring is given by [40]

�0 � |ttun|2
π

�.

To make use of the results obtained in Sec. II B for an isolated
ring, it is convenient to transform the thermal averaging (19)
in Eq. (18) with T(φ,ε) from Eq. (20) into the real-time
representation, which leads to

T (φ) = v

u

(
π�0

�

)2 ∫ ∞

0
dt

∫ ∞

−t

dτ
πT τ

sinh πT τ
g(t + τ )

× g∗(t)FZM(t,τ,φ). (21)

Here, the function g(t) describes propagation of an electron
from one contact to the other in time t , including multiple
revolutions around the ring and tunneling at the contacts.
The function FZM(t,τ,φ) stems from the averaging of the
fermionic loop over the ZM fluctuations. The factorization of
the integrand in Eq. (21) relies on the “right-left” symmetry of
the model (equal arms and chirality separation). Importantly,
in the Green’s function G±

R (ε,L/2) transformed into the
coordinate-time representation, the functions G±

ZM(L/2,t) and
g(t) factorize, similarly to Eq. (11), even in the presence
of tunneling, as can be seen from the expressions derived
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in Appendix B. We stress that, because of the “right-left”
symmetry, the factor g(t) is the same for both right and
left movers [for an isolated ring, this follows explicitly from
Eq. (17)].

Because of tunneling, g(t) decays with time, as a result
of which the t integral in Eq. (21) converges at t → ∞. It
is instructive, however, to first examine the behavior of the
integrand in a closed ring (for more details, see Sec. III A). In
this case, we have

g(t) = (uv)1/2G+
SC(L/2,t), (22)

where G+
SC(x,t) is given by Eq. (16). The factor FZM(t,τ,φ) is

expressed through the ZM functions from Eq. (12) as

FZM(t,τ,φ) = 〈[G+
ZM(L/2,t) + G−

ZM(L/2,t)]

× [G+
ZM(L/2,t + τ ) + G−

ZM(L/2,t + τ )]〉ZM.

(23)

The next step is to use the parameter T/� � 1 to simplify
FZM(t,τ,φ). Because of the 1/ sinh(πT τ ) factor in Eq. (21),
we have |τ | � 1/T � 1/�. This, for typical deviations of
N± from N0, allows us to neglect the dependence on τ in
FZM(t,τ,φ), yielding

FZM(t,0,φ) = 2Re[1 + KZM(t)e−2i�φt ], (24)

where

KZM(t) = 〈ei�(N+−N−)t+iπ(N+−N−)〉ZM. (25)

Here, we used

δE+
ZM − δE−

ZM = �(N+ − N− − 2φ), (26)

which follows directly from the definition (13) of δE±
ZM. After

setting τ = 0 in FZM(t,τ,φ), the SCS dynamics in the ring
decouples from the ZM dynamics at any point in time and is
then encoded in Eq. (21) through the function

K(t) = g∗(t)
∫ ∞

−t

dτ
πT τ

sinh πT τ
g(t + τ ). (27)

In a tunnel-coupled ring, both the functions K(t) and
KZM(t) are modified. First, K(t) is still represented in terms
of the single-electron propagator g(t) in exactly the same
way as in Eq. (27), but g(t) is now dressed by tunneling
vertices and describes the SCS dynamics with the inclusion
of tunneling-induced decay. Second, KZM(t) in the tunnel-
coupled ring is given by the average of the same exponential
function as in Eq. (25) but the meaning of the averaging is
different. Specifically, N± become functions of t , because of
the exchange of electrons between the ring and the leads,
so that the averaging goes over the equilibrium dynamic
fluctuations in the open system rather than over the grand
canonical ensemble in which N± were t-independent numbers.

The transmission coefficient (21) at T � � can thus be
written as

T (φ) = 2v

u

(
π�0

�

)2

Re
∫ ∞

0
dt K(t) [1 + KZM(t)e−2i�φt ].

(28)

Further, it can be represented as a sum of the classical
(Tc, independent of φ) and quantum (Tq , describing the AB

interference) contributions:

T (φ) = Tc + Tq(φ), (29)

where Tc and Tq correspond to the first and second terms
in the square brackets in Eq. (28), respectively. Note that both
contributions are affected by SCS, whose dynamics is encoded
in the factor K(t).

III. DYNAMICS OF SCS

The dynamical properties of SCS (see, e.g.,
Refs. [8,61–63]) are described, in the ring geometry, by
the function K(t). As mentioned in Sec. II C, we first examine
the behavior of K(t) in a closed ring in Sec. III A. The SCS
dynamics in the presence of tunneling will be analyzed in
Sec. III B.

A. SCS dynamics: Isolated ring

We start with K(t) in a closed ring. From Eqs. (16) and
(22), we have

g(t) = i

π

∑
nm

Im
√

Au(Ln,t − i0)Av(Lm,t − i0) (30)

= 1

iπ

∑
nm

�nm(t)
√

|Au(Ln,t)Av(Lm,t)|, (31)

defined for t > 0, where

Ln = (n + 1/2)L (32)

and

�nm(t) = θ [(Ln/u − t)(t − Lm/v)]

with θ (t) being a step function. Each of the terms in the
function g(t) is only nonzero within the time interval between
Ln/u and Lm/v, has square-root singularities at the end points,
and is suppressed if the width of the interval

(�t)nm = |Ln/u − Lm/v| (33)

is much larger than 1/T as exp[−πT (�t)nm/2]. Note
that g(t) � const(t) inside the above interval in the limit
T (�t)nm � 1 except for the narrow regions of width of the
order of 1/T in the vicinity of the end points.

A useful way of representing K(t) in terms of g(t) from
Eq. (30) is

K(t) = − 1

4π2

∑
ηη′

ηη′
∫ ∞

−t

dτ
πT τ

sinh πT τ
wηη′

c (t,τ )wηη′
s (t,τ ),

(34)

where η,η′ = ±1 and

wηη′
c (t,τ ) �

∑
n

√
Au(Ln,t − iη 0)Au(Ln,t + τ − iη′0),

(35)

wηη′
s (t,τ ) �

∑
n

√
Av(Ln,t − iη 0)Av(Ln,t + τ − iη′0)

(36)

115417-7



DMITRIEV, GORNYI, KACHOROVSKII, AND POLYAKOV PHYSICAL REVIEW B 96, 115417 (2017)

FIG. 3. Illustration of the SCS dynamics. Black dots: Regions
in (t,τ ) space where the charge and spin densities are peaked. The
characteristic size of these regions (the size of the dots) is of the
order of 1/T along both the t and τ axes. In this particular example, a
spin-charge collision (marked by the red oval) happens at t � L5/u �
L4/v, with Ln from Eq. (32).

are the elements of the charge (c) and spin (s) single-particle
“fusion” matrices in η space at x = L/2. Note that each of
them contains, upon substitution of Eq. (30) in Eq. (27), a
double sum over windings; however, in the limit T � �,
the contribution of nondiagonal terms in the double sums is
small and can be neglected, which is done in Eqs. (35) and
(36). This is because of the defining property of w

ηη′
c (t,τ ) and

w
ηη′
s (t,τ ), which is that each of them is characterized by only

one velocity: u in the former case and v in the latter. The
SCS dynamics can now be visualized by straightforwardly
generalizing the definition of w

ηη′
c (t,τ ) and w

ηη′
s (t,τ ) to

arbitrary x and thinking of the charge and spin “wave packets”
which rotate independently around the ring with velocities u

and v, respectively.
The complex functions w

ηη′
c (t,τ ) and w

ηη′
s (t,τ ) are periodic

in t and concentrated around t = Ln/u and t = Ln/v with n =
0,1,2, . . ., respectively. Each of the peaks has a characteristic
width of the order of 1/T in both the τ and t direction. This
is schematically depicted in Fig. 3, where the regions in (t,τ )
space in which the charge and spin wave packets are peaked
at x = L/2 are marked by black dots. Now, note that there
exist such winding numbers for the charge (n) and spin (m)
that the charge and spin wave packets are peaked at x = L/2
simultaneously. Namely, the spin-charge collision occurs for
n and m obeying

(�t)nm � 1/T (37)

(in Fig. 3, the collision is shown for n = 5 and m = 4).
While correct in spirit, the above picture of spin-charge

collisions is not quite right in one important aspect: it
does not yet include the destructive interference between
the wave packets, i.e., the cancellation between the different
contributions to K(t) after the summation over η and η′.
For small α, the cancellation tends to make the widths of
the peaks in K(t) shorter compared to 1/T . Indeed, in the
strictly noninteracting limit, the spin and charge move together,
Eq. (37) is always satisfied, and K(t) is a strictly periodic series

of δ functions with a period 2π/�; specifically,

K(t) =
∑

n

δ(t − Ln/v) (38)

in the limit of T � �. For α = 0, the width of the peaks
in K(t) is thus exactly zero, although the wave packets in
Eqs. (35) and (36) have a finite width at 1/T �= 0. For α �= 0,
we have, after summing over η and η′,

K(t) = 1

π2

∫ ∞

−t

dτ
πT τ

sinh πT τ

∑
nm

Cn(t,τ )Sm(t,τ )

×�nm(t)�nm(t + τ ), (39)

where

Cn(t,τ )

= πT√
sinh |πT (Ln/u − t)| sinh |πT (Ln/u − t − τ )| , (40)

Sn(t,τ )

= πT√
sinh |πT (Ln/v − t)| sinh |πT (Ln/v − t − τ )| . (41)

The factor �nm(t)�nm(t + τ ) restricts both t and |τ | to within
the interval between Ln/u and Lm/v.

