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Long-range entanglement for spin qubits via quantum Hall edge modes
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We propose and analyze a scheme for performing a long-range entangling gate for qubits encoded in electron
spins trapped in semiconductor quantum dots. Our coupling makes use of an electrostatic interaction between the
state-dependent charge configurations of a singlet-triplet qubit and the edge modes of a quantum Hall droplet. We
show that distant singlet-triplet qubits can be selectively coupled, with gate times that can be much shorter than
qubit dephasing times and faster than decoherence due to coupling to the edge modes. Based on parameters from
recent experiments, we argue that fidelities above 99% could in principle be achieved for a two-qubit entangling
gate taking as little as 20 ns.
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I. INTRODUCTION

Electrostatically confining electrons to quantum dots (QDs)
in semiconductor heterostructures is a promising platform for
the implementation of spin qubits, the fundamental building
blocks of a quantum computer [1,2], because the magnetic spin
moments of these electrons couple weakly to the environment.
Many variations of QD qubits have been proposed and
demonstrated, including encoding a qubit in the spin of a single
electron [1,3–5], the singlet-triplet qubit defined using two
electrons in a double quantum dot (DQD) [6,7], the hybrid
qubit formed of three electrons in two dots [8], and qubits
formed of three electrons in three dots, such as exchange only
qubits [9], or resonant exchange qubits [10,11].

In order to perform quantum computation, scalable archi-
tectures require many qubits with high-fidelity single-qubit
gates as well as high-fidelity entangling gates [12]. There
are many fewer experimental demonstrations of two-qubit
operations for spin qubits [13–16]. An ideal method of
coupling qubits would lead to two-qubit gates taking a
comparable length of time and having comparable fidelity
to single qubit operations. It would also allow qubits to be
sufficiently widely spaced that required control and readout
gates fit readily on the chip. These goals remain challenging in
practice for experimental spin qubits. Designing mechanisms
that can achieve high-fidelity, two-qubit entanglement for spin
qubits represents the next major challenge in the realization
of a spin-based quantum computer. Many architectures for
entangling qubits have been proposed and often investigated
experimentally, including capacitive coupling [14,16–18],
direct exchange coupling [13,15], multielectron quantum
dot mediating structures [19–21], electrostatic floating gate
structures [22,23], and their ferromagnetic equivalents [24],
microwave-frequency resonator couplers [25–30], photon as-
sisted coupling [31], and phonon assisted coupling [32].

There have been earlier proposals for coupling qubits using
quantum Hall edges. One approach is to have sufficient tunnel
coupling to create an excitation of the edge that travels between
the two qubits [33,34]. Recently, it has been suggested that the
spin degree of freedom of conducting edge states of quantum
Hall liquids can be used to entangle spin qubits over long dis-
tances, making use of the magnetic interactions, and mediated
by the conducting edge states of quantum Hall (QH) liquids, to
which the QDs are tunnel coupled [35]. The advantage of using
QH edge states is twofold: firstly, the edge states and the QDs

can be formed in the same material (by top gates, or etching)
in a two-dimensional electron gas (2DEG). Secondly, the QH
edge states are much more robust against disorder effects than
quasi-one-dimensional conduction channels, which might be
used in the same way [33].

In this paper, we propose an alternative mechanism to
achieve long-distance entanglement of spin qubits using an
interaction between confined electron spins in QDs, mediated
by the conducting edge states of a QH droplet to which
the qubits are electrostatically coupled. Since our proposed
system of two-qubit entanglement via QH edge modes makes
use of an electrostatic interaction rather than the magnetic
interaction in Ref. [35], our system requires that the electron
tunneling into and out of the edge modes be prohibited. Our
proposed two-qubit entangling gate is based on a coupling
of the electric dipole of the qubit, which is state-dependent,
with the edge modes of the QH droplet described as a
quantum harmonic oscillator [36,37]. We obtain a qubit-state-
dependent force on the oscillator, resulting in a general form
of coupling that has been used for entangling gates in a variety
of other physical systems, including trapped ions [38–40]
and longitudinally-coupled circuit QED qubits [41–43]. We
demonstrate that this mechanism can lead to strong coupling
with low decoherence, and as such is a promising candidate
for two-qubit entanglement. In particular, using parameters
from recent experiments for singlet-triplet qubits [16] as well
as the exploration of edge modes in QH droplets [36], we
predict that the effective qubit-qubit coupling can be as high
as 60 MHz, leading to entangling gate times of order 20 ns
and resulting gate fidelities greater than 99%. One advantage
of the scheme is that it can couple qubits over lengths of order
tens of micrometers. This alleviates the crowding that would
result from attempting to couple quantum dot qubits using
direct exchange coupling. The scheme is similar to a recent
proposal for coupling spin qubits using an oscillator [44], in
this work, we envisage modulating the coupling such that the
gate operates with high fidelity even with a large qubit-state
energy splitting.

The electrostatic interaction requires that we use a qubit
implementation whose spin state can be mapped onto a charge
state. For concreteness, we focus on singlet-triplet qubits
formed in GaAs-AlGaAs heterostructures, where the QH
droplet can also be formed in the 2DEG. With singlet-triplet
qubits, both charge and spin degrees of freedom of the
electrons play a role [6]. We emphasize, however, that the
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general approach taken in this paper can be adapted to other
breeds of qubit, such as hybrid and resonant exchange qubits.

A singlet-triplet qubit configuration is advantageous for
several reasons: firstly, due to the presence of two electron
spins, they are robust to background noise and so exhibit
longer dephasing times [16]. Secondly, state preparation and
manipulation can be achieved predominantly using electric
fields, rather than magnetic fields which are slower to vary or
switch on and off. Thirdly, the spin states of the qubits can be
mapped to charge states, which results in straightforward state
readout [6,45].

Our paper is structured as follows. In Sec. II, we derive the
expression for the qubit-qubit entanglement from the general
Hamiltonian. Then we derive an expression for the strength
of the coupling by investigating the qubit-edge electrostatic
coupling, and calculate the qubit-edge coupling for some
realistic parameters in Sec. III. Finally, in Sec. IV, we analyze
the two-qubit gate, using the average gate fidelity as a metric.

II. QUBIT-QUBIT COUPLING

In this section, we describe how a two-qubit entangling
gate can be achieved by coupling the qubits individually to the
edge modes of a QH liquid, using a theoretical framework that
has predominantly been used for superconducting qubits and
quantum optics [46], but which easily applies to this system.

The essential mechanism for coupling is as follows. The
singlet-triplet spin qubits can be brought to an operating point
where they possess a state-dependent electric dipole moment
due to the Pauli spin blockade, as experimentally demonstrated
in Ref. [6]. By driving oscillations in this state-dependent
electric dipole moment, as depicted in Fig. 1, we can excite
the edge modes of a nearby QH droplet. The driving of
a quantum harmonic oscillator (the QH edge modes) by a
qubit-state-dependent force is a coupling mechanism that has
been well studied in a variety of qubit architectures, and with
multiple qubits coupled to the oscillator, it can be used to
generate a two-qubit entangling gate, e.g., as in trapped ions
[38–40] and longitudinally-coupled circuit QED [41–43].

