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We study thermoelectric effects in Coulomb-coupled quantum-dot (CCQD) systems beyond lowest-order
tunneling processes and the often applied wide-band approximation. To this end, we present a master-equation
(ME) approach based on a perturbative T -matrix calculation of the charge and heat tunneling rates and transport
currents. Applying the method to transport through a noninteracting single-level QD, we demonstrate excellent
agreement with the Landauer-Büttiker theory when higher-order (cotunneling) processes are included in the
ME. Next, we study the effect of cotunneling and energy-dependent lead couplings on the heat currents in a
system of two CCQDs. We find that cotunneling processes (i) can dominate the off-resonant heat currents at low
temperature and bias compared to the interdot interaction, and (ii) give rise to a pronounced reduction of the
cooling power achievable with the recently demonstrated Maxwell’s demon cooling mechanism. Furthermore, we
demonstrate that the cooling power can be boosted significantly by carefully engineering the energy dependence
of the lead couplings to filter out undesired transport processes. Our findings emphasize the importance of
higher-order cotunneling processes as well as engineered energy-dependent lead couplings in the optimization
of the thermoelectric performance of CCQD systems.

DOI: 10.1103/PhysRevB.96.115415

I. INTRODUCTION

The experimental progress in the control of single-electron
transport [1] has spurred interest in nanosystems that utilize the
associated heat currents for thermoelectric applications [2–4].
In particular, experiments with Coulomb-coupled quantum-
dot (CCQD) systems have demonstrated a plethora of phe-
nomena ranging from Coulomb drag [5,6] and electron pairing
[7] to extraordinary thermoelectric effects [8,9]. This includes
the realization of an energy harvester that converts a thermal
gradient in a CCQD system into an electric current [8], as
well as an autonomous Maxwell’s demon capable of cooling a
current-carrying QD system at the cost of heating a “demon”
QD system [9].

In addition to the above, theoretical studies have predicted
a wide range of novel thermoelectric effects in CCQD systems
[10–13]. The mechanisms behind these effects rely on the
presence of a strong Coulomb interaction between electrons
in the otherwise decoupled QDs (see Fig. 1 for the case of two
Coulomb-coupled QDs). The strong interaction can be utilized
to tailor the thermoelectric properties of CCQD systems [4,14],
and it provides the opportunity to test fundamental thermo-
dynamic aspects of heat transport in interacting nanoscale
systems driven out of equilibrium [15].

While the operation principles of the above-mentioned
effects are governed by incoherent electron tunneling (se-
quential tunneling) processes between the leads and the QDs
[8–13], the importance of coherent higher-order tunneling
(cotunneling) processes for nonlinear heat transport remains
largely unexplored. Furthermore, when operated under strong
nonequilibrium conditions in which linear-response theory
breaks down, a theoretical treatment taking into account the
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full nonlinear properties is needed [16–19]. Only recently have
these issues been discussed in strongly interacting QD systems
[9,20–22].

Another important factor for thermoelectric effects in
CCQD systems is the coupling to the leads, which is usually
treated in the wide-band approximation assuming energy-
independent couplings [23]. However, energy-dependent cou-
plings to the leads occur naturally in many QD systems
[5,6,8,24] and add an important degree of tunability to the
system. This is as crucial for the thermoelectric properties
[10,11,25] as it is for Coulomb drag [5,6,26–28].

In this work, we present a master-equation approach for
the calculation of the nonlinear electronic charge and heat
currents in interacting QD systems that takes into account the
above-mentioned factors. The charge and heat transfer rates
produced by electron tunneling processes are obtained with a
perturbative T -matrix approach [23], which treats sequential
and cotunneling processes on an equal footing. We resolve
the technical challenges associated with the evaluation of the
cotunneling rates with an implementation of the often applied
regularization scheme [29,30], which applies to the general
case of energy-dependent lead couplings, applied biases, and
temperature gradients in the system.

The main findings and the organization of the paper are as
follows. In Sec. II we introduce the model system of CCQDs.
In Sec. III we present the methodology, and we benchmark the
approach in Sec. IV by comparing it to the Landauer-Büttiker
result for transport through a noninteracting single-level QD.
In Sec. V we study nonlinear thermoelectric phenomena
in CCQDs. We investigate the energy exchange mediated
by the interdot Coulomb interaction, which among other
thermoelectric effects leads to the demon-induced cooling
mechanism [9,10]. Our findings shed light on the limitations
imposed by cotunneling processes on the performance of this
mechanism. Furthermore, we demonstrate a strongly enhanced
performance of the demon-induced cooling effect by tuning the
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FIG. 1. Illustration of the CCQD system studied in Sec. V
consisting of two Coulomb-coupled QDs with interdot Coulomb
interaction U12 (no tunneling is allowed between the QDs) in a three-
terminal configuration with leads � ∈ {A,B,C} with temperatures T�

and electrochemical potentials μ�.

energy dependence of the lead couplings. In such performance
optimization, as we show, cotunneling processes are essential
for a quantitative description of the thermoelectric properties.
Finally, Sec. VI presents our conclusions, and the appendix
provides technical details on the cotunneling rates and the
regularization procedure.