In order to compare Eq. (39) with the noninteracting result,
Eq. (38), it is instructive to rewrite the sum over n and m as
a sum over n and the difference between the charge and spin
winding numbers k = n − m. Each term in the sum over n

for given k yields a resonant contribution to K(t) similar to
the delta-function peaks in Eq. (38). One of the modifications
brought about by SCS is the broadening of these peaks, as can
be seen from the second line of Eq. (39). Namely, the time
interval between the exact borders of the “resonance” in K(t)
that occurs after n revolutions of the charge wave packets and
n − k revolutions of the spin ones is rewritten as

(�t)n,n−k =
∣∣∣∣ k −

(
1 − v

u

)(
n + 1

2

)∣∣∣∣2π

�
. (42)

A more dramatic effect of SCS on the peaks in K(t) is
a deep periodic modulation of the amplitude of the envelope
of the series of peaks, which is a remarkable consequence of
the condition (37). These peaks are enumerated by the integer
number k. For given k, the equation (�t)n,n−k = 0 (“exact
spin-charge collision”) has a solution n = nk (assuming for a
moment that n is a continuous variable), where

nk + 1

2
= k

u

u − v
. (43)

For integer charge winding numbers n close to nk , the (gener-
ically nonzero) interval (�t)n,n−k is small in the sense of the
condition (37), provided α is sufficiently small. Specifically,
for α � �/T , the characteristic number of peaks around
nk that are not suppressed by the temperature is given by
δn ∼ �/αT . In the limit of T � �, we have δn � nk+1 − nk ,
so that the bunches of peaks centered at n � nk are well
separated from each other.

With these ingredients, the picture that emerges in the time
domain is that of a train of narrow “double-horn” peaks of
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FIG. 4. Behavior of the function K(t), which is given by a
sequence of narrow peaks (schematically shown by black vertical
lines) grouped into periodic bunches, and its smooth envelope K̃(t)
(red) in a closed ring. The peaks have a nontrivial “double-horn”
structure with sharp borders and square-root singularities at these
borders as schematically illustrated in the inset. The parameters of
these peaks evolve with increasing n − nk (the deviation from the
center of the bunch). The height of each of the black vertical lines
corresponds to the height of the center of a peak, as shown by black
dots in the inset.

width

(�t)n,n−k � 4π

�
α|n − nk|, (44)

with

nk � k

2α
+ k − 1

2
, k = 0,1,2 . . . , (45)

and the nearest-neighbor spacing 2π/�, which are grouped
together in bunches of width of the order of 1/αT centered at

tk = πk/α�. (46)

As we will see below, the subleading term k − 1/2 should be
kept in Eq. (45) for the calculation of KZM(t).

The above picture, illustrated in Fig. 4, is in accord with the
two time scales τd and τsc introduced in Sec. I. Specifically,
the characteristic bunch width has the meaning of the dwelling
time τd, during which the spin and charge “stick” to each other:

τd = π/αT . (47)

The distance between the bunches has the meaning of the time
between consecutive spin-charge collisions

τsc = π/α�. (48)

Note that, as |n − nk| is increased, the width of the peaks
(44) becomes of the order of 1/T at the half-height of the
bunches. That is, except for the very center of a bunch, the
characteristic width of the peaks in K(t) is given by 1/T

(similarly, in this sense, to the peaks in the spin and charge
wave packets, illustrated in the cartoon of Fig. 3).

For �τd � 1, it is useful to introduce the (dimensionless)
envelope function K0(t) for a single bunch of peaks by
replacing the double-horn peaks with the delta functions and

writing K(t) in the form

K(t) →
∑
kn

δ

[
t − tk − 2π

�̄
(n − nk)

]
K0(t − tk) (49)

�
∑
kn

δ

[
t − 2π

�̄

(
n + 1

2

)
+ π

�
k

]
K0(t − tk). (50)

The distance 2π/�̄ between the neighboring peaks of the same
bunch in Eqs. (49) and (50) is given by

2π

�̄
≡ π

(
1

�
+ 1

�u

)
� 2π

�
(1 − α) (51)

(recall that the double-horn peaks are centered in the middle
of the interval between Ln/u and Ln−k/v; see the inset in
Fig. 4). The function K0(t − tk) has the meaning of the integral∫

dt K(t) over the period 2π/�̄ around the point t which
belongs to the kth bunch. Using Eq. (31), we obtain K0(t − tk)
in the scaling form

K0(t − tk) = I [2παT (t − tk)],

where the shape of the envelope is given by

I (z) = 1

π2

∫ z

0
dx

∫ z

0
dy

x − y

sinh(x − y)

× 1√
sinh x sinh(z − x) sinh y sinh(z − y)

. (52)

Doing the integrals (see Appendix C), we have

I (z) = z

sinh z
. (53)

The envelope of the series of bunches K̃(t) is written as the
sum

K̃(t) =
∑

k

K0(t − tk). (54)

The picture of the densely packed bunches of peaks
describes the case of α � �/T . In the opposite limit, the
width of the bunches becomes smaller than the interpeak
distance. Then, a given bunch contains at most one peak or,
typically, no peaks at all, depending on the commensurability
between u and v. We leave the discussion of this case and
the related commensurability problem out of the scope of the
present paper. For the results in the literature on the role of
the commensurability in transport through the interacting ring
see, e.g., Refs. [43–46].

In the above, we have analyzed the behavior of the function
K(t) [Eq. (27)], which describes the dynamics of SCS, in
a closed ring. Now we turn to the function KZM(t) [Eq. (25)]
which encodes the ZM dynamics. Consider behavior of KZM(t)
in the vicinity of the kth bunch. Taking KZM(t) at the times
prescribed by the delta functions in Eq. (50) and neglecting
the O(α2) terms in the exponent, we get

KZM(t) � 〈e−iα�(N+−N−)(t−tk )〉ZM. (55)

Note that the exponent in Eq. (55) is now explicitly propor-
tional to α, in contrast to Eq. (25).

Averaging the exponential factor in Eq. (55) over the grand
canonical ensemble in the closed ring, KZM(t) is obtained
as a sharply peaked periodic function (Fig. 5). The height
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FIG. 5. Schematic time dependence of the ZM factor KZM(t),
superimposed onto that of the SCS factor K̃(t). The product of the
two determines the interference part of the conductance. The ZM
factor is suppressed by dephasing, as discussed in Sec. IV D.

of the peaks equals 1 and their characteristic width δtZM is
given by δtZM = 1/α(T �)1/2. Notice that the peaks in KZM(t)
appear at precisely the same times as the peaks in the envelope
function K̃(t) and are much broader, for T � �, than the latter,
namely δtZM/τd ∼ (T/�)1/2. As a consequence, the effect of
the ZM dynamics in the spinful case is masked by SCS and
can be neglected in the closed ring. This is in contrast to
the spinless case [40], where the counterpart of KZM(t) is
responsible for important changes in the spectrum of the ring,
ultimately giving rise to peculiar interaction-controlled AB
oscillations [40].

To summarize the results of this section, we have found
that the product of the SCS and ZM factors in Eq. (28) is
a periodic function with the period π/α� (half of that for
spinless electrons) imposed by K̃(t); see Fig. 5. Importantly,
this function (which determines the interference part of the
conductance) does not decay with time in a closed ring.

B. SCS dynamics: Tunnel-coupled ring

Now we take into account a finite tunneling coupling
of the ring to the leads. In the noninteracting case, in the
close vicinity of φ = 1/2 and for �0 � � one can neglect
backscattering at the contacts (see Appendix A) and then
simply replace G±

R (ε,L/2) with G±
R0(ε + i�0/2,L/2) [70],

where G±
R0(ε,L/2) is the Green’s function in a closed ring. This

replacement introduces a factor exp(−�0t) in the integrand of
Eq. (21). As we demonstrate below, the tunneling coupling
in the SCS case is essentially different in that it cannot be
characterized by a single tunneling rate, the same for each
energy level.

In order to introduce tunneling into the SCS dynamics, it
is convenient to return to the (ε,x) representation, as in the
noninteracting case. For |δφ| � 1 and �0 � �, we neglect
backscattering at the contacts and represent G±

R (ε,L/2) in the
presence of SCS as follows (see Appendices A and B):

G±
R (ε,L/2) � G±

R0(ε,L/2)

1 + i(�0L/2)G±
R0(ε,L)

, (56)

where

G±
R0(ε,L/2) =

∫
dt G±

R (t,L/2)eiεt , (57)

G±
R (t,L/2) is given by Eq. (11), and a similar expression holds

for G±
R0(ε,L). One way of thinking about the meaning of

Eq. (56) is in terms of its expansion in powers of �0, which
is a sum over winding numbers of the paths that connect the
opposite leads and are “damped” by the possibility of tunneling
out of the ring.