For this entangling gate to work with high fidelity, the qubit-
oscillator coupling must exceed the decay rate of the oscillator.
Intuitively, if an excitation of the oscillator occurs during
the coupling and this excitation is subsequently lost from
the cavity, then the gate does not succeed. This decoherence

FIG. 1. Diagrammatic representation of driven oscillations of the
state-dependent electric dipole moment. A gate voltage defining the
quantum dots can bias the potential wells in such a way as to favor
tunneling of the left spin into the right dot. Pauli spin blockade
prevents this tunneling if the spins are in a triplet state. If this gate
voltage is modulated, the result is an oscillating qubit-state-dependent
force on the edge modes of the nearby quantum Hall droplet.
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FIG. 2. Schematic diagram of the system for qubit-qubit cou-
pling: a disk of radius R is formed from a 2DEG engineered in
a GaAs/AlGaAs heterostructure. A singlet-triplet qubit, of interdot
separation �y, is formed radially on either side. The qubits are
electrostatically coupled to the edge modes of the QH disk. By driving
oscillations in the qubits, we can effectively couple multiple qubits
to one another using the QH disk as a mediator.

mechanism can be minimized by ensuring that the oscillator
does not become excited with even a single excitation during
the coupling process; this can be enforced by demanding that
the detuning of the drive frequency from the cavity frequency
is large.

Because the qubit-qubit entanglement mediated by the QH
edge modes is dependent on the qubits being driven at a
particular frequency, the entangling gate can be switched on
(off) by gradually increasing (decreasing) the amplitude of
the driven oscillations. This is a control feature that “static”
coupling schemes (such as the floating gate “dog-bone”
structures [22–24]) do not possess. In principle, this allows
multiple qubits to be placed around a single QH disk, which
can then be coupled selectively.

The basic configuration for the qubit-qubit coupling is
shown in Fig. 2. A circular QH droplet of radius R is formed
out of two-dimensional electron gas (2DEG). Multiple double
quantum dot (DQD) qubits, of interdot separation �y, are
defined radially outside of the edge of the QH disk a distance
of y1 from the edge. Note that the angle of separation between
the qubits at the edge does not affect the coupling.

The QH disk is formed by depleting electrons in the 2DEG
to form a finite region, which is then subjected to a large
magnetic field. It is well known that this produces propagating
edge modes around the circumference of the disk, known
as edge magnetoplasmons (EMPs) [47,48]. The fundamental
mode of the EMPs (with frequency ωc) can be described
as a quantum harmonic oscillator, in terms of annihilation
(creation) operators a(a†). Two qubits are formed radially,
adjacent to the edge of the QH disk, each electrostatically
coupled to the edge mode as shown in Fig. 2. The qubits are
driven at a frequency ωdi , which allows them to be coupled to
the edge, with coupling strength gi , an expression which will
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be derived in Sec. III. Taking into account the driving of these
qubits, we can use a model that is similar to that presented in
Ref. [42] for superconducting qubits. Our analysis of the model
also bears similarities to Ref. [42], however, we make slightly
different approximations in order to model the operation of
the gate in the regime that we anticipate will be most relevant
for future experiments in this system. In particular, we will
perform the two-qubit gate in a regime in which the oscillator
never becomes significantly excited.

In our model, the system is described by the Hamiltonian

H = ωca
†a + J1σz1/2 + J2σz2/2

+ [g1 cos(ωd1t)σz1 + g2 cos(ωd2t)σz2](a + a†), (1)

where we have set h̄ = 1. The first term in Eq. (1) describes the
oscillator (the edge mode of the QH droplet), the second and
third terms describe the qubits, and the final term describes
the coupling of the qubits to the edge mode. This coupling
term captures the essential mechanism described above. We
note that the microwave drive on the bias of the qubit that is
required to obtain the time dependence of this equation will
also result in a direct drive of the qubit. We have omitted this
qubit term because this drive will be very far off resonance.
Note that the qubits are assumed to be driven in phase with
each other.

We drive the qubits at the same frequency ωd and shift
to a rotating frame at this frequency, that is, we move into
a frame where the free evolution is such that the qubits are
stationary and the edge mode oscillates at a detuned frequency
of � = ωc − ωd . This gives us the interaction Hamiltonian in
the rotating frame with respect to ωd :

Hint = �a†a + g1(a + a†)σz1/2 + g2(a + a†)σz2/2. (2)

where we have also used the rotating wave approximation to
remove rapidly oscillating terms.

In order to capture the full system dynamics, including the
damping of the edge modes and qubit decoherence, we model
the system using a master equation [49]. Our modeling of the
qubits focusses on charge noise, since this is the dominant
noise process for most recent experiments with singlet-triplet
qubits [14,16,50]. We note that the decoherence due to noise
in the Overhauser field can also be added to this model in a
straightforward manner. In order to match experimental ob-
servations more closely, our model involves two components
of charge noise [51]. A high-frequency component results in
exponential decay and is modeled by Lindblad terms in the
master equation. The strength of this noise can be determined
by the single qubit dephasing time T2. A low-frequency
component of charge noise is modeled by averaging over
a Gaussian distribution of the qubit exchange splittings J1

and J2. The width of the distribution can be determined by
the single qubit ensemble dephasing times T ∗

2 [50]. The QH
edge mode is damped, and the resulting exponential decay
can readily be modeled by a master equation. This decay rate
κ = ωc/2Q will depend on the device but reasonable values
can also be obtained by comparing to recent measurements
[36].

In order to demonstrate the two-qubit interaction in our
system, we initially consider only the master equation that
deals with high-frequency charge noise on the qubits and edge

mode damping. The appropriate master equation is

ρ̇ = −i[Hint,ρ] + 2κD[a]ρ +
2∑

i=1

γφiD[σzi]ρ/2, (3)

where γφi = 1/T2i is the dephasing rate of the i-th qubit, and
D[c] represents the usual dissipation superoperator D[c]ρ ≡
cρc† − c†cρ/2 − ρc†c/2 (see Ref. [49]).

The edge mode’s mediation of a two-qubit interaction
can be made explicit by applying a polaron transformation
[46]. The polaron transformation is a qubit-state-dependent
displacement of the edge mode oscillator and is defined as the
unitary operator: U = exp [

∑
i=1,2(αiσzia

† − α∗
i aσzi)]. The

displacements αi are chosen so that terms linear in a and
a† cancel out after the polaron transformation is applied to the
master equation.

