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Generation of Schrödinger cat type states in a planar semiconductor heterostructure
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We propose a nanodevice based on a typical planar semiconductor heterostructure with lateral confinement
potential created by voltages applied to local gates. We show how to obtain near parabolical confinement along the
nanodevice, and how to use coherent states of the harmonic oscillator for spatial separation of electron densities
corresponding to opposite spin directions. In such a way, an entangled state of Schrödinger’s cat type is created.
We have performed simulations of a realistic nanodevice model by numerically solving the time-dependent
Schrödinger equation together with simultaneous tracking of the controllable confinement potential via solution
of the Poisson’s equation at every time step.
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I. INTRODUCTION

Control and manipulation of single electrons trapped
in semiconductor nanostructures attract much attention due
to potential applications in spintronics [1,2] or quantum
computing [3]. This also enables us to examine numer-
ous fundamental physical phenomena and discover dif-
ferent physics, e.g., topological effects [4,5] or exotic
quasiparticles [6–9].

An electron qubit can be represented in many different ways
[10]. In the case of a charge qubit [11–13], two basis states are
defined as the presence of an electron on one of two sides of
a double quantum dot or wire structure. However, it is more
likely that the spin degree of freedom will be used as a bit
carrier in the quantum computer, i.e., spin qubit [14,15]. This
explains the necessity for precise electron control to perform
operations on such qubits, or to couple them into registers
[16–22], and transmit information between individual registers
of the quantum computer [23–26]. Spin-orbit interaction (SOI)
of Rashba type (RSOI) [27–30], which couples the orbital and
spin degrees of freedom of an electron, allows for effective
manipulation of a spin qubit [31–40].

An important issue in quantum computing is the gener-
ation of entangled states. The Schrödinger’s cat type state
is a notable example [41–44]. This has been successfully
generated in quantum optics using coherent states [45–49]. The
possibility to create coherent states has also been examined in
solid-state systems [10,44,50–53]. However, creation of their
combination with opposite spin, namely the Schrödinger’s cat
type state, poses a great challenge due to its high instability
[41,47,54,55].

In this paper, we propose to repeat these quantum optics
experiments in a solid-state system. We show the possibility
for the creation of a Schrödinger’s cat type state in a typical
and easily obtainable semiconductor heterostructure. This is
an extension to the method introduced in [53], here developed
on heterostructures, which are much more easily scalable.
Control over an electron is achieved all electrically by applying
voltages to local gates. The spin separation of coherent states,
forming in superposition the Schrödinger’s cat type state, is
achieved in the nanostructure with an electrically controlled
Rashba spin-orbit coupling.

The paper is organized as follows. In the first part
(Sec. II) of the paper we employ a one-dimensional (1D)

approximation with modeled potentials and the method for
the generation of the Schrödinger’s cat type state is discussed
only qualitatively. In the latter part (Sec. III) we propose a
nanodevice based on a planar semiconductor heterostructure.
The design includes geometrical details and the realistic
values for parameters of the materials used. Potentials are
calculated using the Poisson’s equation with all important
effects included. The results from this part are quantitative in
nature.

II. EXPLAINING THE EFFECT
WITH A SIMPLIFIED MODEL

A. Simplified one-dimensional model

The Hamiltonian of a single electron trapped in a quantum
wire—a 1D structure—oriented along the x axis has the
following form:

H (x,t) =
(

− h̄2

2m

∂2

∂x2
+ V (x)

)
12 + Hso(t), (1)

where V (x) constitutes the potential energy of an additional
confinement along the wire and Hso(t) describes the spin-
orbit interaction. If the quantum wire axis is oriented in the
[111] crystallographic direction, the Dresselhaus interaction
becomes negligible [30,33]. Now if we apply an electric field
along the y axis, an RSOI is introduced. It can be described by
the following Hamiltonian:

Hso(t) = −αso|e|
h̄

Ey(t) pxσz, (2)

with the RSOI material coefficient αso, the electric field
Ey(t) perpendicular to the wire direction, and the elec-
tron momentum operator px together with the the Pauli z

matrix σz.
If the confinement potential along the wire has a parabolic

shape V (x) = mω2x2/2, we can solve the eigenequation of the
Hamiltonian (1) analytically in the momentum representation
and then return to the position representation [53]. The energy
of the ground state is doubly degenerated with respect to
spin values. The ground-state wave function in the position
representation takes the form of a Gaussian multiplied by
a plane wave. Depending on the spin z projection its wave
number is either positive or negative. The two basis functions
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FIG. 1. Scheme depicting the simplified 1D model with a quan-
tum wire above a conducting plate at distance d .

corresponding to the ground state have the two-row spinor
form

�↑(x) =
(

2β

π

)1/4(
1
0

)
e−βx2

eiqx, (3)

�↓(x) =
(

2β

π

)1/4(
0
1

)
e−βx2

e−iqx, (4)

with β = mω
2h̄

and the wave number q = mαso|e|Ey (t=0)
h̄2 .

