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Fingerprints of Majorana fermions in current-correlation measurements
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We compute various current-correlation functions of electrons flowing from a topological nanowire to the tip of
a superconducting scanning tunnel microscope and identify fingerprints of a Majorana bound state. In particular,
the spin resolved cross correlations are shown to display a clear distinction between the presence of a such an
exotic state (negative correlations) and an Andreev bound state (positive correlations). Similarity and differences
with measurements with a normal tunnel microscope are also discussed, like the robustness to finite temperature,
for instance.
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I. INTRODUCTION

A Majorana bound state (MBS), in condensed-matter
physics is a zero-energy quasiparticle with the specificity
of being its own antiparticle [1]. Among many interesting
properties, this exotic particle may, in particular, belong to
the family of anyons [2–4] and therefore have a non-Abelian
statistics which makes it a very interesting object for quantum
computation [5,6]. Such states can be realized in various solid-
state systems and dimensionalities [7,8], the simplest one being
the so-called topological nanowire (TN) which consists of a
Rashba nanowire on top of an s-wave superconductor and in
the presence of an external magnetic field [5,7–13] as sketched
in Fig. 1. Such a system can be tuned in the topological phase
by choosing properly some experimental parameters such as
the chemical potential of the superconductor or the external
magnetic field [14,15]. A similar system, matching perfectly
the TN but with more experimental degrees of freedom, has
been recently developed with a chain of magnetic atoms
deposited on top of a superconductor [16–18].

Experimentally the presence of a MBS could be probed
via the presence of a zero bias conductance peak (ZBCP)
in the differential electrical conductance with a very specific
quantized value of 2e2/h [19]. Unfortunately, the ZBCP is
still far from being an unambiguous signature of a MBS
since such a peak could originate from other phenomena such
as Andreev bound states [17,20], weak antilocalization [21],
disorder [19,22], or Kondo resonances [23–26]. Moreover,
the temperature being also important in the state-of-the-art
experiments is an additional source of pollution in the sense
that it suppresses the amplitude of the ZBCP and tends to blur
the signal. This aspect has been studied recently leading to the
conclusion that a superconducting STM tip would allow us
to measure the signal while getting rid of the temperature
broadening and therefore obtain cleaner signatures in the
conductance peak and Majorana wave-function tomography
[27–30]. However, spurious subgap states may still exist
and contribute to smudge the signal coming from the MBS.
This is why the community is still making efforts to find
experimentally a smoking gun able to distinguish between the
presence of MBSs and other subgap states such as Andreev
bound states (ABSs) [31–33] or Kondo resonances [24,25].

A possible lead is to use very peculiar properties of Andreev
reflection in the presence of a MBS. In that case, there exists a
specific spin direction, called the Majorana polarization, along
which electrons with positive spin projection are perfectly
Andreev reflected (as holes with the same spin orientation)
while the others are perfectly specularly (directly) reflected
(as electrons with the same spin orientation). This specific
reflection is called spin-selective Andreev reflection (SESAR)
and can occur only in the presence of the MBS [34,35].
This will of course have important consequences on standard
observables in mesoscopic physics like the noise or more
generally current-correlations functions [32,36–40] which
have been shown to be very instructive, for instance, for
probing the fractional charges in the quantum Hall effect at
filling factor ν = 1/3 [41,42]. In our case of interest, it has
been suggested that, even if the signal is noiseless, a spin filter
can be used to study the spin current correlations between a
normal metal (N) tip and the TN [43–45]. Using a properly
oriented spin filter, the spin current correlations are always
negative for a MBS and always positive or zero for an ABS.

In this paper, we study the current correlations coming from
the detection of the MBS by a superconducting (SC) STM tip.
By grounding the wire and applying a finite bias to the tip such
that the quasiparticles injected in the wire are electronlike (the
bias has to be of the order of the superconducting gap of the
tip), we can make a clear comparison with the previous results
obtained in the case of a normal-metal tip [40]. We calculate
the zero-frequency noise when the superconducting STM tip is
placed just above the MBS and show that this noise is finite in
contrast to what happens for the detection with a normal-metal
tip. Then, we calculate the spin current correlations and show
that these correlations are negative in strong contrast with
the detection of an ABS where the correlations are positive.
We also point out that these correlations depend strongly on
the ratio between the tunneling for spin up and spin down
(this ratio can be changed by putting a magnetic barrier or
applying an external electric field at the interface). We provide
numerical results with the full range of possible tunneling
from fully polarized to unpolarized situations. This opposite
sign of correlations between ABSs and MBSs is thus a clear
signature of their intrinsic difference which can be measured
experimentally with the usual tools in current laboratories.
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FIG. 1. The system consists of a grounded TN driven in the
topological phase (i.e., V 2