Performing the polaron transformation, allowing αi =
gi/2(� + iκ), and assuming κ � �, takes the master equation
of Eq. (3) to the following “polaron-shifted” master equation,
where we denote the polaron-shifted operators, such as
σ̃z1 = Uσz1U

†, with tildes:

ρ̇ = −i[Hpol,ρ] + 2κD[ã]ρ + γφ1D[σ̃z1]ρ/2

+ γφ2D[σ̃z2]ρ/2 + 
dD[(σ̃z1 + σ̃z2)]ρ/2

− κ

� − iκ
[ρ(g1σ̃z1 + g2σ̃z2),ã]

− κ

� + iκ
[ã†,ρ(g1σ̃z1 + g2σ̃z2)] . (4)


d = κg1g2/2(�2 + κ2) is the rate of correlated dephasing
of the qubits that is associated with the relaxation of the QH
oscillator. Hpol is the new, polaron-shifted Hamiltonian, which
has an explicit two-qubit coupling:

Hpol = �a†a + J12σ̃z1σ̃z2 , (5)

where

J12(t) = −g1(t)g2(t)

2�

�2

�2 + κ2
. (6)

In the polaron shifted picture, there is no longer a Hamiltonian
coupling of the oscillator to the qubits. This interaction is
replaced by a direct coupling of the two qubits. This Ising-type
coupling is well known to lead directly to nontrivial two-qubit
gates such as the controlled phase (cPHASE) gate.

In this polaron shifted picture, it is important to remember
that the Pauli spin matrices σ̃zi no longer correspond to the bare
physical qubits described in Eqs. (1) and (2), but rather qubits
that are dressed by excitations of the QH oscillator. Likewise
the effective oscillator mode described by ã is dressed by
the presence of the qubits and the qubit drives. Inspecting
the polaron transformation U with the chosen values for αi

makes it clear that the distinction between the bare and dressed
qubits becomes less significant for large � � g. Considerable
physical insight can be gained by studying the behavior of
the dressed qubits. For example, in Sec. IV, we will compute
approximate expressions for the fidelity of the gate performed
on the dressed qubits. This can then be regarded as an estimate
of the true fidelity of the gate performed on the physical qubits,
with corrections anticipated to be of higher order in g/�.
These simple estimates can then be tested by comparison to
simulations of the full master equation (3).
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The polaron-shifted master equation (4) involves much
weaker coupling of the qubits and the QH oscillator. Moreover,
it is easy to see that the dressed quantum Hall oscillator
relaxes to its vacuum state and remains there at long times.
Consequently, we can obtain an approximate master equation
for the dressed qubits alone by using the ansatz ρ � ρq ⊗
|0〉〈0| and then tracing out the QH oscillator. We obtain

ρ̇q = −i[J12σ̃z1σ̃z2,ρq] + γφ1D[σ̃z1]ρq/2 + γφ2D[σ̃z2]ρq/2

+
dD[(σ̃z1 + σ̃z2)]ρq/2. (7)

Here the first term describes the ideal qubit evolution under
the polaron shifted Hamiltonian of Eq. (5), the second and
third terms describe the single qubit dephasing due to high-
frequency noise and the final term describes the dephasing of
the qubits due to the presence of the lossy QH oscillator. In
subsequent sections, we suppress the subscript on ρq since it
will be clear from the context whether a qubit density matrix,
or a density matrix for the full system, is intended.

In the limit that there is no noise in the system, modulating
the qubit-qubit coupling (proportional to σz1σz2) for a time
tg = π/(2|J12|), the evolution under Eq. (5) is equivalent to
the entangling cPHASE gate UCP (π ) = diag(1,1,1,eiπ ) up to
single qubit Z rotations, with entangling gate time given by

tg = π�

g1g2

�2 + κ2

�2
. (8)

When noise is included, modulation of the qubit-qubit cou-
pling for tg yields an approximate cPHASE gate, and its
performance can be quantified by the gate fidelity. We will
analyze this gate fidelity in Sec. IV for multiple noise regimes,
using both the polaron picture master equation of Eq. (7) as
well as the full master equation of Eq. (3).

III. ELECTROSTATIC QUBIT-EDGE MODE COUPLING

In this section, we will model the electrostatic coupling
between the qubit and the edge mode of the QH droplet, g,
and derive an expression for the magnitude of this coupling
as a function of the parameters of the geometry of the system:
the radius of the disk R, the qubit edge separation y1, and
the interdot separation �y. We then estimate the magnitude of
this coupling using values for these parameters consistent with
current experiments. As discussed, there is a state-dependent
electric dipole associated with the qubit, which we want to
evaluate in order to give an estimate for the coupling between
the qubit and the oscillator modes. In our analysis, the electric
dipole of the qubit is assumed to be oriented perpendicular to
the edge of the disk, which allows for maximum coupling to
the edge modes.

Following Ref. [17], the qubits are described using logical
basis states: |S〉 = sin θq |(0,2)S〉 + cos θq |(1,1)S〉 and |T 〉 =
|T (1,1)〉. Here, θq = [0,π/2) is a parameter that describes the
extent to which the singlet’s wave function is weighted towards
the (0,2) charge distribution. Thus the two logical spin basis
states are represented by two distinct charge distributions: the
triplet distribution being symmetric and the singlet distribution
biased to one side. Again, we emphasize that in our coupling
scheme we wish to work in a regime where both tunnel
coupling and exchange coupling to the edge are negligible,

and only consider the electrostatic coupling of the qubit to
the edge. This scheme differs from Ref. [35], where the main
process of coupling qubits to the edge is through the exchange
interaction.

The electrostatic coupling strength g between the qubit
and the edge modes is calculated by the change in energy
of the edge mode when the qubit changes from the |S〉 state
to the |T 〉 state. To do this calculation, we first examine the
case when a single electron has been moved completely from
one QD to the other. We then account for only a portion of
the singlet wave function shifting into the (0,2) charge state
by introducing a multiplicative factor of sin2 θq . Within this
multiplicative factor of sin2 θq is an implicit dependence on the
an electric field bias placed on the qubits. In our protocol, we
will propose to modulate this electric field bias at a frequency
ωd near the edge-mode resonant frequency. Consequently, the
parameters g1 and g2 will be proportional to the amplitude
of this microwave drive. However, this driving must remain
in a regime of sufficiently small θq such as to avoid Landau-
Zener transitions to higher energy states. This multiplicative
factor also includes an assumption that the oscillating field is
driven off resonance to the QH droplet, meaning that there is
minimum direct coupling between this field and the droplet.

We make the approximation that the electrons in the
qubit are pointlike, and reside at the center of the QDs (an
approximation verified in Ref. [23]). We also approximate the
edge modes as one-dimensional, because the width of the edge
is smaller than magnetic length B , which sets the relevant
length scale [47]. We also include a factor η that accounts for
the screening of electric fields by the metallic gates that must
surround the system in order to form the DQD and QH disk.
We estimate the screening factor using the electron microscope
images from Ref. [14], by taking the ratio of the electric field
that ends on metallic gates and the electric field that ends on the
edge of the disk; we estimate that approximately 40% of the
electron’s electric field ends on the metallic gates, and so the
factor for the electrostatic screening is taken to be η � 0.60.
This is consistent with previous theoretical descriptions of the
effect of the metallic gates on the electric field density and
scalar potential [52].