II. COULOMB-COUPLED QD SYSTEMS

We consider CCQD systems like the one illustrated in
Fig. 1, which can be described by the Hamiltonian

Ĥ = Ĥdots + Ĥleads + ĤT , (1)

and consists of a system of CCQDs with Hamiltonian Ĥdots that
is coupled to external leads with Hamiltonian Ĥleads by tunnel
couplings described by ĤT . We denote Ĥ0 = Ĥdots + Ĥleads.

We consider a spinless model of Coulomb-coupled single-
level QDs described by the Hamiltonian

Ĥdots =
∑

δ

εδ ĉ
†
δ ĉδ +

∑
〈δ,δ′〉

Uδδ′ n̂δn̂δ′ , (2)

where ĉ
†
δ (ĉδ) creates (annihilates) an electron in QD δ with

energy controlled by gate voltages εδ = −eVδ , where Vδ is the
gate potential on dot δ, n̂δ = ĉ

†
δ ĉδ is the occupation number

operator, Uδδ′ is the interdot Coulomb interaction, and the
summation in the second term is over all QD pairs (specific
systems are studied in Secs. IV–V). Intradot double occupancy
can be neglected due to a large intradot Coulomb interaction.

The leads are described by noninteracting electron reser-
voirs, Ĥleads = ∑

�k ε�kĉ
†
�kĉ�k , where ĉ

†
�k (ĉ�k) creates (annihi-

lates) an electron with momentum k and energy ε�k in lead �,
which is assumed to be in local equilibrium with temperature
T� and electrochemical potential μ� = μ0 − eV�, where μ0

is the equilibrium chemical potential and V� is the voltage
applied to lead �. The tunneling Hamiltonian that couples
the QD system to the leads is ĤT = ∑

�kδ(t�kδĉ
†
δ ĉ�k + H.c.),

where t�kδ is the tunneling amplitude. We define lead coupling
strengths as γ �(ε) ≡ 2πd�(ε)|t�(ε)|2, where d�(ε) is the lead

density of states. γ �(ε) is allowed to be energy-dependent in
contrast to the often applied wide-band approximation.

III. MASTER EQUATION AND TRANSPORT CURRENTS

We describe the dynamics and transport in the CCQD
system with a Pauli ME, where the transitions between the
QD states are governed by electron tunneling to and from
the leads [31]. The tunneling-induced transition rates are
calculated based on a perturbative T -matrix approach in
which the tunneling Hamiltonian is treated as a perturbation
to the decoupled QD system and leads. This allows for a
systematic expansion in the tunnel couplings and the inclusion
of high-order processes. However, quantum effects such as
tunneling-induced level broadening and level shifts [32–34]
are not captured by this perturbative approach, which is only
valid in the weak-coupling regime γ < kBT ,U .

In the absence of tunnel coupling, the states of the
decoupled QD system and leads are described by product
states of the QD system occupation states |m〉 with energy
Edots,m = 〈m|Ĥdots|m〉 and the leads |i〉 with energy Eleads,i =
〈i|Ĥleads|i〉. The nonequilibrium occupations of the QD states
are described by probabilities pm (the diagonal components of
the reduced density operator of the CCQD system), which are
determined by the ME,

ṗm =
∑
n�=m

(�nmpn − �mnpm),
∑
m

pm = 1, (3)

where �mn denotes the tunneling-induced transition rate from
QD state |m〉 to |n〉. The ME is solved for the steady-state
probabilities, ṗm = 0, in the following. The QD states are
given explicitly in Secs. IV and V for the considered systems.

A. Transition rates

The rates for transitions between the QD states are obtained
from the generalized Fermi’s golden rule [23,35]

�̃mn = 2π

h̄

∑
ij

|〈j |〈n|T |m〉|i〉|2ρi

× δ(	mn + Eleads,j − Eleads,i), (4)

where 	mn ≡ Edots,n − Edots,m, ρi is the thermal probability
of finding the leads in the initial state, the sum is over initial
and final states of the leads, and the T matrix obeys

T̂ = ĤT + ĤT

1

Einitial − Ĥ0 + iη
T̂ , (5)

with Einitial = Edots,m + Eleads,i , and η is a positive infinitesi-
mal.

The lowest-order contribution to the tunneling rates de-
scribes single-electron tunneling, or sequential tunneling,
processes between the QD system and the leads:

�
−→
�

mn = h̄−1γ �(	mn)f �(	mn), (6)

�
←−
�

mn = h̄−1γ �(	nm)f̄ �(	nm), (7)

where Eq. (6) [Eq. (7)] is the sequential rate of tunneling out
of, →, (into, ←,) lead �, thereby changing the state of the
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QD system from m to n, f �(ε) = {exp [β�(ε − μ�)] + 1}−1 is
the Fermi-Dirac distribution in lead �, f̄ �(ε) = 1 − f �(ε), and
β� = 1/(kBT�). The leads are assumed to equilibrate to the
Fermi-Dirac distribution in between the tunneling events.