We should note that the wave number q does not depend on
the harmonic potential curvature (frequency ω/2π ). Indeed,
for any confinement potential V (x) the eigenstate of (1) has
the general form ϕ(x)e±iqx , where ϕ(x) is an eigenfunction
calculated without the spin-orbit interaction. SOI introduces a
spin-dependent displacement in the momentum (space). Due
to the degeneration, any linear combination of both basis states
corresponds to the same energy. The SOI merely introduces
an energy correction 
E = − h̄2q2

2m
.

B. Semiconductor electron soliton—An inducton

We assume that the quantum wire is aligned in parallel to a
metallic gate, as shown in Fig. 1. If we trap an electron inside
the wire, an opposite charge will be induced on the surface
of the conductor. This effect can be described within the
mean-field self-consistent approximation [56]. The induced
charge attracts the electron and causes the mean electric
field to have a component directed toward the center of the
electron density, resulting in a self-focusing of the electron
wave function. Thus, an electron soliton called an inducton
[56,57] is formed. The electron becomes trapped under the
gate, creating a stable Gaussian-like wave packet of finite size,
capable of moving without changing its shape. Because of
such localization we can relocate the electron within the wire
in a controllable manner [23,24,58]. Moreover, inductons and
their spins can be used as quantum bit carriers in the quantum
computer [22,24,57,58].

This mean field, in which the electron is located, is
generated by the electron (charge) itself. Thus, the field is
calculated in a self-consistent way. If the gate is an infinite
conducting plate, the potential created by the induced charge
can be described using the image charge method. The induced
charge is replaced by an image charge which is a reflection
(against the surface of the conductor) of the primary charge
density from the quantum wire [56]. For a quantum wire placed
at distance d from the conducting plate, the potential energy

created by interaction with the image charge can be expressed
in the following way:

U ind(x) = −|e|
4πεε0

∫
ρ im(x ′)√

(x − x ′)2 + 4d2
dx ′, (5)

with the image charge density ρ im(x) being a mirrored version
of the electron charge from the quantum wire ρel(x) (see
Fig. 1), and calculated as

ρ im(x) = −ρel(x) = |e||�(x)|2. (6)

If there is no additional external potential in Eq. (1), only the
interaction energy with the image charge is present: V (x) =
U ind(x). Since the image charge method is applicable only
for cases of an infinite interface between a dielectric medium
and a metallic plate, this approach is used only for model
potentials in the first part of this article (Sec. II). For actual
realizations of the nanodevice (Sec. III), the potential inside
the quantum wire is exactly calculated using the Poisson’s
equation. This method is slightly more complex; however, it
guarantees correct inclusion of the induced charge on gates of
any shape or dimension [59].

The potential energy for the electron ground state, originat-
ing from the induced charge present on the gate parallel to the
quantum wire, takes an approximately parabolic shape [56].
Therefore, if this potential energy and the SOI generated by
the electric field are taken into account, the wave function of
the electron ground state in the wire is a Gaussian multiplied
by a plane wave as in Eqs. (3) or (4). As noted, we get
such multiplied eigenfunctions ϕ(x)e±iqx for any form of the
confining potential, also for the induced one U ind(x,|ϕ|2).

C. Control of the electron motion

Let us assume that the electron spin is directed along the z

axis (spin z projection sz = h̄/2) with a nonzero electric field
Ey . In such a case the ground-state wave function assumes the
form of Eq. (3). This is a stationary state and the wave packet
remains fixed even though the wave function is a Gaussian
multiplied by a plane wave. This happens because motion is
blocked by the SOI included in the Hamiltonian. However,
if we disable the electric field abruptly (in a nonadiabatic
manner), inserting Ey = 0, the SOI disappears and the electron
starts moving in the x direction. Now the wave function is a
Gaussian multiplied by a plane wave. Such a wave packet
travels at a constant speed v = h̄q

m
:

�↑(x,t) =
(

2β

π

)1/4(
1
0

)
e−β(x−vt)2

eiqxe−iE t/h̄

=�↑(x − vt,0) eiE t/h̄, (7)

with E = h̄2q2

2m
. Let us note that after inserting this time-

dependent wave function (7) into expression (6), the image
charge density moves at the same speed ρ im(x,t) = ρ im(x −
vt,0). Inserting this into Eq. (5) gives a time-dependent
potential obeying a similar relation

V (x,t) = U ind(x,|�↑(x,t)|2)

= U ind(x,|�↑(x − vt,0)|2) = V (x − vt,0).
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FIG. 2. Simulation of the electron motion induced by sudden
changes of the electric field Ey(t) perpendicular to the quantum
wire denoted by black curve. The other curves denotes position
of the electron 〈x〉 (blue curve), the expectation value the electron
momentum 〈p〉 (solid red), and the classical momentum calculated
as a time derivative of the position multiplied by the electron mass
m d

dt
〈x〉 (dashed red).