There are two contributions to the electrostatic coupling:
(i) the driving of the edge modes due to the shifting potential
energy due to the ith qubit proximal to the edge, gi , which
appears explicitly in Eq. (1); (ii) the shift in the edge
mode’s frequency due to the state of the qubit modulating
the velocity of the EMP, gvel = h̄�ωc. The two contributions
are independent of one another; however, as we will show,
contribution (i) is orders of magnitude larger than (ii).

Considering contribution (i): the electric potential energy
of the QH edge due to the electric potential of the electrons
in the quantum dot qubits is U = ∫

ρ(s)V (s)ds, where ρ(s) is
the linear charge density along the QH edge, and V (s) is the
electric scalar potential. The co-ordinate s parameterizes the
edge of the QH droplet. The potential around the edge of a
disk of radius R, due to a point charge placed r away from the
edge of the disk (that is, r = R + y away from the center of
the disk) is

V (θ,R + y) = e/4πε√
((R + y)2 + R2 − 2R(R + y) cos θ )

, (9)
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where ε = ε0εr is the permittivity of the material in which
the 2DEG is formed, and θ is the angle around the disk.
Equation (9) describes how, as the electron is moved closer, the
electrostatic potential increases. This change in the potential
modulates the energy of the EMP that travels around the disk.
This change in potential energy is gpot.

In our analysis, the disk is assumed to be perfectly circular,
for simplicity. However, we emphasize that similar results
will hold for a QH droplet of any shape, with Eq. (9)
modified accordingly for the potential along any closed
loop in the presence of a point charge. We note that the
coupling between the qubits and the edge modes will be
largest when the curvature of the QH droplet at the point
nearest the qubits is minimized. There is an opportunity,
then, to consider improving this coupling by using noncircular
droplets; however, we leave such an analysis for future work.

The EMP modes of the quantum Hall edge form standing
wave modes an having wavelength 2πR/n and frequency
nv/2πR, where v is the velocity of the EMPs. We can express
the charge density ρ(s) around the edge in terms of the angle
θ = s/R and QH filling factor ν as [47]

ρ(θ ) = e
∑

n

√
νn

(2πR)
einθ (an + a†

n). (10)

The integral for the potential energy at the edge due to a point
charge at a distance y outside the radius of the disk is given by

Uν,n(y) =
√

νn

L

e2

4πε

×
∫ π

−π

einθRdθ√
(R + y)2 + R2 − 2R(R + y) cos θ

, (11)

where L = 2πR is the circumference of the disk. This integral
can be solved to obtain an expression in terms of complete
elliptical integrals [53]. The electrostatic coupling of a single
qubit to the EMP is then gpot = Uν,1(y1) − Uν,1(y1 + �y).

It is perhaps more illustrative to consider the expansion
of these elliptic integrals in terms of elementary functions.
Under the assumption that the radius of the disk is much larger
than the separation of either DQD (R � yi), we obtain the
following expression for the coupling of a qubit to the first
harmonic mode of the EMP (n = 1):

gi � η sin2 θq

√
ν

L

e2

2πε

{
ln

(
y1 + �y

y1

)(
1 − y1

2R

)�y

2R

×
[

2 − 2 ln 2 − ln

(
y1 + �y

2R

)]}
. (12)

The qubit-edge mode coupling depends on the separations y1

and �y, and the radius of the disk, R, as shown in Fig. 2, as
well as the physical parameters η and θq . We now discuss the
dependence of the qubit-edge coupling with these parameters,
as illustrated by Eq. (12) and Fig. 3. In order to maximize g, the
lengths R and y1 must be made as small as is experimentally
feasible, while �y must be made as large as possible. Reducing
R means that more of the edge of the QH disk will fall within
a region of higher electrostatic potential on the edge of the
disk. Similarly, reducing y1 results in the edge resting within
the region of higher electric potential at the edge of the QH
disk. Increasing �y means that there is a greater difference

FIG. 3. Qubit-edge coupling given by Eq. (12) as a function of
disk radius, R, with qubit-edge separation and interdot separation
fixed at y1 = 150 nm and �y = 250 nm, respectively; (inset) qubit-
edge separation y1 (with disk radius and interdot separation fixed at
R = 8 μm and �y = 250 nm, respectively) and interdot separation
(for R = 8 μm and y1 = 150 nm).

in the potential at the edge as an electron is moved from one
QD to the other, so that there is a more measurable difference
in the electric potential at the edge. However, engineering
and practical limitations exist on all three, meaning R and
y1 cannot be made arbitrarily small and �y cannot be made
infinitely large.

We now consider these limitations based on recent experi-
ments.

Limitations on R. As the disk is reduced in size (R → 0),
the edge modes couple to bulk magnetoplasmons and this
leads to a breakdown in the assumption that the edge of the
disk is one-dimensional [48]. If the edge magnetoplasmons
couple to those of the bulk, it is no longer accurate to
discuss the edges modes of QH disk at all, and the qubit
may become coupled to the entire disk, which is much more
susceptible to noise, reducing the effectiveness of the QH
disk as a mediator for qubit-qubit coupling. There are also
experimental considerations: as the disk is reduced in size,
the frequency of the edge modes increases. An increase in
frequency results in stronger coupling, however, there is a
practical limit to the frequency before the system moves into
the microwave regime, which is expected to lead to reduced
lifetimes of the edge modes, as well as other experimental
complications. To avoid entering this regime, we limit the
maximum frequency of the EMP modes to approximately
fEMP ∼ 8 GHz. Given a conservative estimate of the velocity
of the edge modes of v ∼ 4 × 105 m/s (see Refs. [36,54]),
this leads to a minimum radius of our disk at Rmin = 8 μm.
Thus we will use a fundamental frequency of f = 8 GHz and
a radius of R = 8 μm.

Limitations on y1. If the QD is formed too close to the edge
of the QH disk (if y1 is too small), electrons in the qubit could
tunnel into the QH disk. From recent experiments we estimate
this limit to be approximately y1 � 100 nm, as barriers as small
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as this have been shown to be effective [55]. For our analysis,
we will use a value of y1 = 150 nm, which is consistent with
recent experiments that create tunnel barriers over hundreds
of nanometers [45].

Limitations on �y. As the interdot separation increases
(�y → ∞), the two electrons in the DQD can become
uncoupled. Two-electron coupling, to form singlet and triplet
states, has been achieved in quantum dot structures over
distances as high as �ymax � 400 nm [56], however, this is
much larger than the interdot separation of �y � 200 nm,
which is regularly used for singlet-triplet qubits. For this
reason, in our analysis, we consider the interdot separation
to be �y = 250 nm, which is larger than normal, but still
consistent with recent experiments [57].