The next-to-leading order terms in the T matrix describe
cotunneling processes. In conventional local elastic and
inelastic cotunneling processes, a net electron is transferred
between two leads attached to the same QD (e.g., System 1
in Fig. 1). Here we also consider (i) nonlocal cotunneling
processes [27,36] in which a net electron is transferred between
leads attached to different QDs, as well as (ii) pair-cotunneling
processes in which two electrons tunnel into/out of the CCQD
system in one coherent process [37,38].

For the thermoelectric effects in focus here, the process of
nonlocal cotunneling is important. The (unregularized) rate for
nonlocal cotunneling that net transfers an electron out of lead
� and into lead �′ is given by

�̃
−→
�

←−
�′

mn =
∫

dε

2πh̄
γ �(ε)γ �′

(ε − 	mn)f �(ε)f̄ �′
(ε − 	mn)

×
∣∣∣∣ 1

	vm + ε + iη
+ 1

	v′n − ε + iη

∣∣∣∣
2

, (8)

where v (v′) refers to the virtually occupied intermediate state
in the process in which an electron initially tunnels from lead �

and into the QD system (from the QD system and into lead �′).
We refer the reader to the appendix for the expressions for the
remaining cotunneling processes relevant for this study.

A well-known artifact of the cotunneling rates obtained
with the T -matrix approach is that they formally diverge
in the limit η → 0. To deal with this divergence, different
regularization schemes have been proposed [29,30,35,39].
Deep inside the Coulomb blockade, the discrepancy between
the different regularization schemes vanishes [39]. In this
work, we apply the by now standard regularization scheme
in Ref. [29], but for future work a detailed comparison
of the heat currents obtained from different regularization
schemes could be useful. We denote the regularized rates that
enter into Eq. (3) without a tilde. To be explicit, we con-

sider the processes �mn ≡ ∑
�(��←

mn + ��→
mn ), ��←

mn ≡ �
←−
�
mn +∑

�′(�
←−
�

−→
�′

mn + �
←−
�

←−
�′

mn ), ��→
mn ≡ �

−→
�
mn + ∑

�′(�
−→
�

←−
�′

mn + �
−→
�

−→
�′

mn ). A
numerical procedure for the regularization is outlined in the
appendix.

B. Charge and heat currents

The steady-state transport currents can be obtained from
the occupation probabilities. The electric current going into
lead � is

I� ≡ −e

〈∑
k

dn̂�k

dt

〉
= −e

∑
mn

pm

(
��←

mn − ��→
mn

)
, (9)

where n̂�k = ĉ
†
�kĉ�k , pm is calculated from the steady-state

solution of Eq. (3), and the rightmost form expresses the
electric current in terms of the total rate of electrons tunneling
into lead � minus the total rate of electrons tunneling out of
lead � [40].

The heat current going into lead � is [15,17,41]

J� ≡
〈∑

k

(ε�k − μ�)
dn̂�k

dt

〉
=

∑
mn

pm

(
W�←

mn − W�→
mn

)
,

(10)

where the rightmost form expresses the heat current in terms of
heat rates W (using a similar notation to that for the tunneling
rates).

The sequential-tunneling heat rate in lead � is calculated as
the tunneling rate multiplied by the energy of the tunneling
electron relative to the chemical potential in the lead,

W
−→
�
�,mn = (	mn − μ�)�

−→
�

mn, W
←−
�
�,mn = (	nm − μ�)�

←−
�

mn, (11)

where the indices follow the notation of the tunneling rates,
and the additional subscript � refers to the lead in which the
heat rate is calculated.

Analogously, the cotunneling heat rates into/out of the leads
are calculated a posteriori by multiplying the integrand in
the cotunneling rate by the energy of the tunneling electron
relative to the chemical potential of the lead. For example, for
the nonlocal cotunneling process between lead � and �′, the
(unregularized) heat rate in lead � reads

W̃
−→
�

←−
�′

�,mn =
∫

dε

2πh̄
γ �(ε)γ �′

(ε − 	mn)f �(ε)f̄ �′
(ε − 	mn)

× (ε − μ�)

∣∣∣∣ 1

	vm + ε + iη
+ 1

	v′n − ε + iη

∣∣∣∣
2

,

(12)

with the heat rate in lead �′, W̃
−→
�

←−
�′

�′,mn, given as above but with (ε −
μ�) replaced by (ε − 	mn − μ�′). The remaining cotunneling
heat rates follow similarly.

Whereas the calculation of charge currents involves the
electron-tunneling rates that enter the ME (3), and therefore
does not require any additional steps once the ME has been
set up and solved, the heat currents must be calculated via the
heat tunneling rates in a postprocessing step, similar to the
procedure in full density-matrix treatments [20].