In the limit of weak tunneling, the main contribution to
the conductance in Eq. (18) comes from ε that are close to the
energy levels of the isolated ring. Therefore, we can replace G±

R

with an auxiliary Green’s function Ḡ±
R whose ε dependence

coincides with that of G±
R in the vicinity of the poles of G±

R . It
is notable that the t dependence of G±

R (t,L/2) is similar to that
of K(t) in Sec. III A; namely both functions are peaked around
the times πk/α� [Eq. (46)]. It follows that, in contrast to the
noninteracting ring, where the poles of the Green’s function
at ε = n� are characterized by a single quantum number n,
the poles in the interacting ring are enumerated by a set of two
indices, n and m in the notation of Sec. III A. Namely the poles
occur at ε = εnm, where

εnm � n� + 2αm�. (58)

To derive this equation, we notice that the spin and charge
factors in g(t) [Eq. (30)] are periodic functions of time with
the periods 2π/� and 2π/�u, respectively. Therefore, the
energy levels of the system can be written as n1� + n2�u

with integer n1 and n2 (see Appendix B). Using Eq. (4) for
α � 1, we obtain Eq. (58) with

n = n1 + n2, m = n2. (59)

That is, the levels acquire a fine structure because of SCS, with
the “sublevels” enumerated by m.

As shown in Appendix B, the weight of a sublevel in the
Green’s function vanishes with increasing |m| for |m| � T/�.
Effectively, for the purpose of visualizing resonant transport
through the ring for T � �, one can think of each level of the
noninteracting system being split into T/� sublevels. More
specifically, the calculation presented in Appendix B yields

Ḡ±
R (ε,L/2) =

√
��u

T L

∑
nm

(−1)Nλnm

ε − εnm − δE±
ZM + i�nm/2

, (60)

where N = N± + 1 + n, the structural factor

λnm = �

(
n1�

T
,
n2�u

T

)
(61)

with n1,2 from Eq. (59) is expressible in terms of the
dimensionless function

�(x1,x2) =
∣∣∣∣�

(
3

4
+ ix1

2π

)∣∣∣∣
−2∣∣∣∣�

(
3

4
+ ix2

2π

)∣∣∣∣
−2

× cosh
(

x1+x2
2

)
cosh (x1) cosh (x2)

, (62)

and the sublevel broadening �nm is related to λnm by

�nm = λnm �0

√
��u

T
. (63)

The function (62) obeys∫
dy �(y,x − y) = 1. (64)
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The physics of SCS manifests itself through the splitting
of the energy levels, with the sublevel spacing 2α� in
Eq. (58), and through the m dependence of λnm and �nm. The
dependence of these quantities on n does not affect the results
for the conductance qualitatively (see Sec. IV C). Moreover,
as we will demonstrate below [Eq. (D2)], the classical term in
the conductance contains the sum

∑
m λnm and thus—because

of the property (64)—is not sensitive to the dependence of λmn

on n even quantitatively. Therefore, for the sake of simplicity,
in the discussion in the rest of this section and in the beginning
of Sec. IV, we set n = 0:

λnm → λm ≡ λ0m, �nm → �m ≡ �0m.

Neglecting the dependence of λnm on n allows us to find a
simple generalization of Eq. (50), which represents K(t) as a
sum of the delta functions, for the case of a slightly open ring,
with tunneling fully encoded in the dynamics of the envelope
K̃(t) [Eq. (54)].

Within this “m approximation,” we obtain for α � 1

Ḡ±
R (ε,L/2) ∼ �

T L

∑
nm

(−1)nλm

ε − n� − 2αm� ∓ �φ + i�m/2
,

(65)

where

�m = �λm (66)

with

� = �0
�

T
. (67)

The weight λm is of the order of unity for m = 0 and decays
on the characteristic scale of |m| given by

δm = T/�. (68)

In Eq. (65), we kept only the flux-dependent term in δE±
ZM.

As seen from Eqs. (66) and (67), the tunneling width of the
sublevels is suppressed compared to �0 by a factor of the order
of �/T .

To establish a link between Eq. (65) and the calculation
in the time domain (Sec. III A), let us write down the
Fourier transform Ḡ±

R (L/2,t) of Ḡ±
R (ε,L/2) Within the m

approximation, we have

Ḡ±
R (L/2,t) ∼ v−1g(t)e±i�φt , (69)

where g(t) [Eq. (22)] comes from the plasmon-spinon part of
the Green’s function and is given by

g(t) ∼ − i�

T

∑
n

δ

[
t − 2π

�

(
n + 1

2

)]∑
m

λme−(2iαm�+�m/2)t .

(70)

As already mentioned above, the m approximation is particu-
larly convenient to introduce the tunneling-induced decay into
the dynamics of SCS. Specifically, this means that, substituting
Eq. (70) in Eq. (27), we find K(t) in the m approximation to be
exactly given by a sequence of delta functions [as in Eq. (50)].
The envelope function of the sequence is

K̃(t) ∼
(

�

T

)2
∣∣∣∣∣
∑
m

λme−2iα�mte−�mt/2

∣∣∣∣∣
2

. (71)

Apart from showing oscillations in time with a period π/α�,
similar to those in Eq. (54), the function K̃(t) in Eq. (71)
decays—because of tunneling. As was already noted at the
beginning of Sec. III B, the decay of K̃(t) in the presence of
SCS is not characterized by a single tunneling rate: the partial
decay rate in channel m in Eq. (71) is given by �m [Eq. (66)].

Within the m approximation, the ZM factor [Eq. (25)]

KZM(t) → 1 (72)

at the times t = 2π (n + 1/2)/� at which the function g(t) is
peaked. As a result, the ZM part in Eq. (21) at τ = 0, Eq. (24),
takes the form

FZM(t,0,φ) � 2 [1 + cos(2φ�t)]. (73)

While the m approximation produces the peaks in g(t)
[Eq. (70)] and, consequently, in K(t) “directly” in the form
of the exact delta functions, a more accurate calculation (see
Appendices B and C) yields the peaks of nonzero width, having
the double-horn structure, as shown in the inset in Fig. 4.

IV. CALCULATION OF THE CONDUCTANCE

In this section, we evaluate the AB conductance through the
ring in the presence of SCS. We start with the m approximation
(Sec. III B), which, again, fully accounts for SCS and captures
all the parametric dependencies. The main reason why we use
this approximation for the purpose of illustration is that—as
discussed in Sec. III B—the tunneling dynamics is then fully
incorporated in the envelope function K̃(t) (the substantially
more involved calculation of the classical and quantum con-
tributions to the conductance with the numerical coefficients
beyond the m approximation is relegated to Appendix D).

Substituting KZM from Eq. (72) and K(t) in the form of
Eq. (50) with the envelope function K̃(t) from Eq. (71) in
Eq. (28), we obtain the transmission coefficient T (φ) as

T (φ) ∼ �2

�
Re

∑
mm′

λmλm′

[
1

(�m + �m′)/2 + 2iα�(m − m′)

− 1

(�m + �m′)/2 + 2iα�(m − m′) + 2i�δφ

]
,

(74)

where

δφ = φ − 1/2.

It is worth noting that the minus sign in front of the interference
term is due to 1/2 in the argument of the delta function
in (50), which should, therefore, be retained throughout the
calculation even for large n. Note also that the interference
part of T (φ) in Eq. (74) does not contain any dephasing. We
will discuss dephasing in Sec. IV B at the phenomenological
level and calculate the dephasing rate, for the case of generic
interactions, in Sec. IV D.

Equation (74) can also be derived in a different way, by
directly substituting the Green’s function obtained in the m

approximation in the (ε,x) representation, Eq. (65), in Eq. (20).
We use this method of calculation in Appendix D, where
we go beyond the m approximation and find the explicit
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analytical expression for λnm. The transmission coefficient is
then obtained by a substitution of Eq. (60) in Eq. (20).

A. Classical term

Assuming a weak tunneling coupling to the leads, �0 �
αT , we have � � α� and hence can neglect the terms with
m �= m′ in the classical term (the first term in the square brack-
ets) in Eq. (74). Setting m′ = m and replacing the sum over m

with an integral, we get a large factor
∫

dm λm ∼ T/�. As a
result, we obtain Tc to be of the same order as the transmission
coefficient for a noninteracting system: Tc ∼ �0/�.