We also note that the strength and direction of the external
magnetic field will be relevant for both the QH droplet
and the spin qubits. To enter the quantum Hall regime, we
require an external magnetic field perpendicular to the 2DEG
with strength of order 1 T. Double quantum dot spin qubits
have typically used external magnetic fields parallel to the
2DEG, of magnitude of order 100 mT, to provide the Zeeman
splitting of unwanted spin states. Magnetic field components
that are perpendicular to the 2DEG can have an effect on
the orbital states of quantum dots, especially for large dots.
For singly and doubly occupied quantum dots as studied
here, the spectral properties are essentially unchanged for
perpendicular magnetic fields up to about 1 T (Ref. [58]).
If larger perpendicular fields are required, one may instead use
inverted singlet-triplet qubits as described in Ref. [59].

This magnetic field is required to achieve a filling factor of
ν = 2, where we have assumed the 2DEG density is similar to
that of Ref. [36]. Given that the magnitude of the magnetic field
is dependent on the density of the 2DEG, it is reasonable to
consider how lower-density samples could allow the required
magnetic field strength to be reduced.

A magnetic field gradient is also required for full qubit
control. In current experiments, magnetic field gradients are
created in two different ways: either from a micromagnet
[60] or from dynamic nuclear polarization [16]. As the
latter approach places stringent requirements on the external
magnetic field and its orientation, it may be preferable to use
a micromagnet in this case.

For our analysis, we assume a 2DEG in a GaAs heterostruc-
ture. Half of the electron’s electric field will exist outside of
the semiconductor slab, as a result, we take the average of the
permittivities of GaAs and air (or vacuum). We use εr � 7
in our analysis [61]. With a QH disk of radius R = Rmin =
8 μm, and QD-edge separation of y1 = 150 nm and interdot
separation �y = 250 nm, we calculate a qubit-edge coupling
of gi/h̄ � 7.29 × 108 rad/s, or alternatively gi/h � 58.1
MHz. Here, we will take θq � 0.1π based on estimates made
in Ref. [17]. The estimated qubit-edge coupling is large, and
this strength gives cause for optimism.

Now considering contribution (ii): the velocity of the EMP
is proportional to the perpendicular electric field at the edge
[47], i.e., v(s) = E⊥(s)/B. The electric dipole of the QD will
then increase the perpendicular electric field along the edge
over a short distance and therefore speed up the EMP. The
electric field of a point charge follows an inverse square law
(E ∝ 1/r2), which means at large distances from the electron,

where the curvature of the edge of the disk could be detected,
the contributions of electric field will be negligible. Thus, for
the electric field, the edge can be approximated by an infinite
straight line.

The change in energy gvel due to the velocity modulation is
calculated using the relationship for the change in edge mode
frequency �ω in terms of the change of EMP velocity �v(s)
due to the position of the electron. Using the expression for
the velocity in terms of electric and magnetic fields, and then
expanding to first order, gives

gvel = η sin2 θq

× lim
→∞

∫ /2

−/2

(E⊥(s,y1) − E⊥(s,y1 + �y))
2πR2B

ds,

(13)

where the electric field along the edge, due to an electron
at distance y away from the edge, is given by E⊥(s,y) =
ey/(4πε(x2 + y2)3/2). We calculate the contribution to the
coupling from the shift in the EMP’s frequency using the same
geometric parameters as described for contribution (i), with a
magnetic field of B � 1 T, to be gvel/h̄ � 1.7 × 106 rads−1.
Thus, for radii much larger than qubit edge and interdot
separations, R � (y1,y1 + �y), contribution (ii) is negligible
in comparison to contribution (i), and perhaps not even visible
above background charge noise [50], so can be neglected in
further analysis. In the next section, we use the value calculated
for qubit-edge coupling due to the shift in the potential energy,
gi , to analyze the two-qubit entangling gate of Eq. (5).

IV. IMPLEMENTATION OF A TWO-QUBIT GATE

In this section, we analyze the quality of the two-qubit
entangling gate defined in Sec. II for a variety of parameters,
in particular the detuning and qubit edge coupling. The figure
of merit with which we will assess a logical gate is the average
gate fidelity F̄ . The average fidelity is the chosen figure of merit
because of its wide use throughout the literature, and because
it can be well approximated experimentally using randomized
benchmarking. We use this section to demonstrate how the
average fidelity of the two-qubit gate depends on parameters
such as the detuning � and qubit-edge coupling g. Ultimately,
we show that there is an optimal detuning for which the average
fidelity is maximized, find a lower bound on the qubit-edge
coupling—as we show, g must be at least an order of magnitude
greater than the edge decay rate —and give an estimate for the
average fidelity of the gate.

We investigate the effect of high-frequency charge noise
on the qubits using numerical simulations of both the bare
qubits using the unshifted master equation (3) and the dressed
qubits using Eq. (4). This will allow us to compare the true
fidelity of the gate applied to the bare qubits to the fidelity
of the gate performed on the dressed qubits. We will find
that we can both improve the fidelity of the physical gate
and increase the agreement between the physical and dressed
fidelities by using smoother gate pulses that prevent polaron
oscillations in the fidelity. We carry out a detailed investigation
of the optimal pulse-shape and timing. We then consider
the effect of low-frequency charge noise and derive analytic
approximations to the gate fidelity from Eq. (7) taking into
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account both sources of charge noise. We show that these
approximations are accurate when compared to full numerical
simulations. The approximations allow us to analyze the
optimal choice of detuning � and finally, we find an estimate of
the optimal gate fidelity that can be achieved using physically
reasonable parameters.

Our chosen measure of the quality of the gate, the average
fidelity, is just the fidelity of the output of the real gate to
the output of the ideal gate, averaged over all possible pure
input states. This definition involves integrating over all of
the infinite possible input pure qubit states. However, it has
been shown that there exists a much simpler, elegant analytic
relation, which relates the average fidelity to a simpler quantity,
the fidelity of entanglement Fe:

F̄ = dFe + 1

d + 1
, (14)

where d is the dimension of the quantum system (for a two-
qubit gate d = 4) [62].

The fidelity of entanglement for a noisy two-qubit gate on a
state, Ntg [ρ], is defined by considering a maximally entangled
state of four qubits, with two of the qubits then acted on by
the gate. Letting |�〉 = 1

2

∑
i,j=S,T |ij,ij〉 be the maximally

entangled state of four qubits, with density matrix given by
ρ

�
= |�〉 〈�| = 1

4

∑
i,j,k,l=S,T |ij,ij〉 〈kl,kl|. We define |ϕ〉 as

the state of the system after it has evolved under the ideal
gate, then the fidelity is just Fe = 〈ϕ| (Ntg ⊗ I )[ρ

�
] |ϕ〉. Here

an ideal version of the gate would act on the state, thus,
Ntg [ρ] = UρU †. The formula for the average gate fidelity (14)
is simple enough that it can be calculated analytically for the
gate performed on the dressed qubits in the approximation of
equation (7).