IV. COMPARISON TO THE LANDAUER-BÜTTIKER
FORMALISM

In this section, we benchmark the approach by comparing
the charge and heat currents in a spinless noninteracting single-
level QD system with those obtained from the Landauer-
Büttiker (LB) formalism (see Ref. [42] for a comparison of
the electric current in the case of equal temperatures in the
leads). For noninteracting systems, the LB result is exact.
However, for the thermoelectric effects discussed in Sec. V,
which require the presence of strong Coulomb interaction, an
alternative method such as the ME approach is needed.

We consider a single-level QD coupled to two leads � ∈
{A,B} (such as System 1 in Fig. 1 when decoupled from
System 2). For simplicity, we assume wideband lead couplings
γ �(ε) = γ � in this case. The Hamiltonian of the QD reduces to

Ĥdots = ε1ĉ
†
1ĉ1, (13)

with states labeled by the occupancy, |n1〉 ∈ {|0〉,|1〉}.
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FIG. 2. Comparison of the electric current (a) and heat current (b)
calculated with the ME and LB approaches. Currents are plotted as a
function of gate voltage V1 for two different lead coupling strengths
γ A = γ B = γ � (energy-independent). The ME result including only
sequential tunneling is shown for reference (black dotted), and the
vertical dashed lines mark the alignment of the dot level with
the electrochemical potentials of leads A (left) and B (right).
Parameters: TB = 2TA ≡ 2/(kBβ), μA = 3 β−1, μB = −3 β−1, and
η = 10−3 β−1.

In the LB formalism, the electric current and heat current
going into lead A are given by [18,43]

ILB
A = −e

h

∫
dε T (ε)[f B(ε) − f A(ε)] (14)

and

J LB
A = 1

h

∫
dε (ε − μA)T (ε)[f B(ε) − f A(ε)], (15)

respectively. For a noninteracting single-level QD, the trans-
mission function T (ε) is

T (ε) = γ Aγ B

(ε − ε1)2 + (γ /2)2
, (16)

where γ = γ A + γ B and we have omitted the tunneling-
induced energy shift, which is not captured by the T -matrix
approach.

The transport currents calculated with the two approaches
with a finite bias and temperature difference (TB = 2TA ≡ 2T )
between the leads are plotted in Figs. 2(a) and 2(b) as a function
of the gate voltage for two different lead coupling strengths.
To demonstrate the importance of cotunneling processes,
we have included ME results based on sequential tunneling
only (black dotted curves) that do not depend on γ � in the
units shown, as well as sequential plus cotunneling (dashed
curves). The results based purely on sequential tunneling differ
significantly from the LB results unless γ � 
 kBT . However,
for γ � < kBT , the ME results with cotunneling are in excellent
agreement with the LB formalism. For γ � > kBT , which is
outside the regime of validity of the ME approach, the two
approaches deviate as expected.

In the following discussion of thermoelectric effects, the
heat current is of particular interest. As seen in Fig. 2(b),
when the dot level is above the electrochemical potential in
lead A, the heat current becomes negative (for sufficiently
small lead coupling strength). In this case, electrons above the
electrochemical potential tunnel out of the lead and thereby
cool the lead [cf. Eq. (10)]. Such cooling mechanisms due

to energy-selective tunneling have been confirmed experi-
mentally in metallic QD systems [9,44]. The energy-selective
tunneling gives rise to an asymmetry in the energy dissipation
between the source and drain leads that was recently observed
in molecular junctions [45].

V. THERMOELECTRIC EFFECTS IN
COULOMB-COUPLED QDs

In the remaining part of the paper, we study the thermo-
electric properties of the system illustrated in Fig. 1, i.e., two
single-level QDs with QD1 tunnel-coupled to leads A and
B and QD2 tunnel-coupled to lead C. The CCQD system is
described by the Hamiltonian

Ĥdots = ε1ĉ
†
1ĉ1 + ε2ĉ

†
2ĉ2 + Un̂1n̂2, (17)

where we have used the simplified notation U12 ≡ U , and the
occupation states are |m〉 = |n1n2〉 ∈ {|00〉,|10〉,|01〉,|11〉}.
We consider situations in which a source-drain bias V is
applied to System 1, μA = μ0 + eV/2, μB = μ0 − eV/2 (we
set μ0 = 0 for reference).

As pointed out above, we allow here for energy-dependent
lead couplings. For small bias voltages and temperature
differences compared to the energy scale at which the lead
couplings vary, it suffices to consider the expansion of the lead
couplings around their value at μ0 [46],

γ �(ε) = γ �
0 + (ε − μ0)∂γ �, (18)

where γ �
0 = γ �(μ0), ∂γ � ≡ ∂γ �(ε)

∂ε
|ε=μ0 .

