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Correlated versus uncorrelated noise acting on a quantum refrigerator
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Two qubits form a quantum four-level system. The golden-rule based transition rates between these states
are determined by the coupling of the qubits to noise sources. We demonstrate that depending on whether the
noise acting on the two qubits is correlated or not, these transitions are governed by different selection rules. In
particular, we find that for fully correlated or anticorrelated noise, there is a protected state, and the dynamics
of the system depends then on its initialization. For nearly (anti)correlated noise, there is a long time scale
determining the temporal evolution of the qubits. We apply our results to a quantum Otto refrigerator based on
two qubits coupled to hot and cold baths. The steady-state power does not scale with the number (=2 here) of
the qubits when there is a strong correlation of noise acting on them; under driven conditions the highest cooling
power of the refrigerator is achieved for fully uncorrelated baths.
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I. INTRODUCTION

Controlling the susceptibility of qubits to decoherence
sources is a central issue in developing a robust quantum com-
puter [1–9]. Over the past two decades it has become obvious
that the influence of a common source of noise on all qubits
deviates dramatically from the situation where uncorrelated
noise sources affect each individual qubit separately [10–13].
In the first case, so called decoherence-free subspaces emerge,
meaning that there are states that are not affected by the noise
source. To realize robust quantum circuits and to provide error
correction [14] for them depends then on whether the noise
sources are correlated or not [15–19].

In this paper we demonstrate selection rules that account
for the transitions in a two-qubit system affected by either a
common noise source or multiple sources shown schematically
for two extreme cases in Fig. 1. The basic four-level system of
the two qubits exhibits then a protected state (“decoherence-
free subspace”) when subjected to fully (anti)correlated noise,
whereas for uncorrelated noise, all the four states couple to the
noise. In our work we focus, instead of on qubit decoherence,
on energy transport between the baths at different temperatures
producing the noise on the qubits. We study the dependence of
this transmitted power on the initialization of the system and
on the degree of noise correlation. To understand the influence
of noise correlation in a physical system, we investigate a
quantum Otto refrigerator [20,21], a representative of quantum
machines that are currently of considerable interest due to their
experimental feasibility [20–29].

II. MODEL AND GENERAL RESULTS

The total Hamiltonian describing the system and the
environment is given by

H = HQ1 + HQ2 + HN + HcN,1 + HcN,2, (1)

where HQ1,HQ2 are the Hamiltonians of the two (driven)
qubits, HN is the Hamiltonian of the noise source(s), and
HcN,1,HcN,2 the couplings of qubits 1 and 2 to the noise
source(s). For our main argument we may assume that the
two qubits are mutually decoupled although the selection
rules to be presented hold also for coupled qubits. In the
quantitative analysis, we use the four Bell basis states
{|u1〉 = 1√

2
(|0102〉+|1112〉),|u2〉= 1√

2
(|0102〉−|1112〉),|u3〉 =

1√
2
(|0112〉+|1102〉),|u4〉= 1√

2
(|0112〉−|1102〉)}. The subscript

j = 1,2 on the right-hand side refers to the qubit j , for which

HQj = −Ej (�jσx,j + qσz,j ), (2)

with Ej the overall energy scale of each qubit and σx,j , σz,j

the Pauli matrices. Here |0j 〉 and |1j 〉 are the eigenstates of
σz,j , 2�j the dimensionless energy splitting at q = 0, and q

is the flux applied equally to both qubits. We assume that
the system is fully symmetric, i.e., E0 ≡ E1 = E2, and � ≡
�1 = �2 and that all the noise sources and their couplings
to the individual qubits are equal. The eigenenergies of the
Hamiltonian (in units of E0) are given by

λ1 = −2
√

q2 + �2, λ2 = λ3 = 0, λ4 = +2
√

q2 + �2 (3)

and the corresponding eigenstates are

|1〉 = 1√
2

(
|u1〉 + q√

q2 + �2
|u2〉 + �√

q2 + �2
|u3〉

)
,

|2〉 = |u4〉,
|3〉 = �√

q2 + �2
|u2〉 − q√

q2 + �2
|u3〉,

|4〉 = 1√
2

(
|u1〉 − q√

q2 + �2
|u2〉 − �√

q2 + �2
|u3〉

)
. (4)

For the noise, we consider a generic form of linear coupling
between each qubit and the noise source as

HcN ≡
∑

m=1,2

HcN,m =
∑

m=1,2

ÂmδX̂m(t), (5)

FIG. 1. Two qubits subjected to (a) correlated and (b) uncorre-
lated noise sources.
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where Âm determines the coupling and δX̂m(t) is the time
t dependent fluctuation of the quantity. In what follows we
investigate the cases of different degrees of correlation between
two noise fluctuators. The noise correlators with the help of
their Fourier transform are given by