z > �2
s + μ2) carrying MBSs at its ends

and in proximity with a biased SC STM tip. This tip is approached
above the MBS allowing us to detect the noise as well as the spin
current correlations of the current flowing between them. Note that
the spin current correlations can be extracted using a spin filter along
the output signal. In our study, we are deep in the topological phase
meaning that the magnetic field is sufficiently large to polarize all the
spins of the TN in its direction.

The article is organized as follows: in Sec. II, we describe
the model under investigation. The third and fourth sections
explain the calculation and discuss the results for, respectively,
the noise and the spin current correlations of the current
flowing between the tip and the TN. We finally conclude in the
last section and give some insights of possible experiments.
Technical details are discussed in the appendixes.

II. MODEL

We consider a TN which consists of a Rashba nanowire
in proximity with an s-wave superconductor of chemical
potential μ and superconducting gap �s in the presence of
an external magnetic field Vz applied along the z direction as
sketched in Fig. 1. Such a system experiences MBSs at its
ends when tuning it in the topological phase (V 2

z > �2
s + μ2).

For convenience, we suppose that the wire is sufficiently long
so that the overlap between the two MBSs is negligible. The
Bogoliubov–de Gennes (BdG) Hamiltonian of the TN along
the x axis reads

HT SC = p2
x

2m
τz + iαRτzσy∂x + Vzσz + �sτx − μτz (1)

in the Nambu basis (ψ†
k,↑,ψ

†
k,↓,ψ−k,↑,ψ−k,↓) where �s is

the superconducting gap induced by proximity effect in the
nanowire, μ is the chemical potential which is taken as the
origin of energies, and αR is the Rashba coupling strength
along the y direction. Here, the τi (σi) denote the Pauli
matrices acting respectively in the particle-hole (spin) space.
A superconducting STM tip is approached above the TN and
can be moved along the wire to perform its tomography and,
meanwhile, detect the MBSs [18,27,28]. The Hamiltonian of
the STM tip is the usual BCS Hamiltonian with s-wave pairing,

Htip =
∑
k,σ

εk,σ c
†
k,σ ck,σ + �c

†
k,σ c

†
−k,−σ + H.c., (2)

where � is the superconducting gap of the tip. The tunneling
Hamiltonian allowing the transfer of particles between the TN

and the tip reads

Ht =
∑

σ

itσ γψ(0)cσ + H.c. (3)

with tσ the hopping amplitudes taken to be real [46], ψ(0) the
Majorana wave function just below the tip taken at the end of
the wire where the Majorana wave function is maximal, and γ

the corresponding Majorana operator. The hopping amplitudes
tσ depend on the spin polarization of the MBS which can be
calculated via Eq. (1) using the BdG equations [8,34,47]. For
the rest of the paper, we take tσ positive and set λ ≡ t↓/t↑. We
neglect the contribution from the continuum of the TN above
� because we bias the junction such that the quasiparticles
from the tip flow into the MBS and not into higher subbands.

III. NOISE

The absorption current noise at finite frequency reads

Sa(ω) =
∫ ∞

−∞
〈(I (0) − 〈I 〉)(I (t) − 〈I 〉)〉eiωt dt, (4)

where I (t) is the total current operator and 〈I 〉 is the average
current. For the sake of clarity, we choose to use this
nonsymmetrized version and drop the subscript a in the rest of
the paper. It is straightforward to express the current in terms
of the components of the reflection matrix r̂ (its components
read ree, rhh, reh, and rhe, and are themselves 2 × 2 matrices
in spin space) [26]. The broadening of the MBS due to the
tunneling can be written as 
 ≡ 2πν0(|t↑|2 + |t↓|2), where ν0

is the density of states of the tip in the normal state. The
r̂ matrix is obtained via the Lippmann-Schwinger equation
[48,49]

r̂ = I − 2iπW †(E + iπWW †)−1W, (5)

where I is the identity matrix and W is the “contact” matrix.
When the system is in the topological phase with MBSs at the
ends of the wire, W reads