A. Current and energy exchange

In Fig. 3(a) we show the electric current through QD1, I ≡
IA = −IB , at low temperature kBT� = 10−2U (for illustrative
convenience) and bias eV = 0.3U as a function of gate
detuning V2 − V1 and total gating V1 + V2 in the vicinity of
the honeycomb vertex of the stability diagram [47]. Here,
we initially assume energy-independent lead couplings, which
is sufficient to get an overall understanding of the behavior
of the system. The large current near the degeneracy lines
defined by 	00,10 = 0 and 	01,11 = 0 is due to sequential
tunneling processes. Away from these degeneracy lines where
sequential tunneling is exponentially suppressed, cotunneling
processes give rise to a weak background current. At the
degeneracy line 	10,01 = 0 connecting the two triple points
at (V1,V2) = (0,0),(U,U ), respectively, nonlocal cotunnel-
ing processes are responsible for the enhanced cotunneling
current [27].

The heat currents that accompany the electric current are
shown in Figs. 3(b)–3(d) for different temperatures in the
leads. Figure 3(b) shows the heat current in lead A for
kBT� = 0.1U . Near the degeneracy lines where 	00,10 = 0
and 	01,11 = 0 and only the occupation of QD1 fluctuates, the
heat current shows a behavior similar to that in Fig. 2(b) for
a single-level QD. However, at the center of the stability dia-
gram, Coulomb-mediated energy exchange due to the strong
Coulomb interaction between the QDs becomes significant.
This manifests itself in a cooling of System 1 inside the region
bounded by the solid lines at the center of Fig. 3(b) (notice
that the color scale is dominated by the heat current with
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FIG. 3. Electric current and heat currents. (a) Electric current in
System 1 as a function of gate detuning V2 − V1 and total gating
V2 + V1 at low temperature, kBT� = 10−2 U . (b) Heat current in lead
A, JA, at high temperature, kBT� = 10−1 U (contours indicate where
JA and JB are zero). (c) Heat current in lead C, JC , for kBT� = 10−1 U .
(d) JC as a function of temperature with (solid) and without (dashed)
cotunneling for the gate configurations marked in (c): eV1,2 = 0.5 U

(black circle) and eV1 = 0.4 U , eV2 = 0.6 U (blue triangle). In plots
(a)–(c), the degeneracy lines of the honeycomb vertex are indicated
with dotted lines. Parameters: γ A/B (ε) = 10−3 U , γ C(ε) = 10−2 U ,
and eV = 0.3 U .

larger magnitude outside this region). From the heat current
in lead C shown in Fig. 3(c), the cooling of System 1 is seen
to be at the cost of heating System 2. This Coulomb-mediated
energy exchange between the two QD systems occurs in spite
of the fact that no electrons are exchanged, and it is the driving
force behind demon-induced cooling [9,10], energy harvesting
[4,8,11,12], and Coulomb drag [26,27].

A simple analytical result for the energy exchange can be
found when considering sequential tunneling processes only
(indicated by the superscript s). In this case, the total heat
currents in System 1, J s

1 ≡ J s
A + J s

B , and System 2, J s
2 ≡ J s

C ,
become [11]

J s
1 = U

τs
(�+ − �−) + μA − μB

e
I s, (19a)

J s
2 = U

τs
(�− − �+), (19b)

where �− ≡ �00,01�01,11�11,10�10,00 and �+ ≡
�00,10�10,11�11,01�01,00. The factor τ s depends on the
various sequential tunneling rates, however it is merely a
normalization factor and is not reproduced here. The two
terms proportional to U in Eq. (19) describe the energy
exchange, whereas the last term in Eq. (19a) describes the
contribution from Joule heating in System 1. The direction of
the energy transfer is determined by the sign of �− − �+. It

is therefore convenient to consider the ratio

�−

�+ = �eU (β2−β1), (20)

which describes whether energy is transferred from System 1
to 2 (�−/�+ > 1) or vice versa (�−/�+ < 1) [48]. On the
right-hand side of (20), we have taken βA/B = β1 and βC = β2,
and have expressed the ratio in terms of an exponential factor,
which depends on the temperature in System 1 and System 2,
and

� ≡
(
γ A

1 f A
1 + γ B

1 f B
1

)(
γ A

0 f A
0 e−β1μA +γ B

0 f B
0 e−β1μB

)
(
γ A

0 f A
0 +γ B

0 f B
0

)(
γ A

1 f A
1 e−β1μA +γ B

1 f B
1 e−β1μB

) , (21)

which depends on the temperature and bias in System 1 only.
The subscript 0 (1) in Eq. (21) indicates that the corresponding
function is evaluated at 	00,10 (	01,11) [see Eqs. (6) and (7)].

The exponential factor in (20) shows that a temperature
gradient between the two QD systems can generate a net heat
flow from the hot to the cold system. This is the mechanism
behind the heat engine studied in Ref. [11]. On the other hand,
a closer inspection of the � factor reveals that it is, in fact,
possible to generate a net heat flow in the opposite direction,
i.e., from the cold to the hot system, and this is the cause of
the negative heat current at the center of Fig. 3(b). This so-
called demon-induced cooling effect will be discussed further
in Sec. V B below.