The first noise regime that we consider is high-frequency
charge noise, determined by the single-qubit dephasing time
T2. The evolution of the system subject to high-frequency
noise only is described by the unshifted master equation in
Eq. (3) and the reduced form of the polaron shifted master
equation (7). We note that in order to derive the analytical
approximations for the fidelity, we go into an interaction
picture with respect to the polaron shifted Hamiltonian, leaving
just the second, third, and fourth terms in Eq. (7), such that
in this picture an ideal gate corresponds to the initial state
remaining unchanged:

ρ̇h =
2∑

i=1

γφiD[σ̃zi]ρh/2 + 
dD[(σ̃z1 + σ̃z2)]ρh/2. (15)

The second noise regime is low-frequency noise, deter-
mined by the single qubit ensemble dephasing time T ∗

2 . The
low-frequency noise is modeled by a normally distributed
random shift to the qubit splittings, δJi . The resulting low-
frequency qubit noise master equation in the interaction picture
with respect to Hpol is

ρ̇ = −i[Hn,ρ] + 
dD[(σ̃z1 + σ̃z2)]ρ/2, (16)

where Hn = (δJ1σz1 + δJ2σz2)/2. Numerically, we simulate
this noise by randomly assigning values δJi in a Gaussian
distribution, with the width determined by T ∗

2 , and then
averaging over δJi .

For the estimate of the infidelity due to all sources of noise,
we again go into the interaction picture with respect to Hpol,
and use the complete master equation:

ρ̇e = −i[Hn,ρe] + γφ1D[σ̃z1]ρe/2 + γφ2D[σ̃z2]ρe/2

+
dD[(σ̃z1 + σ̃z2)]ρe/2 , (17)

where the first term describes the low-frequency noise, the
second and third terms describe the qubit dephasing due to
high-frequency noise and the final term describes the decay of
the edge mode.

We can estimate the decay rates associated with both the
qubits and the QH edge modes, making use of both data from
recent experiments and some theoretical modeling. For qubit
decay rates, we take values from the recent experiment reported
in Ref. [16], where the single qubit decay rate is found to
be γφ = 1/T2 = 1/(7μs), and the ensemble dephasing time
T ∗

2 = 700 ns.
The QH edge mode decay rate κ can also be estimated

based on recent experiments. Reference [36] observes QH
droplets to have loaded quality factors as high as Q = 100.
However, this loaded Q is a pessimistic approximation for an
intrinsic Q, as it describes a system where the edge modes
are coupled to the adjacent metallic contacts. To estimate the
intrinsic Q associated with these devices, we consider several
other sources of loss that can affect a QH droplet and explore
the limits to which they can be minimized.

First, we consider what the resistivity of the 2DEG, ρxx ,
may predict about the intrinsic Q. The model of Ref. [63] for
a circular droplet predicts a Q of the fundamental EMP mode
of ρxy/ρxx . Based on the parameters of the experiment of
Ref. [36], this effect predicts an intrinsic Q of approximately
1000. However, an improved design of the experiment can be
expected to reduce ρxx because, on a quantum Hall plateau,
this resistivity is expected to become very low.

Second, we can consider what the effect of coupling
between the edge modes and phonons predicts about the
intrinsic Q. This effect has been studied in Refs. [37,64].
In the frequency range we are considering, it is predicted
that the piezoelectric coupling dominates, in which case
the intrinsic Q is independent of the size of the QH disk.
For GaAs, this size-independent quality factor is estimated
to be approximately Q ∼ 1500, broadly consistent with the
prediction above using resistivity. For this value of Q, for a
disk of radius of R = 8 μm, this gives an ideal decay rate of
approximately κ = 17 × 106 rad/s.

A. Fidelity as a function of detuning

The fidelity of the gate can be calculated by numerically
simulating the gate using the master equations of Eqs. (3),
(7), and (16). However, a more intuitive understanding of
the sources of error and the physical processes that cause
them can be attained by looking at analytic approximations
for the fidelity. In this section, we will derive such analytic
expressions, as well as describe our numerical simulations of
the systems in both high- and low-frequency noise regimes
in order to demonstrate that our approximations are accurate,
and to draw conclusions about the dependence of the fidelity
on the detuning between the qubit and edge mode frequencies.
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As a result, we show that the gate fidelity can be maximized
by finding the appropriate detuning for the qubit oscillations.

1. High-frequency noise

First, we determine the gate fidelity due to the high-
frequency noise of the qubits as a function of detuning.
Before deriving analytical expressions for the gate fidelity
using only high-frequency noise, we show the equivalence
of the master equations in Eqs. (3) and (7), in terms of the
resulting qubit evolution. We simulated the master equation
(3) by expanding harmonic oscillator operators in a Fock state
basis. It is essential for the operation of this entangling gate
that photon emission from EMP mode does not occur during
the operation of the gate. In the parameter regime of interest,
where κ might be comparable or significantly larger than J12,
this requires that the oscillator is not not highly excited during
the operation of the gate. Consequently, accurate results are
obtained with a moderate dimension size for the Fock space.

Figure 4 shows the simulation of the gate in time for both the
polaron shifted and unshifted descriptions of the system using
a square pulse and a shaped pulse defined by the function:

g(t) = g0(1 − cos2n(tπ/tg0 )), (18)

where g0 is the electrostatic qubit-edge coupling calculated in
Sec. III, tg0 is the time necessary to perform the optimum gate
when using this shape pulse, and n is an integer parameterizing
the squareness of the shaped pulse. We will adjust the time for
the gate tg0 to achieve the highest fidelity possible fidelity for
each n. Note that n = 1 corresponds to a sin2(x) pulse that
slowly increases to g0; this will result in the adjusted gate time
being roughly twice as long as a square pulse: tg0 = 2tg . On
the other hand, as n → ∞, the pulse becomes more square,
and the adjusted gate time approaches tg .

As shown in Fig. 4(a), when the square pulse is used,
the polaron shifted master equation accurately describes the
envelope of the evolution of the qubit simulated by the
unshifted master equation. However, there are oscillations
in the qubit state beneath this envelope, associated with the
polarons, that are not included in the results obtained by
using the polaron shifted master equation. The envelope of
the unshifted master equation also lags behind the polaron
picture, resulting in a difference between the fidelity calculated
using the shifted and unshifted master equations, δF , of
approximately δF � 0.0045.

As shown in Fig. 4(b), we can remove such oscillations by
slowly turning on and off the coupling, that is, using a pulse
described by Eq. (18) with finite n, where in Fig. 4(b), we have
used n = 66. We note that, for the shaped pulse, it is necessary
to optimize the adjusted gate time tg0 , such that the optimal
approximate gate defined by Eq. (3) can be performed; for
�/κ = 300, the adjusted gate time is tg0 � 1.116tg , where tg
is defined in Eq. (8). We note that by carefully tuning the value
of our pulse shaping parameter n and the gate time tg0 , we
can improve the fidelity of the gate such that, for our chosen
parameter of detuning we have an improvement in the average
fidelity of δF ≈ 0.0021.