This simply stated result is actually rather nontrivial in
view of the SCS-induced energy level splitting in Eq. (58).
For a given noninteracting level, the characteristic number
of sublevels participating in resonant transport is given by
δm ∼ T/� [Eq. (68)]. However, since each sublevel has
the tunneling-induced width of the order of � = �0�/T

[Eq. (67)], the total transmission coefficient, which is pro-
portional to the number of channels and the tunneling rate per
channel, Tc ∼ δm × �/� ∼ �0/�, is the same by order of
magnitude. In fact, it does not change at all, because of the
“sum rule” (64), as shown by the calculation of Tc beyond
the m approximation in Appendix D. The resulting expression
is identical to the classical transmission coefficient for the
spinless case [40]:

Tc = π�0

�
. (75)

The insensitivity of the classical conductance to SCS in
Eq. (75) deserves a special comment and can be understood as
follows. The dc conductance is proportional to the product of
the tunneling rate �0 for entering the ring and the probability
W to exit the ring (namely the integral over t of the probability
density per unit time to escape into the leads). The former
“does not know” about SCS, since tunneling into the ring
weakly tunnel-coupled to the leads happens almost instantly,
while the separation of spin and charge takes much longer time
τd. On the other hand, W = 1, since sooner or later the electron
should exit the ring (although SCS strongly modifies the escape
probability per unit time, it cannot change the total integral
over time). The conservation of the total escape probability
translates into the sum rule in the energy representation in the
following way (see Appendix D for details). The structural
factors λnm enter linearly both the numerator of the Green’s
function [Eq. (60)] and the width �nm of the quantum levels
split by SCS [Eq. (63)]. As a result, the partial contribution
to the classical conductance of the nth level is proportional to∑

m λ2
nm/�nm ∝ ∑

m λnm and, therefore, remains unchanged
[72] because of the sum rule, Eq. (64).

B. Interference term within the m approximation

We now turn to the interference part of the transmission
coefficient, given by the second term in the square brackets in
Eq. (74). As was already mentioned at the beginning of Sec. II
and will be demonstrated in Sec. IV D below, ZM dephasing
is absent in the isotropic model, only emerging because of
anisotropy of interactions. In this section, we introduce a
phenomenological (external) dephasing rate �ϕ , in order to
illustrate, with a simple example, the interplay between SCS

and dephasing. Moreover, we assume that �ϕ � �. In this
case, the calculation simplifies in that the relaxation of the
product K(t)KZM(t) is characterized by a single relaxation
rate, in contrast to Eq. (71). We can, therefore, describe
the SCS dynamics by K̃(t) in a closed ring [Eq. (71) with
�m = 0] and associate the factor exp(−�ϕt) with KZM(t) (as
in Fig. 5). As will be seen in Sec. IV D, the condition �ϕ � �

is indeed generically satisfied for “internal” ZM dephasing,
characterized, then, by the simple exponential decay.

For �m = 0, replacing the summation over m in Eq. (71)
with an integral yields K0(t) in the form

K0(t) ∼
(

�

T

)2∣∣∣∣
∫

dm λm e−2iα�mt

∣∣∣∣
2

. (76)

Using K0(t) from Eq. (76) in Eq. (49) and substituting the
resulting K(t) in Eq. (28), together with KZM(t) = exp(−�ϕt),
we obtain

Tq ∼ −�2
0

�
Re

∑
k

∫ ∞

0
dtK0(t − tk)e−�ϕt e−2i�δφt , (77)

where t in the integral is understood as a “coarse-grained” time
2πn/� → t . Note that �ϕ stands in Eq. (77) in a combination
�ϕ + 2i�δφ, which translates into the addition of �ϕ in the
denominator of the interference term in Eq. (74). For �ϕ �
αT , we obtain

Tq ∼ − �2
0

αT �
Re

κ(δφ)

1 − exp
[

π
α�

(−�ϕ − 2i�δφ)
] , (78)

where

κ(δφ) = αT

∫
dte−2i�δφtK0(t) ∼ �

T

∫
dm λmλm−δφ/α

(79)

is of the order of unity at δφ = 0 and decays on the scale
δφ ∼ αT/�. We see that the function Tq(δφ) shows series
of narrow negative resonances of width �ϕ/�. The distance
between resonances is given by α, while their amplitudes
are modulated by the slowly decaying function κ(δφ). A
more accurate calculation of Tq , performed beyond the m

approximation, is presented in Appendix D and yields Eq. (D6)
which does not differ from Eq. (78) qualitatively.

C. AB conductance for the isotropic model

Combining Eqs. (75) and (D6), we arrive at the expression
for the tunneling conductance in the form [71]

G(φ) = e2�0

�

[
1 − �0

2T

∑
k

bk

�ϕ/2�

(δφ − αk)2 + (�ϕ/2�)2

]
,

(80)

where

bk = 1

4 cosh2(�k/2T )
. (81)

Comparing Eq. (80) with the corresponding expression for
the spinless case (see footnote 24 in Ref. [40]), we see that
the interference part of the conductance is given in both
cases by the sum of the thermodynamically weighted Lorentz
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FIG. 6. Tunneling conductance of the ring for (a) �ϕ � α� and
(b) �ϕ � α�.

peaks: with the ZM Gibbs factor in the spinless case and with
(∂f/∂ε)ε=�k in the spinful case. It is worth stressing that the
exact shape of the envelope of the resonances (the dependence
of the weights bk on k) fully accounts for the fine (double-horn)
structure of the peaks in K(t), which was discarded within the
m approximation.

The function G(φ)/G(0) is schematically plotted in Fig. 6.
For �ϕ � α�, the conductance as a function of δφ shows a
series of narrow peaks of width �ϕ/� separated by a distance
α [Fig. 6(a)]. The splitting of the resonance in G(φ) is a direct
consequence of SCS. As the dephasing rate �ϕ increases and
becomes larger than α�, the resonances in G(φ) overlap and
form a single peak of width αT/� [Fig. 6(b)]. It is worth
noting that if one customarily extracted the dephasing rate
from the function G(φ) as the width of this single peak, one
would arrive at the erroneous conclusion that the dephasing
rate is given by αT , the inverse single-particle lifetime in
a homogeneous spin-charge-separated Luttinger liquid (cf. a
similar situation in the spinless case in Ref. [40]).

It is interesting to notice that the noninteracting conduc-
tance is obtained from Eq. (80) by sending α → 0, despite
the fact that the condition of the derivation of Eq. (80) is
α � �/� (see the discussion in the beginning of Sec. IV A
and in Appendix D). Indeed, neglecting αk in the denominator
of Eq. (80), replacing the sum over k with an integral, and
substituting �ϕ with �0, we reproduce the noninteracting
transmission coefficient, Eq. (A14). This is because, for α� �
� (or, equivalently, αT � �0), the SCS-induced level splitting
is smaller than the level broadening and the suppression of K(t)
by tunneling occurs already within the first bunch of peaks,
implying that SCS has no time to develop (�0τd � 1).

From Eq. (80) we conclude that at φ = 1/2 the ratio of
the quantum (Gq) and classical (Gc) contributions to the
conductance is given by

Gq

Gc

= Tq

Tc

= − �

�ϕ

� 1, δφ = 0. (82)

It is instructive to check what happens with the conductance if
the external dephasing rate exactly equals zero. In this case, the
tunneling rates �nm should be retained in the denominator of
Eq. (D5), which makes it impossible to represent Tq as a single
sum over k. One can, however, still calculate the conductance

at δφ = 0, along the lines of the calculation in Appendix D,
with the result

Gq

Gc

= Tq

Tc

→ −1, δφ = 0, (83)

which implies almost exact destructive interference at δφ = 0.
This exemplifies the notion that SCS by itself does not suppress
quantum interference. Specifically, SCS does not lead to any
decay of K(t) [see, e.g., Eqs. (71) and (C2), in which the
decay is only due to tunneling] and thus does not produce any
dephasing. Moreover, in contrast to a naive expectation, the
SCS-induced splitting does not lead to any suppression of the
interference pattern, either [Eq. (83)].

D. Generic model

Let us now return to the discussion of a generic (anisotropic
in spin and chirality spaces) model characterized by four
distinct interaction constants α2‖,α2⊥,α4‖, and α4⊥. As we
mentioned above, the violation of isotropy in spin-chirality
space leads to two important effects, both coming from ZM
fluctuations. First, thermodynamic fluctuations of the ZM
population numbers lead to an additional splitting of the AB
resonances compared to Eq. (80) (“inhomogeneous broad-
ening”). Second, dynamical fluctuations of these numbers,
arising from the tunneling exchange of electrons with the leads,
give rise to dephasing (“homogeneous broadening”), known
as ZM dephasing [40].

1. ZM splitting

In the generic case, the ZM energy reads [45,51]

EZM = �F

8vF

[
vc(Jc − 4φ)2 + vsJ

2
s + uc(Nc − 4N0)2 + usN

2
s

]
,

(84)

where Nc and Jc are given by Eqs. (7) and (8),

Ns = N
↑
+ − N

↓
+ + (N↑

− − N
↓
−), (85)

Js = N
↑
+ − N

↓
+ − (N↑

− − N
↓
−), (86)

and

uc = vF[1 + (α4‖ + α4⊥) + (α2‖ + α2⊥)], (87)

us = vF[1 + (α4‖ − α4⊥) + (α2‖ − α2⊥)], (88)

vc = vF[1 + (α4‖ + α4⊥) − (α2‖ + α2⊥)], (89)

vs = vF[1 + (α4‖ − α4⊥) − (α2‖ − α2⊥)]. (90)

The level spacing �F = 2πvF /L is determined by the bare
(noninteracting) Fermi velocity vF . The charge and spin
plasmonic excitations propagate with the velocities u = √

ucvc

and v = √
usvs. Neglecting the terms in u and v that are

quadratic in the coupling constants, we find

u � vF(1 + α4‖ + α4⊥), (91)

v � vF(1 + α4‖ − α4⊥). (92)
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Note that the spinon velocity v is, generically, not equal
to vF .