WMBS = √
ν0(

√
ρ+t↑,

√
ρ+t↓,

√
ρ−t↑,

√
ρ−t↓), (6)

where ρ± = ρ(E ∓ eV ) is the dimensionless density of states
for the electronlike (holelike) quasiparticles normalized by
ν0. When the applied voltage is slightly above the gap of the
tip, so that 0 � eV − � 
 
, the following approximation
can be made: ρ+ � (�

2 )1/2 (eV − � − E)−1/2. For λ = 1, the
Fano factor is F = S(0)

e〈I1〉 = 18π−56
12−3π

� 0.213 (see Appendix A),
where the total average current is denoted by 〈I1〉 and has
been previously calculated in Ref. [27]. Thus, the noise is
finite when using a SC tip in contrast to the case of a normal-
metal tip, where the noise vanishes. The physical explanation
is because the electrons with energies close to � are Andreev
reflected with a probability not equal to 1. This gives rise to
a suppression factor 4 − π in the conductance smaller than
the usual quantized value 2e2/h [27,28]. To have a better
understanding, let us put this in contrast with a normal-metal
tip detection, where the flow of electrons from the tip into the
MBS occurs via Andreev resonant tunneling, with a perfect
probability, leading to a noiseless signal [27].
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IV. SPIN CURRENT CORRELATIONS

By using a spin filter along the z axis (see Fig. 1), such
as a T junction connected to two polarized quantum dots
[40,50], the total current is split into its two spin components
I↑ and I↓ and the correlations between them can be calculated,
Pσσ ′ ≡ 〈δIσ δIσ ′ 〉 with δIσ ≡ Iσ − 〈Iσ 〉. The average spin
current and its correlations have been studied extensively in
the literature [26]:

〈Iσ 〉 = e

h

∫ eV −�

0

[
1 −

∑
α=e,h

sgn(α)Rαα
σσ

]
dE, (7)

and

Pσ,σ ′ = e2

h

∫ eV −�

0

∑
α=e,h

[
δσ,σ ′Rαα

σσ ′ − Rαα
σσ ′Rαα

σ ′σ

+Rαα
σσ ′Rαα

σ ′σ
]
dE, (8)

where sgn(α) = ±1 for electrons/holes and Rαβ

σσ ′ =∑
σ ′′ r

αe
σσ ′′r

βe ∗
σ ′σ ′′ . As a sum rule, we can easily check that

the noise, calculated in the previous section, is
∑

σ,σ ′ Pσ,σ ′ .
We again focus our study on the low-voltage regime where
0 � eV − � 
 
.

For a normal-metal tip, it has been shown that P↑↓ is
negative [26,34]. Even if the signal is noiseless, the spin current
correlations are finite. Indeed, within this widely used model
for the TN [see Eq. (1)], with Bz in the z direction and the
Rashba axis in the y direction, the MBS is spin polarized
along a direction n̂ which lies for small αR in the (x,z) plane
[52]. n̂ can be, in principle, computed by solving the BdG
equations. For instance, if the MBS is polarized along |↑z〉
corresponding to the system being deeply in the topological
phase where the external magnetic field is much larger than the
superconducting gap, then t↑ = 1 and t↓ = 0. More generally,
both t↑ and t↓ are taken to be real and their ratio λ depends
on n̂. The particular case λ = 1 corresponding to t↑ = t↓ leads
to a spin polarization of the MBS along the |↑x〉 axis which
can be achieved when Vz is slightly above the critical Zeeman
potential V c

z = √
�2

s + μ2 [34,47,52]. In such a configuration,
the detection with a normal-metal tip leads to the Andreev
reflection of the spins |↑x〉 without reversing their spin while
the spins |↓x〉 are specularly reflected due to the SESAR effect.
Because the spin filter separates the |↑z〉 and |↓z〉 currents,
the transmitted spins have to be decomposed along the
z quantization axis which yields P↑↓/e〈I1〉 = − 1

4 [26,40].
In the case of interest, the detection with a SC tip, the shot

noise is finite. This raises the question about the persistence
or not of the negativeness of spin current correlations. We
will now show that the answer is positive. For λ = 1 and
a bias eV slightly larger than the gap of the tip �, the
energies of the incoming particles can be classified in two
categories: the low-energy ones corresponding to energies just
above � and not too close to eV , and the high-energy ones

corresponding to energies close to eV . By setting ε ≡
√

1−η

1+η

with η ≡ E
eV −�

, the configuration we are interested in, namely
the high-energy case, gives ε ≈ 0 meaning that the Andreev
reflection is suppressed [see Eq. (9)] [27]. The low-energy
configuration, which is not the purpose of this study, gives, on
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FIG. 2. Normalized spin current correlations F↑↓ ≡ P↑↓/e〈I1〉 as
a function of λ for a MBS/ABS in the case of a SC STM tip (red/grey
solid lines) and of a N STM tip (red/grey dashed lines).