We now derive the analytical expression for the high-
frequency noise, to which we will compare the numerical
simulations from both the polaron shifted and unshifted master

(a)

(b)

FIG. 4. Simulation of the gate for a fixed detuning �/κ = 300
using both the polaron shifted (red) and unshifted (blue) descriptions
using a square pulse (a) and a shaped pulse (b), with the chosen
equation parameters: g0 = 7.29 × 108 rad/s (see Sec. III), κ =
17.2 × 106 rad/s, and qubit dephasing times of T2 = 7 μs and
T ∗

2 = 700 ns, from Ref. [16]. The shaped pulse was chosen to achieve
maximum fidelity for this value of detuning.

equations. As the right-hand side of Eq. (15) is independent
of time, the time evolution operator for the noisy gate is
proportional to an exponential of a matrix, N (t) ∝ eλht , where
the matrix λh is determined by Eq. (15). We set the two-qubit
dephasing rates to be equal (γφ1 = γφ2 = γφ) and use Eq. (14)
to derive an expression for the average fidelity for the gate,
which only includes the high-frequency noise of the qubit:

F̄h = 1

5
(2 + 2e−(γφ+
d )tg + e−2γφtg /2 + e−(2γφ+4
d )tg /2)

(19a)

� 1 − 4

5

(
πγφ�

2g2

�2 + κ2

�2
+ πκ

4�

)
, (19b)

where we have expanded the exponentials to first order, to
derive the analytical approximation that can be understood
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FIG. 5. Average fidelity as a function of detuning � for high-
frequency noise using the analytical expression of Eq. (19a) (solid
blue line), and numerical simulations using the polaron shifted master
equation of Eq. (4) (red diamonds) and the unshifted master equation
from Eq. (3) (yellow squares). Parameters are chosen as in Fig. 4:
g0 = 7.29 × 108 rad/s, κ = 17.2 × 106 rad/s, and qubit dephasing
time of T2 = 7 μs.

more simply. The infidelity due to the qubit’s high-frequency
noise has two terms: the first describes the dephasing of the
qubit, which is proportional to the detuning, and the second
describes the energy loss from the edge modes of the QH disk.

Figure 5 presents a comparison between the analytical
expression for the average fidelity [making use of the exact
exponential expressions from Eq. (19a)] and the full numerical
simulations for the average fidelity using the master equations
from the polaron shifted approximation in Eq. (7) and the
complete model in Eq. (3), as a function of the detuning,
�, using the same equation parameters as those for Fig. 4.
We note that, for the numerical simulations of the unshifted
master equation, we have optimized the adjusted gate time
for each value of n, and then optimized for each value of n

(for 2 � n � 1000: ranging from very slow to very square) at
each data point for the detuning, to achieve the best possible
fidelity for any given �. It should be noted that as � increases,
the optimal n also increases, meaning that a squarer pulse is
preferred for larger detuning. As predicted, the correction to
the fidelity, δF , decreases as � increases, because to leading
order, δF is some power of g/�. Therefore large detuning
results in a closer agreement between the fidelities predicted
by Hpol and Hint.

According to Eq. (19b), the error associated with the EMP
energy loss can be reduced by going to a very large detuning.
However, the gate time is approximately proportional to the
detuning, as demonstrated by Eq. (8), so an increase in
detuning results in the potential for the qubits to dephase
before the gate has been completed. Equation (19b) describes a
linear relationship between the error caused by high-frequency
noise dephasing the qubits and the detuning, which results in a
turning point in the fidelity as a function of �; a turning point
clearly visible in Fig. 5 in all three plots. Therefore there is an
optimal detuning �opt,h, demonstrated by the local maxima in

Fig. 5, which represents a trade off between reducing the noise
associated with the qubit dephasing and the noise associated
with the EMP losing energy.

There is clearly good agreement between the numerical
simulations of polaron shifted master equation of Eq. (7)
and the analytical expression. We can also see that there is
a disparity between the analytical expression and simulation
that used the unshifted polaron master equation. This disparity
is most pronounced at low detuning, where the distinction
between the dressed and bare qubits is most significant,
leading to a correction to the fidelity, predicted by the polaron
picture, of approximately δF � 0.0035. However, it is also
clear in Fig. 5 that this correction to the fidelity is dependent
on �, and that as � increases, the agreement between the
simulation of the unshifted master equation and the analytic
expression improves, as predicted in Sec. II. In principle,
the polaron-shifted analytic estimation of the fidelity could
be made more accurate for low detuning by performing an
expansion in g/�. However, this will not affect our analyses
or conclusions in any major way, since it is clear that the
overall trend of the fidelity as a function of � is qualitatively
captured at this level of approximation, and because we are
able to simulate the full model.

2. Low-frequency noise

We now investigate the fidelity in the presence of low-
frequency noise. Again, the right-hand side of Eq. (16) is also
independent of time, so solving the master equation results in
a time evolution operator for the noisy gate proportional to an
exponential matrix, N (t) ∝ eλt . The first term in Eq. (16) is
imaginary, which results in temporal oscillations in the fidelity,
as calculated using Eq. (14). The period of the oscillations is
determined by the qubit splittings δJi , which can be averaged
to give an expression for F̄ :

F̄ = 1

5
(2 + 2e−(tg/T ∗

2 )2−
d tg + e−2(tg/T ∗
2 )2

/2

+ e−2(tg/T ∗
2 )2−4
d tg /2) (20a)

� 1 − 4

5

[(
π�

2T ∗
2 g2

)2

+ πκ

4�

]
. (20b)

To obtain the second expression, the exponentials have been
expanded to first order, giving an analytical approximation for
the fidelity due to the qubit’s low-frequency noise. Again we
use the exact expression in Eq. (20a) for graphs and analysis
thereof.

Figure 6 presents a comparison between the analytical
expressions for the average fidelity and the full numerical
simulations for the average fidelity using the polaron shifted
master equations (7), (16), and (17), so that they can be
compared. Focusing on the low-frequency noise effects, the
red curve and points in Fig. 6 give a comparison between
the analytic expression, as described by Eq. (20b), and the
full numerical simulations of Eq. (16), for the low-frequency
noise with the ensemble qubit dephasing time T ∗

2 = 700 ns
(obtained from Ref. [16]). We expect that for low-frequency
noise contributions to the infidelity, the numerical simulations
will be hindered by finite sampling. A finite sample means that
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FIG. 6. Average fidelity as a function of detuning � for high-
frequency noise (blue), low-frequency noise (red), and for all sources
of noise (yellow), using both the analytic expressions (solid lines) of
Eqs. (19a), (20b), and (21) and the full numerical simulations in the
polaron shifted frame (diamonds, squares, circles). Parameters are
chosen as in Fig. 4: g0 = 7.29 × 108 rad/s, κ = 17.2 × 106 rad/s,
and qubit dephasing times T2 = 7 μs and T ∗

2 = 700 ns.

very large values of δJi (both positive and negative) are likely
to be under-represented, resulting in large uncertainties in the
values of fidelity acquired by the simulation, therefore the
analytical approximations will capture more of the physics for
low-frequency noise infidelity. This effect is shown in Fig. 6,
as the error bars grow larger with �, which may be understood
as there being a larger spread of fidelity values for large values
of � due to increased gate times. However, it is clear that there
is good agreement between the analytical approximation and
the numerical simulations in the regime of detuning close to
the optimum.