The calculation of the conductance for anisotropic inter-
actions proceeds along the lines of the one presented for
the isotropic model in Appendix D. The interference part of
the conductance Tq is given by an expression analogous to
Eq. (D3). The spectrum of two-particle excitations that enters
the denominator of Eq. (D3) is given by the difference of the
full energies for right and left movers and can be written as the
sum of the ZM and spin-charge parts:

�E = δE
+↑
ZM − δE

−↑
ZM + ε(n1,n2) − ε(n′

1,n
′
2). (93)

The ZM contribution [cf. Eq. (D4)] is now given by

δE
+↑
ZM − δE

−↑
ZM

�F
= J ↑(1 + α4‖ − α2‖) + J ↓(α4⊥ − α2⊥)

− 2φ(1 + α4‖ + α4⊥ − α2‖ − α2⊥) (94)

with

J ↑ = N
↑
+ − N

↑
−, (95)

J ↓ = N
↓
+ − N

↓
− (96)

being the circular currents for different spin polarizations. The
spin-charge part

ε(n1,n2) − ε(n′
1,n

′
2) = �(n1 − n′

1) + �u(n2 − n′
2)

� �F[(1 + α4‖ − α4⊥)(n − n′)

+ 2α4⊥(m − m′)]

includes the SCS splitting 2α4⊥(m − m′). Again, similarly to
the isotropic case, we find that the main contribution to the
interference term comes from

n′ = n + J ↑ − 1.

Keeping this term only, we find that �E now becomes

�E � �F[(α4⊥ − α2‖)J ↑ + (α4⊥ − α2⊥)J ↓

− 2δφ + 2α4⊥(m − m′)]. (97)

Here we neglected the interaction terms (of the order of α)
which do not depend on J ↑,↓ and m,m′. It is worth commenting
on the structure of Eq. (97) as far as the contributions of
different spins are concerned. Recall that, by construction,
Eq. (97) is for the energy of two-particle excitations with
spin up. The contribution to this energy of the interaction
with electrons of the same spin (the term proportional to J ↑)
contains, however, the coupling constant α4⊥, in contrast to the
factor in front of J ↑ in Eq. (94). This is because the spectrum
of spinon excitations is renormalized by interactions between
electrons with opposite spins [Eq. (92)], hence the substitution
of α4⊥ for α4‖ in the combination α4‖ − α2‖ coming from ZM.

Two cases are special: the fully isotropic case,

α2‖ = α4⊥ = α2⊥, (98)

discussed for most of the paper, and the case

3α4⊥ = α2⊥ = α2‖, (99)

in both of which the current-dependent ZM energy splitting is
exactly equal to zero, so that

�E � �F [2α4⊥(m − m′) − 2δφ]. (100)

That is, in both cases, ZM fluctuations are irrelevant and the
only source of splitting of the resonance in G(φ) is SCS.

In the generic case, Eq. (97) should be substituted in
Eq. (80) and the result should be averaged with the ZM Gibbs
factor. This yields additional splitting of the AB resonances. In
the spinless case (α4⊥ = α2⊥ = 0), one of the consequences
of the ZM-induced splitting is “persistent-current blockade”
[40]. Moreover, there exists an inherent link between the
ZM splitting and ZM dephasing, as was emphasized in
Ref. [40]. A similar mechanism of dephasing induced by
ZM fluctuations was also discussed (under the name of
“topological dephasing”) in the context of interference of
fractional quantum Hall modes in Ref. [48]. Importantly, in
addition to the ZM splitting, the generic spinful model also
gives rise to dephasing caused by a tunneling exchange of
electrons between the ring and the leads. Let us now calculate
the corresponding dephasing rate.

2. ZM dephasing

As was found in Ref. [40] (see also Ref. [41] for a
more detailed discussion), in the spinless case, dephasing
is dominated by tunneling-induced temporal fluctuations of
the circular current N+ − N−. These are accompanied by
fluctuations of an effective flux [the contributions to �E in
Eq. (97) that are associated with the circular currents can be
interpreted in terms of an interaction-induced correction to
the external flux φ], directly translating into random changes
of the electron phase difference

∫ t

0 �E(t ′)dt ′. The resulting
dephasing rate for the spinless case is given by [40]

�(0)
ϕ = 4�0

T

�
. (101)

The dephasing rate �(0)
ϕ characterizes the temporal decay of

the interaction-induced factor

exp[−S(t)] =
〈
exp

(
−iα�

∫ t

0
dt ′[N+(t ′) − N−(t ′)]

)〉
,

(102)

where the averaging is performed over noise realizations. An
important piece of physics behind Eq. (101) is thus telegraph
noise of the occupation numbers for individual energy levels.
For a given level, the occupation number flips between 0 and
1 because of tunneling in time �−1

0 , thus leading to changes
of N± by ±1 on a time scale of (�0T/�)−1, where the factor
T/� is the characteristic number of levels (“fluctuators”) in the
temperature window. It is the latter time scale that determines
�(0)

ϕ in Eq. (101).
Let us now turn to the spinful case. As far as the fluctuations

of the circular current are concerned, the physics looks
very much like what we had for spinless electrons. A finite
dephasing rate is now due to the tunneling dynamics of two
currents J ↑ and J ↓. Generalizing Eq. (102) to the spinful case
[by integrating the ZM dependent part of Eq. (97) over time],
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we have

exp[−S(t)] = 〈ei�F
∫ t

0 dt ′[(α4⊥−α2‖)J ↑(t ′)+(α4⊥−α2⊥)J ↓(t ′)]〉, (103)

where we used �E with time-dependent circular currents.
Importantly, in addition to the straightforward change of

the number of fluctuating currents from one to two, telegraph
noise in the currents J ↑ and J ↓ results in a dephasing-induced
broadening of sublevels in the ring. It is worth reiterating,
however, that—despite the emergence of the sublevel structure
in the spectrum of spinful electrons—the dephasing action
for the spinless case is reproduced from Eq. (103) by simply
setting α4⊥ = α2⊥ = 0, α2‖ = α, and � = �F . It is also worth
noting once again that, in the symmetric cases (98) and (99), the
two-particle excitation energy �E does not depend on the ZM
numbers [Eq. (100)]. It follows, then, that ZM dephasing
is ineffective [73] in these cases: S(t) = 0 in Eq. (103). In
particular, in the isotropic model (98), this happens because
the interaction of the interfering electrons with electrons of
the same chirality and opposite spin exactly cancels the phase
difference arising from the interaction with electrons of the
opposite chirality (which was the source of ZM dephasing in
the spinless case).

Remarkably, the dephasing rate does not change (up to a fac-
tor of two) after the addition of spin. Indeed, quite generally, the
strength of ZM dephasing is determined by the product of the
number of active fluctuators and the “flipping” rate for a single
fluctuator. As demonstrated above, each nth level in the non-
interacting ring splits, because of SCS, into sublevels charac-
terized by the quantum number m with |m| � max(|n|,T /�);
see Appendix B. Since n is limited to within the “thermal”
interval |n| � T/�, the number of active fluctuators is given
by (T/�)2. On the other hand, we found that the tunneling
rate for a sublevel is suppressed, again because of SCS, by a
factor of �/T ; i.e., the characteristic flipping rate is given by �

[Eq. (67)]. As a result, the dephasing rate is the same by order of
magnitude as in the spinless case: �ϕ ∼ �(T/�)2 ∼ �0T/�.
In fact, it only differs by a factor 2 compared to Eq. (101),
where 2 is the number of random fields J ↑(t) and J ↓(t), i.e.,
the number of independently fluctuating noise baths:

�ϕ = 2�0
ϕ = 8�0

T

�
. (104)

The derivation of the numerical prefactor in Eq. (104) is
essentially identical to that in Eq. (75) [both rely on the
sum rule (64)], which highlights the intrinsic connection
between dephasing and dissipation [cf. the factor of 2 in the
conductance in Eq. (18)]. A remarkable feature of Eq. (104) is
that �ϕ does not depend on α, in contrast to the single-particle
decay rate in a homogeneous Luttinger liquid, which is given
by (for the spinful case) αT [37–39].

3. AB conductance

Let us finally discuss the flux dependence of the con-
ductance for the generic model with anisotropic interaction.
Qualitatively, the overall picture of the AB resonances in G(φ)
looks much the same as in Fig. 6—the conductance shows
narrow peaks of width �ϕ/� with a smooth envelope of width
αT/�. However, quantitatively, the picture is different. First,
the distance between neighboring peaks is no longer constant.
Namely there are now three different periods: the period α4⊥,

coming from SCS, and two additional periods (α4⊥ − α2‖)/2
and (α4⊥ − α2⊥)/2 which come from the ZM splitting. Second,
the amplitude of the resonances decreases compared to the
isotropic case (for the same dephasing rate) by a factor of
�/T , which is a product of two factors

√
�/T associated,

respectively, with thermodynamic fluctuations of J ↑ and J ↓.
Assuming that all three periods are of (the same) order α, we
find that the resonances are well resolved (�ϕ � α�) for

�0 � α�2/T .