〈δX̂m(t ′)δX̂n(t)〉 = χmn

∫ ∞

−∞

dω

2π
e−iω(t ′−t)S(ω), (6)

where S(ω) is the unsymmetrized noise spectrum of each
current. For the sake of simplicity we assume that the spectra
of the two noise sources that we are interested in are equal.
Here, we define χmn as the degree of correlation of noise
sources m and n. For autocorrelation, χ11 = χ22 = +1, and
for crosscorrelation we set χ12 = χ21 = χ , where −1 � χ �
+1. If χ = +1, noise is fully correlated and for χ = −1
anticorrelated, whereas for χ = 0 we have uncorrelated noise
from independent sources. As to the physical control of
the level of correlation, it is in the first place governed by
the distance of the noise sources from the quantum circuits

(see, e.g., Ref. [13]). If the noise sources are far away, they
couple to both qubits essentially equally (correlated noise or
anticorrelated noise), but if they are very near to one of the
qubits they couple effectively only to that one of the two
(uncorrelated noise). Another concrete way of controlling the
degree of correlation is to consider the coupling scheme to
be introduced for the Otto refrigerator below. Adding extra
mutual inductive couplings there from noise source 1 to qubit
2 and vice versa would allow for arbitrary values of χ in the
given interval −1 � χ � +1.

The transition rates from the kth to the lth instantaneous
eigenstate due to the noise source(s) N can be calculated from
Fermi’s golden rule as

	k→l,N = 1

h̄2

2∑
m,n=1

〈k|Âm|l〉〈l|Ân|k〉χmnSN(ωkl), (7)

where ωkl = Ekl/h̄ = E0(λk − λl)/h̄, and SN(ωkl) is the noise
induced by this source(s). These rates are the off-diagonal
elements of

�(N) =

⎛
⎜⎜⎜⎜⎜⎝

... (1 − χ )	(N)
↑ (1 + χ )	(N)

↑ 0

(1 − χ )	(N)
↓ ... 0 (1 − χ )	(N)

↑
(1 + χ )	(N)

↓ 0 ... (1 + χ )	(N)
↑

0 (1 − χ )	(N)
↓ (1 + χ )	(N)

↓ ...

⎞
⎟⎟⎟⎟⎟⎠

, (8)

where 	
(N)
↓,↑ = g2

h̄2
�2

q2+�2 SN(±ω0) is the corresponding rate for
a single qubit with identical parameters coupled to the noise
source, h̄ω0 = 2E0

√
q2 + �2 is the level spacing, and g is

the coupling constant between the noise source and the qubit,
which is proportional to the mutual inductance squared in the
case of a flux qubit [20]. The effect of χ on the transition rates
between the energy levels for decoupled qubits is illustrated in
Fig. 2. According to (8) for fully (anti)correlated noise χ = +1
(χ = −1), there are forbidden transitions to/from |2〉 (|3〉), and
as a result it becomes a protected state as shown in Fig. 2.

To demonstrate the significance of the correlation of noise
on measurable quantities, we focus on the system depicted in
Fig. 3 for different values of χ . We consider noise sources to
be thermal baths. This setup allows us to investigate quantum
heat transport between the baths, a topic of considerable
experimental interest currently [30–33]. In this case, the
fluctuating quantity δX̂m(t) is presented by electric current
noise δim(t) and the coupling Âm is gmσz,m. Here gm is
coupling, e.g., by mutual inductance between each qubit and
the fluctuating current. As shown in Fig. 3, the two qubits in the
middle are coupled to heat baths at two different temperatures
TB, where B = C,H indicates the mutually uncorrelated “cold”
and “hot” baths, respectively. These baths are represented by
the resistors RB embedded in the LC resonators with a quality
factor QB = √

LB/CB/RB.

The quantity of interest here is the power transmitted
between the hot and cold baths mediated by the qubits. We
write the master equation for the density matrix of the system
and the environment ρtot = ρ ⊗ ρE in the interaction picture
as

ρ̇tot = i

h̄
[ρtot,HD,I(t) + HcN,I (t)]. (9)

Here we have assumed, going beyond Eq. (1), that the qubits
are driven by time-dependent rotation HD,I = −ih̄D†Ḋ where
D is given by

D = 1√
2

⎛
⎜⎜⎜⎜⎝

1 q/
√

q2 + �2 �/
√

q2 + �2 0

0 0 0
√

2

0 �/
√

q2 + �2 −q/
√

q2 + �2 0

1 −q/
√

q2 + �2 −�/
√

q2 + �2 0

⎞
⎟⎟⎟⎟⎠.