When the applied bias and temperature are small compared
to the interdot Coulomb interaction, eV,kBT 
 U , cotunnel-
ing processes start to dominate the heat currents in the center of
the stability diagram. This is demonstrated in Fig. 3(d), which
shows the heat current JC as a function of temperature for the
two different gate tunings marked with symbols in Fig. 3(c).
Considering sequential tunneling only (dashed curves), the
heat current is quenched at kBT 
 U as �01,11 and �10,00 in �−
become exponentially suppressed. This can also be understood
from the illustration in Fig. 4(a), which shows the sequence of

FIG. 4. Cooling cycle and effect of cotunneling. (a) Sequence of
sequential tunneling processes that cool System 1. The positions of
the dot levels when the other dot is empty (occupied) is illustrated
with solid (dotted) lines. (b) Sequence of nonlocal cotunneling
processes. (c) Heat current J1 as a function of bias voltage. The
individual contributions from sequential (J s

1 ) and cotunneling (J c
1 )

are also shown. Parameters: eV1 = eV2 = U/2, γ A/B (ε) = 10−3 U ,
γ C(ε) = 10−2 U , and kBT = 0.1 U .
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sequential tunneling processes corresponding to �−. However,
nonlocal cotunneling processes allow the system to fluctuate
between the two states 10 ↔ 01, as illustrated in Fig. 4(b),
and thereby transfer heat between the systems. The nonlocal
cotunneling channel is open for |	01,10| � max{|eV/2|,kBT },
and the associated heat current is thus also suppressed at
low temperature when 	01,10 �= 0, as illustrated by the blue
curve (triangle) in Fig. 3(d). For zero detuning, 	01,10 = 0
(circle), the nonlocal cotunneling rates, and hence also the heat
current, saturate at kBT 
 eV . In Sec. V B, we demonstrate
that nonlocal cotunneling processes have a significant effect
on the demon-induced cooling mechanism.

B. Demon-induced cooling

The effect of cooling System 1 at the cost of heating
System 2 has recently been discussed in the context of a
Maxwell’s demon, where System 2 plays the role of the demon
that performs the necessary feedback to cool System 1 [9,10].
To maximize the achievable cooling power for refrigeration
purposes [49], large tunneling rates, γ �(ε) ∼ kBT ,U , are
desirable [cf. Eq. (19)]. However, large tunneling rates in-
crease the contribution from higher-order tunneling processes,
thus emphasizing the importance of including cotunneling
processes in the analysis.

In the following, we consider the case of uniform tem-
perature T� ≡ T whereby the exponential factor in (20)
becomes unity. This allows us to focus on the � factor in
the optimization of the performance. Equation (19) shows that
the cooling mechanism is governed by �− since, as illustrated
in Fig. 4(a), in a full sequential cycle an amount of energy
U is transferred from System 1 to System 2, thereby cooling
System 1. In the following, we discuss how to increase the
cooling power by maximizing the success rate for completing
the cooling cycle in Fig. 4(a).

1. Cotunneling limitations

Although the cycle of nonlocal cotunneling processes illus-
trated in Fig. 4(b) gives the same net transfer of electrons as the
sequential tunneling cycle in Fig. 4(a), the net energy transfer
is different for the two cases. As illustrated, in a cotunneling
process also electrons below (above) the electrochemical
potential can tunnel out of lead A (into lead B), and thus
reduce the demon-induced cooling effect.

In Fig. 4(c), we show the heat current J1 = JA + JB

together with its individual contributions from sequential (J s
1 )

and cotunneling (J c
1 ) processes. Overall, System 1 cools at low

bias, while at higher bias, Joule heating becomes dominant.
The minimum in J1 as a function of bias voltage is referred
to as the maximum cooling power, J1, max ≡ min J1(V ). As
the figure shows, cotunneling reduces the maximum cooling
power.

Figure 5 shows how the maximum cooling power J1, max

scales with the lead coupling strengths. As the figure demon-
strates, the rates must satisfy γ C > γ A/B to ensure that
System 2 acts sufficiently fast to perform the desired feedback
such that the cooling cycle in Fig. 4(a) is completed when an
electron tunnels between leads A and B [49]. In the region
of large cooling power, cotunneling processes start to become
important, and hence there is a tradeoff between sequential
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FIG. 5. Maximum cooling power, J1, max, as a function of the lead
coupling strengths for energy-independent couplings. (a) Sequential
tunneling and (b) sequential plus cotunneling. Parameters: eV1 =
eV2 = U/2 and kBT = 0.1 U .

tunneling, which improves the cooling effect, and nonlocal
cotunneling, which limits the effect. In addition, the area in the
lead coupling parameter space where refrigeration is possible
is also reduced when cotunneling is included.

2. Performance boosting

Here we demonstrate that energy-dependent lead couplings
can enhance the demon-induced cooling power significantly.
We restrict the discussion to lead couplings with a linear energy
dependence [cf. Eq. (18)].