It follows that at φ = 1/2 the ratio of the quantum and classical
contributions to the conductance at φ = 1/2 is given by

Gq

Gc

= Tq

Tc

∼ −
(

�

T

)3

, δφ = 0. (105)

This result should be contrasted with the spinless case, where
the corresponding ratio is (�/T )3/2. Note that the difference
stems not only from the mere difference in the numbers of
degrees of freedom [each of two spins produces a ZM factor
of (�/T )1/2 in Eq. (105)] but also from SCS which gives one
additional power of �/T , reflecting the thermal averaging
over the SCS-induced sublevels with �ϕ � �.

V. CONCLUSIONS

We have discussed the influence of spin-charge separation
on transport through the Aharonov-Bohm tunneling interfer-
ometer in the limit of high temperature T (T much larger than
the level spacing �). We have demonstrated that spin-charge
separation leads to splitting of each energy level of an electron
in the ring into a series of T/� sublevels. The tunneling width
of the sublevels is suppressed by a factor �/T compared to
the tunneling rate for a single level in a noninteracting ring.
This factor can be interpreted as the probability of the spin
and charge parts of a single-particle excitation meeting each
other at the contact. Remarkably, the classical part of the con-
ductance coincides with its noninteracting value. This happens
because the number of the tunneling channels (number of “ac-
tive” sublevels) increases by a factor T/�, thus compensating
the decrease of the tunneling rate for a single channel.

We have shown that spin-charge separation in the quantum
ring tunnel-coupled to the leads does not lead to an enhance-
ment of the Aharonov-Bohm dephasing rate �ϕ . Generically,
�ϕ in the tunneling interferometer does not depend on the
strength of electron-electron interactions and is given by
the total rate at which the ring exchanges particles with
the leads for the noninteracting case �0T/�. The tunneling
conductance as a function of the dimensionless magnetic flux
shows a series of sharp negative peaks having the width
�ϕ/�. The distance between the peaks is controlled by the
interaction strength α. The peaks are grouped in bunches of
width αT/� [Fig. 6(a)] centered at half-integer fluxes. With
increasing tunnel coupling, each of the bunches transforms
into a structureless peak [Fig. 6(b)].

Before concluding the paper, it is worth remarking on the
case of strong interactions, α � 1, where the commensurabil-
ity of the spin and charge velocities is of crucial importance
[43–46]. Although our analytical approach, which extensively
uses the inequality α � 1, does not directly apply to that case,
we expect that the physics of the problem made apparent in the
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formalism we developed here does not change dramatically as
the strength of interaction increases. As a matter of fact, the
“recombination” of the factorized spin and charge parts of
the electron after many revolutions they perform around the
ring (Fig. 1) before escaping to the leads can be viewed as
a precursor of the “strong commensurability” showing up for
α � 1, where the commensurability between the spacing of
the sublevels split by SCS and the spacing of the “bare” levels
(Fig. 2) becomes relevant.
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APPENDIX A: DYSON EQUATION

In this Appendix, we derive the Dyson equation whose
solution is the electron Green’s function in a noninteracting
ring weakly coupled to the contacts. The main purpose of this
derivation is to present the results for the noninteracting case in
a way that can be easily generalized to take SCS into account.

In the absence of interaction, the retarded Green’s functions
in a closed ring are given by

G±
R0(ε,x) = − i

v

∑
m

θ (mL ± x)eiq±(mL±x)

= 1

v

eiq±x

i(1 − eiq±L) + i0
, for 0 < x < L,

(A1)

where

q± = k ∓ 2πφ

L
, k = ε

v
, (A2)

and ± denotes electrons moving clockwise (+) and counter-
clockwise (−). The index 0 means that scattering by contacts
is absent (closed ring). In the vicinity of its poles, the Green’s
function can be approximated as

G±
R0(ε,x) � 1

L

∑
n

e2πinx/L

ε − ε±
n + i0

, (A3)

where

ε±
n = �(n ± φ). (A4)

We describe the coupling of the ring to two leads by the
scattering matrix Ŝ, identical for both contacts, which connects
the in-going (1,2,3) and out-going (1′,2′,3′) states (Fig. 7):

Ŝ =
⎛
⎝ r tout tout

ttun tb tin
ttun tin tb

⎞
⎠. (A5)

For a time-reversal symmetric scattering at the contact, we
have

ttun = tout.

In the limit of weak tunneling (|ttun| � 1), however, |ttun| =
|tout| both with and without time-reversal symmetry for
scattering at the contact.

FIG. 7. Schematic picture of one of two identical contacts: a
metallic lead (channels 1 and 1′) is connected to the ring with channels
(2,2′) and (3,3′).

For the simplest model, which we consider here, of a
pointlike contact described by the tunneling Hamiltonian with
the tunneling coupling t0, we have [69]

tb = − γ

1 + γ
, ttun = tout = −isgn(t0)

√
2γ

1 + γ
,

(A6)

tin = 1

1 + γ
, r = 1 − γ

1 + γ
,

where

γ = 2|t0|2
v2

(A7)

is the dimensionless tunneling transparency related to the
tunneling rate �0 by

�0 = 2γ�

π
. (A8)

In Eq. (A7), we assumed that the density of states in the leads
equals that in the ring.

The amplitude t(ε,φ) of transmission through the ring
tunnel-coupled to the leads can be calculated as the product of
three transfer matrices, one corresponding to the ring and two
others corresponding to two contacts. In this way we obtain, for
the case of symmetrically (with the arms of the interferometer
of equal length) placed contacts,

t(ε,φ) = toutttun

[
tb − tin + e−ikL/2 cos(πφ)

t2
in − t2

b + e−ikL − 2tine−ikL/2 cos(πφ)

− tb − tin − e−ikL/2 cos(πφ)

t2
in − t2

b + e−ikL + 2tine−ikL/2 cos(πφ)

]
.

(A9)

For the case of the tunneling Hamiltonian (A6), this can be
rewritten as

t(ε,φ) = − 2γ

(1 + γ )2

[
Z(φ)ei(kL/2−πφ)

1 − t̃2
in(φ)ei(kL−2πφ)

+ Z∗(φ)ei(kL/2+πφ)

1 − t̃∗2
in (φ)ei(kL+2πφ)

]
, (A10)

where

t̃in(φ) = eiπφ(1 − γ )

cos πφ + i
√

sin2 πφ + γ 2
(A11)
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and

Z(φ) = γ cos πφ + i
√

sin2 πφ + γ 2

i
√

sin2 πφ + γ 2

× eiπφ(1 + γ )

cos πφ + i
√

sin2 πφ + γ 2
. (A12)

From Eq. (A10), we have for the transmission coefficient
averaged over ε [40]

T (φ) = 〈|t(ε,φ)|2〉ε = 2γ cos2 πφ

γ 2 + cos2 πφ
. (A13)

In the limit of weak tunneling (γ � 1), T (φ) shows a sharp
antiresonance at φ = 1/2:

T (φ) � 2γπ2δφ2

γ 2 + π2δφ2
. (A14)

Having in mind to generalize this approach to the case of
SCS, we notice that, for γ � 1, one can neglect backscattering
by the contacts (except in the close vicinity of φ = 0 with
|φ| � γ ) [40]. Indeed, from Eqs. (A11) and (A12) we find for
γ → 0 that

t̃in(φ) → 1 − γ � tin, Z(φ) → 1. (A15)

In this limit and except in the narrow interval of φ around
φ = 0, Eq. (A10) yields a sum of the transmission amplitudes
for clockwise- and counterclockwise-moving electrons (with
different winding numbers), with backscattering playing no
role:

t(ε,φ) � −2γ

[
ei(kL/2−πφ)

1 − (1 − γ )ei(kL−2πφ)

+ ei(kL/2+πφ)

1 − (1 − γ )ei(kL+2πφ)

]
. (A16)

It is worth stressing that the exact formula (A10) differs from
Eq. (A16) only by the renormalization tin → tin(φ) and by the
appearance of the factor Z(φ). Averaging |t(ε,φ)|2 over energy
with the transmission amplitude given by Eq. (A16) and taking
the limit δφ � 1, we recover Eq. (A14).

It is useful to derive Eq. (A16) in a different way, by
means of the Dyson equation. Although such a derivation is
more complicated, it has the advantage that it can easily be
generalized to the interacting case. As demonstrated above,
for small γ , backscattering by the contacts can be neglected;
i.e., the Green’s functions of electrons propagating along the
ring in the clockwise and counterclockwise directions can be
calculated independently. Let us focus on the calculation of
the retarded Green’s function of clockwise-moving electrons.