(10)

HcN,I arises from the noise described above and is represented
by the sum of the last two terms in Eq. (1), and specifically
for a similar setup in [21]. The components of ρ can be
obtained from the full master equation [34] by tracing out
the environment with the result

ρ̇kl =
4∑

i=1

{
ρki〈i|D†Ḋ|l〉ei�−1

∫ u

0 λil (u′)du′ + ρil〈i|D†Ḋ|k〉ei�−1
∫ u

0 λki (u′)du′ + δklρii	i→k − 1

2
ρkl(	l→i + 	k→i)

}
. (11)
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FIG. 2. Transition rates in the four-level system of decoupled qubits for different levels of noise correlation χ .

Here, 	i→j = 	i→j,H + 	i→j,C, � = 2πh̄f/E0 denotes the
dimensionless frequency of the drive and u = 2πf t the time,
where f is the actual driving frequency.

The instantaneous power to bath B can then be written as
[35]

PB =
∑
k,l

ρkkEkl	k→l,B. (12)

III. STATIONARY CASE: HEAT SWITCH

In the nondriven case the relaxation towards steady state is
governed by

ρ̇d = �T
totρd, (13)

where �tot = �(H) + �(C), and ρd = (ρ11 ρ22 ρ33 ρ44)T. For
χ = ±1 the steady-state solution of Eq. (13) depends on
the initial condition applied to the system. Due to forbidden
transitions according to Eq. (8), the system behaves differently
based on its initialization. With χ = +1, if the system is
initialized in the state |2〉 we have ρ22 = 1,ρ11 = ρ33 = ρ44 =
0 which demonstrates that |2〉 is a protected state. On the other
hand, initializing in the subspace {|1〉,|3〉,|4〉} for χ = +1
leads to ρ22 = 0, ρ11 = 1/(1 + r + r2), ρ33 = r/(1 + r + r2),
ρ44 = r2/(1 + r + r2), where r = 	↑/	↓ and 	↑,↓ = 	

(H)
↑,↓ +

	
(C)
↑,↓. For χ = −1, one should simply swap states |2〉 and |3〉

above. Generally for χ �= ±1 we have

ρ11 = 1

(1 + r)2
, ρ22 = ρ33 = r

(1 + r)2
,

ρ44 = r2

(1 + r)2
, (14)

= −== +

LC CC LC CC CCLC

RC RC RC RC

RH RH RH RH

LH CH CHLHLH CH

LC CC

LH CH

FIG. 3. Illustration of correlated (χ = +1, left), uncorrelated
(χ = 0, center), and anticorrelated (χ = −1, right) noise in the Otto
refrigerator configuration.

which is independent of the correlation χ . Then the steady
state power to bath C reads

PC = [ − (	1→2,C + 	1→3,C)ρ11 + (	2→1,C − 	2→4,C)ρ22

+ (	3→1,C − 	3→4,C)ρ33 + (	4→2,C + 	4→3,C)ρ44]h̄ω0

= 2(−ρgg	↑,C + ρee	↓,C)h̄ω0 = 2P0, (15)

where ρgg = 1 − ρee is the ground state population of a single
qubit in the instantaneous eigenbasis, and P0 the transmitted
power by it to the cold reservoir [20]. The power PC in steady
state thus scales with the number of qubits and is independent
of the degree of correlation of the noise for χ �= ±1.

The inset of Fig. 4(b) demonstrates the puzzling result that
this power is larger than 2P0 for the special values χ = ±1,
i.e., for fully correlated or anticorrelated noise. The origin of
this result becomes obvious by looking at the dynamics of
the density matrix after the system has been initialized in an
arbitrary state. Due to the presence of a protected state |2〉 (|3〉)
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FIG. 4. The power PC normalized by 2P0 (black dot-dashed
lines), where P0 is the power of a single qubit, at q = 0 via the
nondriven qubits to the cold bath(s) as a function of time (	↓t) for
various degrees of correlation χ . (a) χ = 0, 0.5, 0.8, 0.9, 0.95, 0.98,
0.99, and 1 from bottom to top; the system is initialized in |1〉 at
t = 0. (b) The same values and colors for χ as in (a), initialized in |2〉
at t = 0. Inset in (a): Populations ρ11 (black lines), ρ22 (red lines), ρ33