By inspecting the � factor in Eq. (21), we find that for
μA > μB , the configuration illustrated in the inset of Fig. 6,
where γ A

0 ,γ B
1 are reduced compared to γ A

1 ,γ B
0 , boosts the �

factor (and thereby �−/�+). This results in an enhancement
of the cooling power by suppressing tunneling between leads
A and B via two sequential tunneling processes, while at the

A B

kBT [U ]

J
1
,m

a
x

[1
0
−

5
U

2 /
�
]

−3
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−1

0

0.4 0.80.0

J1,max

Js
1,max

0.6 1.00.2

FIG. 6. Performance boosting with energy-dependent lead cou-
plings. Maximum cooling power as function of temperature for dif-
ferent lead coupling strengths: ∂γ A = −∂γ B = xγ

A/B

0 /U (sketched
in the inset), with x = 0 (black) to x = 1 (light blue) in steps of
0.2. The full (dashed) lines show the result obtained with (without)
cotunneling. Parameters: γ C(ε) = 10−2 U , γ

A/B

0 = 10−3 U , eV1 =
eV2 = U/2, and η = 10−4 U .

115415-6



THERMOELECTRICS IN COULOMB-COUPLED QUANTUM . . . PHYSICAL REVIEW B 96, 115415 (2017)

same time promoting the processes of the cooling cycle in
Fig. 4(a).

In Fig. 6 we show the maximum cooling power as a
function of temperature for different situations for the energy
dependence of the lead couplings, from the top (black) curve
showing the result for energy-independent lead couplings,
to increasing energy dependence, i.e., increasing |∂γ A/B |,
toward the bottom (light blue) curve. When tuning the energy
dependence of the lead couplings, a significant enhancement of
the cooling power is achieved. Again, the effect of cotunneling
processes is to reduce the attainable cooling power (solid lines)
relative to the cooling power obtained when only considering
sequential tunneling processes (dashed lines).

VI. CONCLUSIONS

In summary, we have studied thermoelectric effects in
CCQD systems with a T -matrix based master-equation ap-
proach for the calculation of charge and heat currents. The
method (i) treats incoherent sequential tunneling processes
and coherent cotunneling processes on an equal footing, and
(ii) can account for energy-dependent tunnel couplings to
the leads. Both are important for quantitative predictions and
optimization of the thermoelectric properties of CCQDs.

To benchmark the master-equation method, we considered
a noninteracting single-level QD coupled to source and drain
leads for which the Landauer-Büttiker formalism is exact.
In the regime of validity of our method, i.e., small tunnel
couplings to the leads, γ < kBT , we demonstrated excellent
agreement with the results from the Landauer-Büttiker method
when cotunneling processes are included in the master equa-
tion.

Furthermore, we studied the effect of cotunneling processes
and energy-dependent lead couplings on the thermoelectric
properties of a CCQD system consisting of two QDs exhibiting
a Maxwell’s-demon-like cooling mechanism [9,10]. First of
all, we showed that cotunneling processes reduce the cooling
effect since they do not share the delicate energy selectivity
inherent to sequential tunneling processes. This results in
a significant reduction of the achievable cooling power
compared to the sequential tunneling result when the lead
couplings are increased to maximize the cooling power from
sequential tunneling processes. Secondly, we demonstrated
that it is possible to boost the cooling power significantly via
other means by introducing energy-dependent lead couplings
and properly tuning their energy dependence. In this case,
we showed that cotunneling still reduces the cooling power
significantly, thus emphasizing the importance of cotunneling
processes in quantitative analyses.

Applying the methodology to other mesoscopic systems
allows for testing of new thermoelectric device ideas beyond
sequential tunneling estimates, as well as for improved
comparison with experiments.
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APPENDIX: COTUNNELING RATES AND
REGULARIZATION PROCEDURE

The rate for elastic cotunneling through a single-level QD
is given by

�̃
−→
�

←−
�′

mm =
∫

dε

2πh̄
γ �(ε)γ �′

(ε)f �(ε)f̄ �′
(ε)

∣∣∣∣ 1

	vm ± ε + iη

∣∣∣∣
2

,

(A1)

where v refers to the virtually occupied intermediate state
created in the process in which an initially empty level is filled
(+ε) or an initially filled level is emptied (−ε).

In pair-cotunneling processes, two electrons tunnel simul-
taneously out of (into) the QD system and into (out of) the
leads � and �′. The rate for such processes takes the form

�̃
←−
�

←−
�′

mn =
∫

dε

2πh̄
γ �(ε)γ �′

(	nm − ε)f̄ �(ε)f̄ �′
(	nm − ε)

×
∣∣∣∣ 1

	vm − ε + iη
+ 1

	v′n + ε + iη

∣∣∣∣
2

, (A2)

where v (v′) refers to the virtually occupied intermediate state
in a process in which an electron initially tunnels from the QD
system and into lead � (�′). Similarly,

�̃
−→
�

−→
�′

mn =
∫

dε

2πh̄
γ �(ε)γ �′

(	mn − ε)f �(ε)f �′
(	mn − ε)

×
∣∣∣∣ 1

	vn − ε + iη
+ 1

	v′m + ε + iη

∣∣∣∣
2

, (A3)

where v (v′) refers to the virtually occupied intermediate state
in a process in which an electron initially tunnels from lead �′
(�) and into the QD system.