We calculate the amplitude of forward scattering off the
contact, for the tunneling Hamiltonian, as illustrated in Fig. 8.
The total forward-scattering amplitude is given by a sum of
the amplitudes of all virtual transitions between the ring and
the lead [69]:

V = −i
2|t0|2/v

1 + 2|t0|2/v2
. (A17)

When deriving Eq. (A17), we assumed that the backscattering
phase at the contact equals zero for an electron incident on the

...

FIG. 8. Scattering off a contact to the lead with the initial and final
states both in the ring. Summation in the full scattering amplitude V

is taken over all virtual transitions between the ring and the lead.

ring from the lead with momentum k, so that the wave function
in the lead for γ = 0 reads

�(y) = exp(iky) + exp(−iky), �(y → 0) → 2

(here y is the coordinate in the lead counted from the contact).
The system of Dyson’s equations for the Green’s functions

at the contacts at x = L/2 and x = L is depicted in Fig. 9 and
reads

G+(L/2) = G+
0 (L/2) + G+

0 (L/2)V G+(L)

+G+
0 (L)V G+(L/2), (A18)

G+(L) = G+
0 (L) + G+

0 (L/2)V G+(L/2)

+G+
0 (L)V G+(L) (A19)

(for the sake of brevity we omitted, only here, the argument
ε and the index R in the Green’s functions). The solution
to Eqs. (A18) and (A19), and to similar equations for
counterclockwise-propagating electrons, is written as

G±
R (ε,L/2) = − i

v

eiq±L/2

1 − t2
ine

iq±L
, (A20)

G±
R (ε,L) = − i

v

tine
iq±L

1 − t2
ine

iq±L
, (A21)

with tin [given by Eq. (A6)] expressed in terms of V as

tin = 1 − iV /v. (A22)

Now, note that Eqs. (A20) and (A21) for γ � 1 obey
Eq. (56). This is the property of the relation between the bare
and tunneling-dressed Green’s functions that makes it useful in

= + +

= + +

0 L/2

0
L

FIG. 9. Dyson equation for clockwise-propagating electrons. The
thin and thick lines correspond to the bare and dressed Green’s
functions, respectively. The black dot denotes the forward-scattering
amplitude off a contact V .
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the study of tunneling in the presence of SCS. Specifically, as
shown in Appendix B, the bare (no tunneling) Green’s function
with SCS included is written in the vicinity of each of its poles
in the form

GR0(ε,x) � a exp(2πiMx/L)

ε − ε0 + i0
, (A23)

with a certain x-independent constant a and a certain integer
number M , both specific to the pole at ε = ε0. This is precisely
the same form that the bare Green’s function has near its poles
in the absence of SCS [Eq. (A3), with a = 1/L and M = n

near the pole at ε±
n ]. As a result, the resummation of tunneling

vertices by means of the Dyson equation results in Eq. (56) for
γ � 1 also in the presence of SCS.

APPENDIX B: GREEN’S FUNCTION OF SPINFUL
ELECTRONS IN A RING IN THE (ε,x) REPRESENTATION

In this Appendix, we derive the energy representation for
the Green’s function of interacting spinful electrons in a ring.
The function G+

SC [Eq. (16)], which describes SCS in a closed
ring, can be rewritten as

G+
SC(x,t) =

∑
nm

∫ ∞

−∞

∫ ∞

−∞

dω1

2π

dω2

2π
e−iω1(t−xn/u)−iω2(t−xm/v)

× θ (t)

2π2T
√

uv

∑
η=±1

(−η)aη
ω1

aη
ω2

, (B1)

where

aη
ω =

∫ ∞

−∞
dt

πT eiωt

√
sinh[πT (t − iη0)]

=
√

16iπ

η
T

∫ ∞

0

∫ ∞

0
dzdt cos[ωt − z2η sinh(πT t)]

=
√

2iπ3∣∣�(
3
4 + iω

2πT

)∣∣2

cosh
(

ω
2T

) + η sinh
(

ω
2T

)
√

η cosh
(

ω
T

) .

At ω = 0, we have

a
η

0 =
√

2iπ3

√
η �2(3/4)

. (B2)

In the opposite limit of large |ω|, using the asymptotic of the
Gamma function∣∣∣∣�

(
3

4
+ iω

2πT

)∣∣∣∣
2

�
√

2π |ω|
T

exp

(
−|ω|

2T

)
, ω → ±∞,

(B3)

aη
ω behaves differently depending on the sign of ωη:

aη
ω =

√
4iπ2T

η|ω|

×
{

1, sgn(ωη) > 0, |ω| → ∞,

exp
(−|ω|

T

)
, sgn(ωη) < 0, |ω| → ∞.

By applying the Poisson summation formula to Eq. (B1), we
get

G+
SC(x,t) = −iθ (t)

√
��u

T L

∑
n1n2

λ(n1,n2)e−i(n1�+n2�u)t

× e2πix(n1+n2)/L, (B4)

where

λ(n1,n2) = 1

4iπ3

∑
η

ηa
η

n1�
a

η

n2�u
, (B5)

which gives Eqs. (61) and (62) of the main text.
The retarded Green’s functions in a closed ring are

expressed, in the energy-coordinate representation, in terms
of λ(n1,n2) as follows:

G±
R0(ε,x) =

√
��u

T L

∑
n1n2

λ(n1,n2)

× e2πix(N±+1+n1+n2)/L

ε − ε(n1,n2) − δE±
ZM + i0

, (B6)

where

ε(n1,n2) = n1� + n2�u � �(n + 2αm) (B7)

with n = n1 + n2 and m = n2 are the quantized energies of
single-particle excitations in the presence of SCS [cf. Eq. (58)].
It is worth noting that the Fourier transformation of Eq. (B6)
exactly factorizes into the ZM and SCS parts.

It is instructive to see how Eq. (B6) transforms into the
Green’s function of a noninteracting ring. To this end, we
rewrite Eq. (B6) for α = 0 as

G±
R0(ε,x) = �

T L

∑
nn1

λ(n1,n − n1)e2πix(N±+1+n)/L

ε − n� − δE±
ZM + i0

. (B8)

By replacing the summation over n1 with an integral and using
Eq. (64), we obtain

G±
R0(ε,x) = 1

L

∑
n

e2πix(N±+1+n)/L

ε − n� − δE±
ZM + i0

. (B9)

Substituting δE±
ZM [Eq. (13)] for the case of zero interaction

and shifting n + N± − N0 → n, Eq. (B9) gives the Green’s
function of a noninteracting ring. The instructive point here is
the importance of the “sum rule” (64).

Finally, as was already mentioned at the end of Appendix A,
we use the Dyson equation (56) to find the Green’s function
in the presence of SCS in the limit of γ � 1:

Ḡ±
R (ε,x) =

√
��u

T L

×
∑
n1n2

λ(n1,n2) e2πix(N±+1+n1+n2)/L

ε − ε(n1,n2) − δE±
ZM + i�(n1,n2)/2

,

(B10)

where [cf. Eq. (63)]

�(n1,n2) = �0

√
��u

T
λ(n1,n2). (B11)

In this way, we arrive at Eq. (60) of the main text.
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APPENDIX C: DYNAMICS OF SCS BEYOND
THE m APPROXIMATION

In this Appendix, we derive the functions g(t), K(t), and
K̃(t) beyond the m approximation introduced in Sec. III B [cf.
Eqs. (49), (70), (71), and (76) of the main text]. By Fourier-
transforming Eq. (60) and using Eqs. (11), (12), and (22), we
obtain

g(t) = i
��u

2πT

∑
nm

(−1)n+1λnme−iεnmt e−�nmt/2, (C1)

where λnm = λ(n − m,m). The tunneling-induced decay for
the sublevel εnm is now characterized by �nm [Eq. (63)] which
is proportional to the structure factor λnm. Next, substituting
Eq. (C1) in Eq. (27), we find

K(t) = �2�2
u

2πT 2

∑
nm,n′m′

(−1)n−n′
(−∂εf )ε=εnm

λnmλn′m′

× e−i(εnm−εn′m′ )t e−(�nm+�n′m′ )t/2. (C2)

The dependence of the structural factors λnm on n gives rise
to the double-horn structure of the peaks in K(t) (see inset
in Fig. 4) instead of the delta functions of zero width as in
Eqs. (49) and (70).

In order to find the smooth envelope, K̃(t), of the function
K(t), we integrate Eq. (C2) over the time interval 2π/�, which
sets n′ = n. As a result, we find that K̃(t) in a closed ring (i.e.,
for �nm = 0) is expressed as a single sum

K̃(t) =
〈∣∣∣∣∣�T

∑
m

λ(n − m,m)e−2iα�tm

∣∣∣∣∣
2〉

n

= �

T

∑
k

bke
−2iα�kt . (C3)

Here, 〈. . .〉n stands for −(�/T )
∑

n [. . . (∂εf )ε=n�] and the
coefficients bk are related to λnm as

bk = �2

T

∑
n,m

λnmλn,m−k(−∂εf )ε=n�. (C4)

Equation (C4) can be further simplified for T/� � 1 by
replacing the summation over (n,m) with integrals. In this way,
we get

bk � B
(

k�

T

)
, (C5)

where

B(z) =
∫

dEdy�(E − y,y)�(E − y + z,y − z)(−∂Ef )

(C6)

with E = ε/T and �(x1,x2) given by Eq. (62). Substituting
Eq. (62) in Eq. (C6), we see that E enters Eq. (C6) only
in the combination E − y. Shifting the integration variable
E → E − y and using Eq. (64), we obtain

B(z) = 1

4 cosh2(z/2)
. (C7)

Replacing the sum over k in Eq. (C3) with an integral and using
Eqs. (C5) and (C7), we obtain the function I (z) [Eq. (53)].