the other hand, strong Andreev reflection. The properties of
the electrons in the high-energy case can be encoded, up to the
first order in ε, in the matrix r̂ written in the Nambu basis with
quantization axis for the spin along the x direction,

r̂MBS =

⎛
⎜⎜⎝

−1 + 2ε 0 −2
√

ε 0
0 1 0 0

−2
√

ε 0 1 − 2ε 0
0 0 0 1

⎞
⎟⎟⎠. (9)

In this basis, |↓x〉 electrons are perfectly specularly reflected
and they are just spectators giving contributions to neither 〈I1〉
nor to P↑↓. |↑x〉 electrons are mostly specularly reflected with
amplitude −1 + 2ε but a small amount of them are reflected via
SESAR with amplitude −2

√
ε. This small contribution causes

noise and generates positive contributions to P↑↓. Note that this
small component also alters 〈I1〉 through a suppression factor
[27]. Therefore, in order to have a meaningful quantity, we
introduce F↑↓ ≡ P↑↓

e〈I1〉 which can be seen as a Fano factor and
where P↑↓ is normalized by 〈I1〉. The analytical calculation
gives F↑↓ = − 68−21π

48−12π
� −0.197 (see Appendix B), slightly

smaller than the −1/4 with a N tip for λ = 1. On the contrary
for λ = 0, the current is fully polarized in the |↑z〉 direction,
thus leading to zero spin current correlations. In addition to
these limiting cases, we have plotted F↑↓ as a function of λ in
the general case λ �= 0,1 both for a N tip and a SC tip in Fig. 2.
One can clearly see that spin correlations remain negative in
the presence of a MBS.

We now compare to a typical ABS case. The microscopic
model of Eq. (1) exhibits an ABS in the trivial phase below the
transition, when Vz <

√
�2

s + μ2. In order to get a qualitative
idea, we consider the tunneling between the tip and the ABS
such as Ht = ∑

k a†(t↑ψk,↑ + t↓ψ
†
k,↓) + H.c., where a stands

for the ABS annihilation operator [34]. In this particular case,
the “contact” matrix W changes to

WABS =
(√

ρ+t↑ 0 0
√

ρ−t↓
0

√
ρ+t↓

√
ρ−t↑ 0

)
. (10)
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For an ABS and independently of the type of tip, the usual
Andreev reflection occurs and reverses any spin in the opposite
one. P↑↓ can be written as

P↑↓ = e2

h

∫ eV −�

0
[|reh

↑↓|2(1 − |reh
↑↓|2) + (↑↔↓)] dE, (11)

which is similar to the noise of a QPC with transmission
coefficient T except that T is replaced by the Andreev
reflection coefficient. For a N tip and λ = 1, there is perfect
Andreev reflection for spins |↑x〉 and |↓x〉 which gives P↑↓ = 0
(perfect transmission induces no noise). The same thing occurs
for λ = 0 where the spin along the z direction is perfectly
Andreev reflected and the other one is fully blocked. In all other
intermediate cases (λ �= 0, 1), P↑↓ has a finite value [40,50].

For a SC tip and λ = 1, we can write r̂ (with the quantization
axis along x) in the ABS case

r̂ABS =

⎛
⎜⎜⎜⎝

−1 + 2ε 0 −2
√

ε 0

0 −1 + 2ε 0 2
√

ε

−2
√

ε 0 1 − 2ε 0

0 2
√

ε 0 1 − 2ε

⎞
⎟⎟⎟⎠. (12)

It is easy to see that both |↑x〉 and |↓x〉 are mostly specularly
reflected but a small amount of them are reflected via
SESAR with an amplitude −2

√
ε which generates a positive

contribution to P↑↓. The analytical result gives F↑↓ = (9π −
28)/(24 − 6π ) � 0.053 (see Appendix B).