The bare cotunneling rates are formally divergent in the
limit η → 0. The divergence stems from factors involving
|x + iη|−2, x,η ∈ R. Using the fact that [29]∣∣∣∣ 1

x + iη

∣∣∣∣
2

→ π

η
δ(x) + P 1

x2
, η → 0+, (A4)

where P denotes the principal value, we can identify the
divergent contributions, e.g., from Eq. (8),

�̃
−→
�

←−
�′

mn → h̄

2η

(
�

−→
�
mv�

←−
�′
vn + �

←−
�′
mv′�

−→
�
v′n

) + �
−→
�

←−
�′

mn , (A5)

where �
−→
�

←−
�′

mn denotes the regularized cotunneling rate, and we
have used the fact that the cross-terms from the absolute
squared in Eq. (8) do not contribute to any divergences.
The divergent contribution is proportional to products of two
sequential tunneling rates. These correspond to two energy-
conserving (sequential) transitions that can be identified with
the intermediate processes in the cotunneling process. The
sum is over the possible sequences of intermediate transitions.
Similarly, for the cotunneling heat rates, e.g., Eq. (12),

W̃
−→
�

←−
�′

�,mn → h̄

2η

[
W

−→
�

�,mv�
←−
�′
vn + �

←−
�′
mv′W

−→
�

�,v′n
] + W

−→
�

←−
�′

�,mn , (A6)
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or the corresponding heat rate in lead �′,

W̃
−→
�

←−
�′

�′,mn→
h̄

2η

[
�

−→
�
mvW

←−
�′

�′,vn + W
←−
�′

�′,mv′�
−→
�
v′n

] + W
−→
�

←−
�′

�′,mn. (A7)

We apply the regularization scheme in Ref. [29] and subtract
the terms scaling as η−1.

In the case of identical temperatures in the leads, using
the identity f (ε1)[1 − f (ε2)] = n(ε1 − ε2)[f (ε2) − f (ε1)],
where f (ε) is the Fermi-Dirac distribution and n(ε) is the
Bose-Einstein distribution, the cotunneling rates can be written

in the form

I =
∫ ∞

−∞
dε P (ε)[f �′

(ε) − f �(ε + 	3)]

×
∣∣∣∣ k1

ε − 	1 + iη
+ k2

	2 − ε + iη

∣∣∣∣
2

, (A8)

where P (ε) is assumed to be a polynomial, P (ε) = ∑n
i=0 ciε

n,
of maximum order n = 2 for k1 − k2 �= 0 and n = 4 for k1 −
k2 = 0 to ensure that the result below is well-defined. The
derivation is in line with the one in Ref. [27], and the integral
becomes

I = k2
1P

′(	1)Re[ψ−
�′ (	1) − ψ−

� (	1 + 	3)] + k2
1β

2π
P (	1)Im[ψ−

1�′
(	1) − ψ−

1�
(	1 + 	3)]

+ k2
2P

′(	2)Re[ψ−
�′ (	2) − ψ−

� (	2 + 	3)] + k2
2β

2π
P (	2)Im[ψ−

1�′
(	2) − ψ−

1�
(	2 + 	3)]

− 2k1k2

	1 − 	2
(P (	1)Re[ψ−

�′ (	1) − ψ−
� (	1 + 	3)] − P (	2)Re[ψ−

�′ (	2) − ψ−
� (	2 + 	3)]) + R + O(η−1) + O(η),

(A9)

where

ψ(1)
±
� (ε) ≡ ψ(1)

(
1

2
± i

β

2π
(ε − μ�)

)
, (A10)

with ψ (ψ1) being the digamma (trigamma) function, and

R =
{
c2(μ�′ − μ� + 	3)(k1 − k2)2, k1 − k2 �= 0,

c4(μ�′ − μ� + 	3)k2
1(	1 − 	2)2, k1 − k2 = 0.

(A11)

The term O(η−1) is omitted by regularization before taking the limit η → 0. For kBT < γ (outside the regime of validity), the
failure of the approach is seen as a logarithmic divergence of the digamma functions near the degeneracy points.
In studies of thermoelectric effects where different lead temperatures as well as more general energy dependence of the lead
couplings become relevant, one must turn to a numerical procedure. In this case, we evaluate the cotunneling integrals numerically
with a small but finite η, and subsequently subtract contributions of order η−1 as shown in, e.g., Eqs. (A5)–(A7). In particular,
we have applied the numerical procedure in Figs. 2 and 6, and we have stated the values of η in the figure captions.
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