According to Eq. (20b), the infidelity due to the qubit’s
low-frequency noise has two terms: the first describing the
dephasing of the qubit, which is quadratic in detuning, and
the second describing the energy loss from the edge modes of
the QH disk, which is identical to the term seen in Eq. (19b)
for the same error process, as shown in Fig. 6, where the
two regimes result in very similar plots, proportional to the
reciprocal of the detuning.

Also evident in Fig. 6, Eq. (20b) describes a turning point
in the fidelity as a function of detuning, due to a trade off
between minimizing the infidelity due to qubit dephasing and
EMP energy loss. Again, as with high-frequency noise, there
is an optimum detuning �opt,. The major difference between
the infidelities due to the high- and low-frequency noises is
that, while the infidelity due to the high-frequency noise scales
linearly with detuning, the infidelity due to the low-frequency
noise scales quadratically. This difference is revealed at large
values of �. It is clear then, that near the optimal detuning, the
dominant source of noise is high-frequency noise. However,
it also implies that as we move to very large detuning, � �
�opt,, the low-frequency noise overtakes the high-frequency
noise as the dominant source of error in the gate.

3. Full solution with all noise regimes

Finally, we consider the full master equation of Eq. (17).
Solving in a similar way to Eqs. (19a) and (20a) gives an
analytic approximation for the average fidelity including all
noise contributions:

Fe � 1 − 4

5

[(
π�

2T ∗
2 g2

)2

+ πγφ�

2g2

�2 + κ2

�2
+ πκ

4�

]
. (21)

The first term describes the low-frequency noise dephasing,
the second term describes the qubit dephasing due to high-
frequency noise, and the final term describes the dephasing of
the EMP mode. For the chosen parameters, we have calculated
an optimal average gate fidelity of F̄ = 0.9930, with a gate
time of tg = 19.19 ns. This gate fidelity is a promising result
for quantum computation, as threshold gate fidelities have been
quoted as low as F = 0.9917 for performing noisy controlled
not gates on surface codes [65], and this estimate is well in
excess of the entangling gate fidelities of F = 0.90 that have
been experimentally demonstrated using capacitive coupling
techniques [16]. As shown by the red plot in Fig. 6, in the limit
that T2 can be extended indefinitely, the average gate fidelity
reaches F̄ = 0.9972.

B. Fidelity as function of qubit-edge coupling

While these values of average fidelity are very promising,
there is potential room for improvement by increasing the
qubit-edge coupling g. Considering Eq. (12), we can see that
an increase in g can be achieved by fine tuning a number of
parameters: the disk radius R; the qubit edge separation y1;
the interdot separation �y; the amount of metal surrounding
the system η; or even the amount of the electron that is shifted
into the |(2,0)〉 state, θq .

We now investigate the expected behavior of the gate
fidelity as a function of g. Using Eqs. (19b) and (20b), we can
find an analytic approximation to the maximum fidelities (for
both the high- and low-frequency sources of noise) as well
as the optimal detuning needed to produce these fidelities.
The resulting optimal fidelity can be expressed in terms of
a suitable cooperativity for the system, similar to the result
in Ref. [32], for example. In the ideal limit that κ � �, we
approximate (�2 + κ2)/�2 ∼ 1, leading to a “high-frequency
noise minimizing” optimal detuning

�opt,h � g

√
κ

2γφ

. (22)

with a maximum fidelity in terms of the cooperativity, Ch =
g2/κγφ , given by

Fopt,h � 1 − π
4

5

√
κγφ

g2
= 1 − π

4

5
C

−1/2
h . (23)

The “low-frequency minimizing” optimal detuning noise is

�opt, =
(

(g2T ∗
2 )2κ

π

)1/3

(24)
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FIG. 7. Average infidelity as a function of qubit-edge coupling
g, at optimal detuning, with the optimal detuning chosen for high-
frequency noise (blue) and the low-frequency noise (red).

with a maximum fidelity in terms of cooperativity C =
(T ∗

2 g2/κ) given by

Fopt, � 1 − 2π4/3

5

(
κ

T ∗
2 g2

)2/3

= 1 − 2π4/3

5
C

−2/3
 . (25)

Figure 7 presents the infidelity of the gate as a function of
the qubit-edge coupling (g/κ), as described by Eqs. (23) and
(25). Clearly visible is the decrease in the gate infidelity as g/κ

increases, meaning that the qubit-edge coupling g must be at
least an order of magnitude larger than the EMP dissipation rate
κ in order to see gate fidelities greater than 0.9. By considering
Eq. (12), increasing g while maintaining a constant κ would
require an increase in the interdot separation �y, a decrease
in the qubit edge separation y1, or an increase in the portion
of the electron that is shifted to the |S(0,2)〉 state (θq), all of
which are likely to affect the qubit dephasing rates T2 and T ∗

2 .

V. CONCLUSION

We have proposed and analyzed a promising approach
for performing long-range high-fidelity entangling gates of
singlet-triplet qubits in double quantum dots based on an
electrostatic interaction between the charge state of a qubit
and the edge modes of a QH droplet. Based on parameters

from recent experiments, we have calculated the electrostatic
coupling between a singlet-triplet qubit and the edge of the
QH droplet, by considering the difference in energy of the QH
edge modes as the qubit is shifted between logical basis states.
By driving oscillations in the state-dependent dipole of the
qubit, the effect is a qubit-state-dependent force on the edge
mode. Then, using a polaron transform, we have shown how
this interaction mediates a coupling between two qubits, each
coupled to the edge of the QH droplet, and that this coupling
may be used to implement a two-qubit entangling gate that is
dependent on the detuning between the edge mode frequency
and the qubit drive frequency.

To investigate the performance of this entangling gate, we
have analyzed the average gate fidelity in two noise regimes:
high-frequency noise (associated with the T2 dephasing time)
and low-frequency noise (associated with the dephasing time
T ∗

2 ) as a function of the detuning. For each source of noise, we
have identified an optimum detuning for the drive frequency of
the qubits in order to maximize the fidelity of the gate. Based on
current experimental values for dephasing times, the fidelity of
the gate is predominantly limited by the high-frequency noise,
with average gate fidelities expected to be F̄ = 0.9927, with a
gate time of tg = 19.19 ns, but with improved T2 times could
reach as high as F̄ = 0.9972. This fidelity may be further
improved by engineering the configuration of the system to
increase the qubit-edge coupling, which could perhaps be
achieved by producing double quantum dot qubits with larger
interdot distances or qubits with larger state-dependent dipole
moments (increasing the value of θq).

The electrostatic scheme proposed here is a step toward
the implementation of high-fidelity entangling gates between
singlet-triplet qubits in GaAs/AlGaAs heterostructures, but we
emphasize that our techniques can be readily adapted to other
encodings of qubits that involve a charge degree of freedom,
as well as spin qubit implementations in other materials that
also support QH liquids.
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