Finally, let us explain which property of the structural factor
λnm accounts for the double-horn structure of the peaks in
g(t) and K(t). Consider, for definiteness, a peak in K(t) at
t = t∗ = 2π (n∗ + 1/2)/� belonging to the bunch with k = 0
(a generalization to k �= 0 is straightforward). Assume that
the peak is close to the center of the bunch, so that its width
(�t)n∗n∗ is much smaller than 1/T , as discussed in Sec. III A.
For such a narrow peak, Eq. (31) can be written explicitly as

g(t) � −i
θ [δt(2αt∗ − δt)]

π
√

δt(2αt∗ − δt)
, (C8)

where δt = t − t∗. Note that T drops out from Eq. (C8). Thus,
the double-horn structure of the narrow peaks close to the
centers of the bunches is the same as in the limit T → 0.

Let us now demonstrate that Eq. (C8) is determined by the
asymptotic behavior of �(x1,x2) [Eq. (62)] for large values of
its arguments:

�(x1,x2) � e|x1+x2|/2−|x1|/2−|x2|/2

π
√|x1x2|

, |x1,2| � 1. (C9)

From Eq. (C9) we find that the function λnm decays exponen-
tially as a function of m outside the interval −|n| < m < |n|,
on a characteristic scale of |m − n| ∼ T/�. Neglecting these
exponential tails for |n| � T/�, we find for λnm in this limit

λnm � T

π�

θ [m(n − m)]√
m(n − m)

. (C10)

Within this approximation, m is limited to the interval (0,n)
for n > 0 and to the interval (n,0) for n < 0. Substituting
Eq. (C10) in Eq. (C1), which represents g(t) in terms of λnm,
putting �nm = 0 and only keeping α � 1 in εnm, we have

g(t) � −iθ (t)
�2

2πT

∑
nm

(−1)nλnme−i�(n+2αm)t . (C11)

In the vicinity of the n∗th peak, we obtain

g(t) � −i
�

2π2

∑
nm

θ [m(n − m)]√
m(n − m)

ei�(nδt−2αmt∗). (C12)

Replacing the sums over n and m with integrals, we reproduce
Eq. (C8). The double-horn structure (C8) of the peaks in g(t)
can thus be seen to be directly related to the double-horn
dependence of λnm on m in Eq. (C10).

APPENDIX D: CONDUCTANCE BEYOND
THE m APPROXIMATION

In this Appendix, we calculate the conductance through
the ring within the isotropic model without neglecting the
dependence of λnm on n (thus going beyond the m ap-
proximation discussed in Sec. III B). Such a calculation
is more conveniently performed in the energy-coordinate
representation, by substituting Eq. (60) in Eq. (20). For α � 1,
we neglect the difference between u and v everywhere except
for the energies εnm [Eq. (58)] in the resonant denominators of
the Green’s functions.

Consider first the classical term in the conductance, which
involves the product of two Green’s functions with the same
chirality and is given by the sum over (n,m) and (n′,m′). For
α� � �, the broadening of the sublevels �nm [Eq. (63)] is
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smaller than the distance between them. Neglecting all the
terms in the sum except those with n = n′ and m = m′, we get

Tc =
(

��0

2T

)2 ∫
dε(−∂εf )

×
∑
nm±

〈
λ2

nm

(ε − εnm − δE±
ZM)2 + (�nm/2)2

〉
ZM

. (D1)

The thermal factor (−∂εf ) is a smooth function on the scale
of a typical width �0�/T of the Lorentz peaks in Eq. (D2),
so that it can be taken at the positions of the sublevels in the
integral over ε. Further, for �/T � 1 we can write for each
sublevel

(∂εf )|ε=εnm−δE±
ZM

� (∂εf )|ε=�n.

Using Eq. (B11), we obtain

Tc = π��0

T

∑
nm

λnm(−∂εf )|ε=n�. (D2)

Replacing the sums over n and m with integrals and using
Eq. (64), we arrive at Eq. (75) of the main text.

The quantum contribution to the transmission coefficient
is calculated in a similar manner. Substituting Eq. (60) in
Eq. (20), we now take the product of the Green’s functions of
opposite chiralities:

Tq = π

(
��0

T

)2

Re
∑

nn′mm′
iλnmλn′m′

×
〈

(−1)N+−N−+n−n′
(−∂εf )ε=n�

δE+
ZM − δE−

ZM + εnm − εn′m′ + i�ϕ

〉
ZM

. (D3)

Here we introduced a phenomenological dephasing rate �ϕ in
the denominator and neglected the sublevel broadening �nm,

assuming that �ϕ � �nm. Using

δE+
ZM − δE−

ZM = �(N+ − N− − 1) − 2�δφ (D4)

for the difference of the ZM energies and Eq. (58) for εnm, we
write

Tq = π

(
��0

T

)2

Re
∑

nn′mm′
iλnmλn′m′

×
〈

(−1)N̄ (−∂εf )ε=n�

�(N̄ − 1) − 2�δφ + 2α�(m − m′) + i�ϕ

〉
ZM

(D5)

with N̄ = N+ − N− + n − n′.
Since α � 1 and � � �ϕ , we can retain in the sum in

Eq. (D5) only the terms corresponding to N̄ = 1 (i.e., n′ =
n + N+ − N− − 1). [In the coordinate-time representation,
this corresponds to the averaging of K(t) over the period 2π/�

which leads to the replacement of K(t) with a smooth envelope
K̃ .] Therefore, (−1)N̄ = −1, and, consequently, the sign of Tq

is opposite to that of Tc, which implies destructive interference.
Further, since λnm changes on the scale δn � T/�, while

the fluctuations of N+ − N− around zero are of the order of√
T/� � δn, one can approximate λn+N+−N−−1,m � λnm. The

ZM numbers then drop out, and the interference part of the
transmission coefficient is given by a single sum over narrow
Lorentz peaks:

Tq = −π�2
0

T

∑
k

bk

�ϕ

4�2(δφ − αk)2 + �2
ϕ

(D6)

with the coefficients bk defined in Eq. (C4). The sum of
Eq. (D6) and Eq. (75) gives the final form of the conductance
in the isotropic model [Eq. (80) of the main text].
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From this equation, one can see that fractionalization does not
manifest itself in our problem. Indeed, we have three indepen-
dent summations over n,m, and l. It follows that, when consid-
ering a maximum of, say, Au(xn,t − i0) at the contact with xn =
L(n + 1/2), there exists l such that Aαb/4

u (xl, − t + i0) � 1,
which implies “unfractionalization” of the electron charge at
the contact. This, in turn, means that fractionalization does not
change the single-particle spectrum. In particular, Fig. 2 remains
intact.

[68] In the interacting ring, the tunneling amplitudes are renor-
malized by Luttinger-liquid effects. Importantly, within the
square-root approximation for the Green’s functions, there is no
renormalization of the pointlike tunneling. As a consequence,
the renormalization of tunneling contacts is essentially the same
as in the spinless case; see Ref. [69]. In what follows, we
include this T -dependent renormalization into the definition of
the tunneling amplitudes.

[69] D. N. Aristov, A. P. Dmitriev, I. V. Gornyi, V. Yu. Kachorovskii,
D. G. Polyakov, and P. Wölfle, Phys. Rev. Lett. 105, 266404
(2010).

[70] P. M. Shmakov, A. P. Dmitriev, and V. Yu. Kachorovskii,
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[71] One can generalize this result to the setup with different
tunneling rates of two contacts, �1 and �2. In this case,
one should replace �0 → √

�1�2 in the prefactor of the
conductance in Eq. (80) and �0 → (�1 + �2)/2 everywhere
in the square brackets, including the expression for �ϕ in
Eq. (104).

[72] In contrast to the dc case, SCS can be expected to show
up in the classical part of the ac conductance. SCS-induced
features in the dynamical current response should also be
present in a simpler geometry, say, in a ring with a single
tunneling contact [see, e.g., the recent discussion in D. Litinski,
P. W. Brouwer, and M. Filippone, Phys. Rev. B 96, 085429
(2017) and references therein]. Even a fully closed ring,
without any tunneling contacts, can show a peculiar optical
response, probing the fine structure of the sublevels split
by SCS.

[73] We relegate the discussion of other conceivable mechanisms
of “intrinsic” dephasing in the symmetric cases (i.e., in the
absence of the otherwise dominant ZM dephasing) to future
work, assuming in this paper that the phenomenological external
dephasing is stronger than the (if existing, suppressed compared
to generic ZM dephasing) intrinsic one.
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