To have a better view of the N vs SC tip and ABS vs
MBS, we have plotted in Fig. 2, F↑↓ as a function of λ for
an ABS (grey lines) and a MBS (red lines) and in the case
of a normal-metal tip (dashed lines) and a superconducting
one (solid lines). In order to distinguish a MBS from an
ABS, we propose to measure the sign of the spin current
correlations of the subgap states via STM spectroscopy using
a superconducting tip. Experimentally, the tunneling between
the tips is generally supposed to be spin independent (λ = 1)
leading to a clear signature corresponding to the sign of these
correlations. On top of that, we argue that, even if the response
to the detection between a N tip and a SC one are very similar,
the superconducting tip has the advantage to strongly reduce
temperature effects which pollute the signal.

A legitimate question we can ask is about the spin
decoherence issue for the electrons entering in the detection
scheme, namely the SC tip plus the spin filter. Indeed, the
spin decoherence time in superconductors is generally quite
small (i.e., ∼100 ps for aluminum [51]) which means that
the measurement has to be shorter than this time. A quick
calculation gives ∼200 μm for the spin decoherence length
with a Fermi velocity of ∼2 × 106 m/s leading to a reasonable
system size allowing us to detect our effect.

V. CONCLUSION

We have studied the noise and the spin current correlations
when a superconducting STM tip is placed above a system
hosting a MBS, to differentiate it from an ABS. First, we
have shown that the noise gets a finite value for the detection
using a superconducting tip coming from the nonperfect
Andreev reflection occurring at energy slightly larger than the
superconducting gap. The detection using a normal tip leads

to a well-known result where the signal is noiseless due to the
perfect transmission of the electron. A second result concerns
the spin current correlations; we have found that the sign of
these correlations are opposite for a current flowing into a MBS
and an ABS giving us an opportunity to distinguish them via
an STM measurement with a SC tip. The key advantage of
using a superconducting tip is the possibility to get rid of
the temperature effect because of the protection due to the gap
[28]. A future study would be to tackle more complicated cases
such as ribbons with more than one MBS on each end [52].
The second perspective is to study in detail the surface of a 3D
topological insulator via superconducting STM spectroscopy
and extract their properties depending on the symmetries they
have (i.e., time reversal, etc.).
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APPENDIX A: CALCULATION OF THE NOISE
IN THE CASE OF A MBS DETECTION

The zero-frequency noise for the total current reads

S = 〈(I − 〈I 〉)2〉, (A1)

with I = I↑ + I↓. In the spin independent case where λ = 1,
this equation can be simplified as

S = 2(P↑↑ + P↑↓). (A2)

To extract the value of S, we need to calculate P↑↑ and
P↑↓. Since we need to calculate the latter one for the spin
current correlations, its calculation is derived in the first part
of Appendix B. It remains to calculate P↑↑. From Eq. (7) in the
main text, the spin current correlations P↑↑ can be expressed
in terms of the reflection matrix r̂ elements such as

P↑↑ = e2

h

∫ eV −�

0
(Ree

↑↑ + Rhh
↑↑ + 2Reh

↑↑Rhe
↑↑

−Ree 2
↑↑ − Rhh 2

↑↑ )dE

= e2

h
(eV − �)Ix, (A3)

with Rx,y

σ,σ ′ ≡ ∑
σ ′′ r̂

x,e
σ,σ ′′ r̂

y,e ∗
σ ′,σ ′′ , where x,y run for electron

or hole and σ , σ ′, and σ ′′ are the spin orientations with
quantization along the z axis. The integral Ix is defined
as Ix = ∫ 1

0 u(3 − u)(1 + u)−2dx where u = √
1 − x2. After

integration, we get Ix = 5π
2 − 22

3 . For λ = 1, the average
current 〈I1〉 is

〈I1〉 = 2e

h
(4 − π )(eV − �), (A4)

which leads to

F = S

e〈I1〉 = 18π − 56

12 − 3π
� 0.213. (A5)
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APPENDIX B: CALCULATION OF THE SPIN CURRENT
CORRELATIONS IN THE CASE OF A MBS

AND AN ABS DETECTION

From Eq. (7) in the main text, the spin current correlations
P↑↓ can be expressed in terms of the reflection matrix r̂

elements such as

P↑↓ = e2

h

∫ eV −�

0
[−Ree

↑,↓Ree
↓,↑ − Rhh

↑,↓Rhh
↓,↑

+Reh
↑,↓Rhe

↓,↑ + Rhe
↑,↓Reh

↓,↑] dE, (B1)

with Rx,y

σ,σ ′ ≡ ∑
σ ′′ r̂

x,e
σ,σ ′′ r̂

y,e ∗
σ ′,σ ′′ , where x,y run for electron

or hole and σ , σ ′, and σ ′′ are the spin orientations with
quantization along the z axis. By introducing the proper contact
matrix into Eq. (4) of the main text, we can compute the spin
current correlations and thus F↑↓.