Thus the induced potential follows the wave packet at the
same speed. This allows both the wave packet and the
potential for moving in space without changing shape. In
other words, the nonlinear Schrödinger equation with the
potential U ind(x,|ψ(x,t)|2) is Galilean invariant in sense,
that if ψ(x,0) is a stationary solution, the time-dependent
ψ(x,t) = ψ(x − vt,0) exp(iqx − iE t/h̄) is also its solution.

Setting Ey back to the previous value stops the electron
again, while using a greater value for Ey forces movement
in the opposite direction. Thus, we gain a method to control
the electron motion using an electric field perpendicular to
the direction of motion. The time evolution of the electron
packet is obtained by numerically solving the time-dependent
Schrödinger equation ih̄ ∂

∂t
�(x,t) = H (x,t)�(x,t), for

the Hamiltonian (1) with variable spin-orbit part Hso(t). The
Schrödinger equation is solved self-consistently with the
induced V (x,t) potential, which in turn depends on the
electron density |�(x,t)|2. In the latter part (Sec. III) this will
be replaced by self-consistency with the Poisson equation.

Now we assume that the ground state is generated with
Ey = 0. This time the wave function is again a Gaussian but
no longer multiplied by a plane wave (q = 0). We propel the
electron by setting nonzero Ey . Figure 2 shows an electron
motion induced by changes of the electric field. The black
curve denotes the value of Ey , the blue curve denotes the
expectation value of position 〈x〉, the solid red one denotes
the expectation value of momentum 〈p〉 and the dashed red
one denotes the classical momentum calculated as a time
derivative of the position d

dt
〈x〉 multiplied by the electron mass

m. Initially, we apply no electric field (Ey = 0) and the electron
remains stable. At t = 10 ps we set a positive value for Ey ,
which sets the electron in motion in the direction of positive
values of x. At t = 20 ps, we set the electric field back to zero
and the electron halts. Finally at t = 60 ps, the electric field is
set to −Ey , which induces movement toward negative values of
x. Further manipulation of the electric field alters the velocity
and the direction of the electron motion. We should notice

FIG. 3. Simulation of the electron motion including reflection off
the walls at the wire ends. Markings as in Fig. 2.

that, despite the movement occurring at various velocities
(corresponding to different values of the classical momentum
m d

dt
〈x〉), the expectation value of momentum operator 〈p〉

remains zero, which means that the wave function is only
a Gaussian, yet not multiplied by a plane wave (q(t) = 0).
However, if the electric field is nonzero (SOI present), this
state is no longer stationary. Therefore, the electron motion is
initiated as a result of the change of the Hamiltonian, and not
the wave function.

The situation changes significantly if we allow the electron
to reflect off the wall of the potential formed at the wire ends.
In Fig. 3, we can track the motion of the electron in such a
case with reflections occurring at t = 40 ps and t = 83 ps.
After reflection, the electron moves with the same speed but in
the opposite direction to the initial one. This indicates that the
wave function has been effectively multiplied by a plane wave
with a doubled wave number 2q. The expectation value of the
momentum operator 〈p〉 is no longer zero, but still inconsistent
with the classical momentum m d

dt
〈x〉. At the moment t =

120 ps, the directions of both these quantities are actually
opposite to each other.

D. Accelerating the electron—A synchrotron

The change of the wave function due to reflection can be
exploited for wave packet acceleration. In Fig. 4 we see a
simulation of the electron motion induced in a rectangular
potential well by square pulses of the electric field. The pulses
have constant amplitude and duration carefully tuned to the
moment of transition of the wave packet through the central
point of the wire. With every change of direction of the electric
field, the electron is being accelerated.

With increasing speed of the electron, the time between
reflections decreases; hence, the changes of the electric field
must be performed at decreasing periods of time.