(dark cyan lines), and ρ44 (blue lines) when the system is initialized
in |2〉 at t = 0 for χ = 0 (dot-dashed lines) and χ = 0.9 (solid lines).
Inset in (b): Dimensionless steady state power via the nondriven qubits
to the cold bath(s) as a function of detuning q for the case where the
noise is fully (anti)correlated (black line) and for other degrees of
correlation (red line). The parameters are h̄ω1/E0 = h̄ω2/E0 = 0.1,
g1 = g2 = 1.0, kBTH/E0 = 0.2, kBTC/E0 = 0.05, QC = QH = 10,
and � = 0.1.
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FIG. 5. The steady-state cooling power −PC of the two-qubit Otto
refrigerator. In (a) we show the power at low frequencies � driven by a
sinusoidal-in-time field as a function of � for different degrees of cor-
relation χ indicated within the figure. The system is initialized in the
ground state. The parameters are h̄ω1/E0 = 2

√
1/4 + �2, h̄ω2/E0 =

2�, g1 = g2 = 0.25, kBTH/E0 = kBTC/E0 = 0.15, QC = QH =
300, and � = 0.3. In (b) the χ dependence of the cooling power
is shown at three different frequencies: � = 0.1,0.06,0.03 from top
to bottom. The inset shows cooling power vs � in a wider frequency
range with respect to (a). In (b) kBTH/E0 = kBTC/E0 = 0.3 and
QC = QH = 100; other parameters are as in (a).

for χ = +1 (χ = −1), the power of Eq. (15) cannot be reached
in finite time for the case of fully (anti)correlated noise. The
time dependence of power PC normalized by the uncorrelated
power 2P0 when the system is initialized in state |1〉 and |2〉,
respectively, at t = 0 are shown in Figs. 4(a) and 4(b). The
asymptotic value of PC does not depend on this initial state,
except for the cases χ = ±1. It is seen here that for χ → +1,
the time to approach PC = 2P0 becomes longer and longer,
and finally, this relaxation time becomes infinite for χ = +1.
This explains the result in the inset of Fig. 4(b), where power
is enhanced for χ = ±1 above that of the other values of χ .
The same slow relaxation for higher values of χ is seen in the
inset of Fig. 4(a), where we plot the populations of the states
ρii (i = 1,2,3,4) when the system is initialized in |2〉 for two
different values of χ = 0 and 0.9. It is also worth mentioning
that if one initializes the system to the state |2〉 for χ = +1 or
|3〉 for χ = −1, the power PC = 0, as this state is a protected
one. For any other value of χ away from χ = ±1 the power
approaches 2P0 after a sufficiently long time also in this case.

IV. TIME-DEPENDENT DRIVE: QUANTUM
REFRIGERATOR

We discuss finally a quantum Otto refrigerator [20,21].
In this device, applying a periodic time-dependent drive

to the qubits in Fig. 3, heat can be transferred from the
cold bath to the hot one, provided ωH = 1/

√
LHCH > ωC =

1/
√

LCCC. We introduce a standard driving protocol q(t) =
(1 + cos 2πf t)/4. In the numerical results, the power is
averaged over one cycle once it has reached the steady state.
Solving the general master equation (11) numerically, we plot
the frequency dependence of the cooling power of the quantum
refrigerator for different degrees of correlation in two different
frequency ranges in Figs. 5(a) and 5(b). It is vivid that at very
low frequencies the curves for all values of χ (except χ = +1)
in Fig. 5(a) collapse on each other. They start to deviate from
the curve at χ = 0 at the critical frequency �c ∝ (1 − χ ). This
is because of the competition between the slowest transition
rates ∝(1 − χ ) in Eq. (8) to/from |2〉 and the driving frequency
�. At higher frequencies, � � �c, the transitions to/from state
|2〉 cannot follow the drive [Fig. 5(b)]; |2〉 is thus dynamically
protected and we effectively deal with a three-level system.
Thus for � � �c, all the curves with χ ∼ +1 converge to
the same value (see inset). In this regime ρ22 has a small
but essentially time-independent value. For χ = +1, ρ22 = 0
as the system was initialized in state |1〉. For this particular
value of χ the power −PC is again higher than in the partially
correlated case. Yet the highest cooling power is generally
achieved for uncorrelated noise.

V. CONCLUSIONS

We have investigated the golden-rule transition rates be-
tween the four energy levels of a two-qubit system when it is
subjected to fully and partially (anti)correlated noise sources.
By tuning the degree of correlation of the noise sources, we
demonstrate protected states and variations in the transmitted
power between thermal baths. This power exhibits a different
steady-state value in the presence of a protected state as
opposed to that of the standard four-level system. In particular,
the former power vanishes when the qubits are initialized in
a protected state. Moreover, for nearly (anti)correlated noise,
there is a long relaxation time to reach the steady state level of
power which is fully independent of the level of correlation of
the noise for χ �= ±1. Under ac driven conditions, there is an
interesting interplay between this slow relaxation rate and the
driving frequency over a wide range of χ , governing the power
of a quantum refrigerator that we present as an example.
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