1. Majorana bound state case

In the most general case of complex hopping amplitudes,
for a MBS, the reflection matrix r̂MBS reads⎛
⎜⎜⎜⎜⎜⎜⎝

R+|λ|2−R−

̃

−2 ρ+λ


̃
−2

√
ρ+ρ−

̃ϕ2 −2

√
ρ+ρ−

̃ϕ2 λ∗

−2 ρ+λ∗


̃

R+−R−|λ|2

̃

−2
√

ρ+ρ−

̃ϕ2 λ∗ −2

√
ρ+ρ−

̃ϕ2 λ∗ 2

−2
√

ρ+ρ−

̃ϕ−2 −2

√
ρ+ρ−


̃ϕ−2 λ
R+|λ|2+R−


̃
−2 ρ−λ∗


̃

−2
√

ρ+ρ−

̃ϕ−2 λ −2

√
ρ+ρ−


̃ϕ−2 λ2 −2 ρ−λ


̃

R++R−|λ|2

̃

⎞
⎟⎟⎟⎟⎟⎟⎠

,

(B2)

with R± ≡ ρ+ ± ρ−, 
̃ ≡ (ρ+ + ρ−)(1 + |λ|2), ϕ ≡ t↑
|t↑| ,

ρ± ≡
√

�
2

1√
V

1√
1∓η

, V ≡ eV − �, and η ≡ E
V . It is straightfor-

ward to calculate P↑↓ by injecting Eq. (B2) into Eq. (B1).
Thus, we get the analytical expression for the spin current
correlations,

P↑↓ = −4

( |λ|
1 + |λ|2

)2

[3I+ − I−]
e2

h
(eV − �), (B3)

with I+ = ∫ 1
0

1−x2

(1+√
1−x2)2 dx = 10

3 − π and I− =∫ 1
0

√
1−x2

(1+√
1−x2)2 dx = π

2 − 4
3 . For λ = 1, the average current

〈I1〉 is

〈I1〉 = 2e

h
(4 − π )(eV − �). (B4)

Combining the two previous equations leads to the final
result for the spin current correlations in the case of an MBS
detection:

F↑↓ = P↑↓
e〈I1〉 = −68 − 21π

48 − 12π
� −0.197. (B5)

2. Andreev bound state case

In the case of an ABS, the r̂ matrix is

r̂ABS =

⎛
⎜⎜⎜⎜⎝

r̃ ee
↑↑ 0 0 r̃he

↓↑
0 r̃ ee

↓↓ r̃he
↑↓ 0

0 r̃ eh
↓↑ r̃hh

↑↑ 0

r̃ eh
↑↓ 0 0 r̃hh

↓↓

⎞
⎟⎟⎟⎟⎠, (B6)

with r̃ ee
↑↑ = ρ−|λ2|−ρ+

ρ++ρ−|λ|2 , r̃ ee
↓↓ = ρ−−ρ+|λ|2

ρ+|λ|2+ρ−
, r̃he

↑↓ = r̃ eh ∗
↓↑ =

−2
√

ρ+ρ−λ∗ϕ−2

ρ+λ2+ρ−
, and r̃he

↓↑ = r̃ eh ∗
↑↓ = −2λ∗ϕ−2

√
ρ+ρ−

ρ++ρ−λ2 . Because
the usual Andreev reflection occurs with a spin flip and the
specular reflection does not, the formula for P↑↓ simplifies
and gives us

P↑↓ = e2

h

∫ eV −�

0
[|r̃ ee

↑↑|2 |r̃he
↓↑|2 + |r̃ ee

↓↓|2 |r̃he
↑↓|2]dE, (B7)

which after replacing all the components of the reflection
matrix leads to

P↑↓ = e2

h
(eV − �)[κ(λ) + κ(λ−1)], (B8)

with κ(λ) = ∫ 1
0 4|λ|2s(|λ|2 − s)2(|λ|2 + s)−4dx where

s =
√

1−x
1+x

. For the spin independent tunneling case λ = 1,
the current flowing through the ABS is twice the MBS case,
namely, 〈I1〉 = 4e

h
(4 − π )(eV − �), leading to

F↑↓ = 9π − 28

24 − 6π
� 0.053. (B9)
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