This inconvenience can be mitigated by putting the electron
in an external parabolic confinement potential U ext(x) =
mω2x2/2, making V (x) = U ind(x) + U ext(x). In this case,
with no SOI, the ground-state wave function of the electron
assumes a Gaussian form:

�(x) ≡ 〈x|p = 0〉 =
(

2β ′

π

)1/4

e−β ′x2
. (8)
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FIG. 4. Acceleration of the electron by square pulses of the
electric field Ey , denoted by the red curve; the blue curve shows
the expectation value of the electron wave packet position 〈x〉.

Note that parameter β ′ is renormalized by self-interaction,
while the eigenfrequency remains ω/2π . Multiplication of this
Gaussian by a plane wave sets the electron in an oscillatory
motion with an amplitude dependent on q, yielding

〈x|p = qh̄〉 =
(

2β ′

π

)1/4

e−β ′x2
eiqx . (9)

Figure 5 shows the motion of the electron initially set as
the ground state of the harmonic oscillator, without SOI but
multiplied by a plane wave with three different values for
q. Regardless of the actual value of the wave number q

(and energy), the periods of oscillations remain the same, as
for a classical particle. This effect can be used for motion
synchronization.

If the electron is confined in a harmonic potential with addi-
tional spin-orbit coupling, varying sinusoidally with frequency

FIG. 5. Motion of the electron in an external parabolic potential
U ext(x) = mω2x2/2, calculated for three different values for the wave
number q in Eq. (9).

FIG. 6. Acceleration of the electron confined in a harmonic
potential mω2x2/2 using a sinusoidally varying electric field Ey(t).
The blue line denotes 〈x〉 and the red one denotes the electron energy.

ω/2π consistent with the frequency of the harmonic potential,
we can accelerate the electron to high velocities using only low
gate voltages (and thus we obtain a synchrotronlike device).
This can be achieved using a sinusoidally oscillating electric
field Ey(t) = E0 sin(ωt) applied in the area occupied by the
electron. Figure 6 shows the motion of the wave packet
subjected to such a field. In the time interval between t = 0 ps
and t = 300 ps the expectation value of the position (blue
curve) oscillates with a linearly increasing amplitude. The
energy (red curve) rises quadratically in a stepwise manner,
because the wave number rises by the same value with each
oscillation of position. These results are in analogous to the
classical harmonic oscillator with resonant driving where the
amplitude linearly increases over time.

An increase in the position oscillations amplitude, and
hence also in energy, requires an exactly parabolical confine-
ment potential. Nonparabolicity constitutes a natural limit to
energy growth. In the simulation shown in Fig. 6, the wave
packet is confined in a parabolic potential but the calculations
are performed on a finite fragment of the quantum wire which
effectively imposes infinite potential walls at both ends of
the wire. As the electron approaches the wire borders, the
frequency of its oscillations is no longer consistent with
the frequency of the time-varying electric field inducing its
movement. The amplitude of spatial oscillations of the wave
packet ceases to grow. The influence of nonparabolicity is
easily visible in Fig. 6 for t > 300 ps.

In all the presented simulations we assumed that initially
the electron spin is parallel to the z axis. Despite the electron
movement, the spin did not change, since according to the
Hamiltonian Eq. (2), movement along the x axis implies
rotation of spin around the z axis. The situation would be
similar if the initial spin was antiparallel to the z axis. It would
only result in an opposite direction for the electron movement.

E. Spin-density separation

Now let us assume that the spin of the electron is neither
parallel nor antiparallel to the z axis, but is a linear combination
of both basis vectors [Eqs. (3) and (4)], forming the two-row
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FIG. 7. Time evolution of the spin density of the electron trapped
in a harmonic potential with sinusoidally varying SOI. Initially the
spin is set as an equally weighted linear combination of spin up and
down. The blue curve denotes the expectation value of the position
x↑(t) calculated for the upper half of the spinor, the red curve denotes
the electron energy, and the black curve denotes the expectation value
of spin σ R

z (t) in the right half of the quantum wire.

spinor:

�(x,t) =
(

ψ↑(x,t)
ψ↓(x,t)

)
. (10)

As mentioned before, after the SOI is turned on, the upper and
lower parts of the spinor gain opposite momenta; hence, this
effect can be used for spatial spin separation.

This time, we initially set up the electron spin as an equally
weighted linear combination of spins up and down. Moreover,
the electron is trapped in a parabolic potential and we initialize
it as the ground state of the harmonic oscillator with an
assumption of no SOI (Ey = 0); thus, the wave function is
of the form

�(x,t = 0) =
(

β

2π

)1/4(
1
1

)
e−βx2

. (11)

Next, we apply an electric field varying sinusoidally with
the frequency tuned to the eigenfrequency of the chosen
harmonic potential. Both parts of the spinor behave in different
ways, such as wave functions of the electron with spin up
and down [Eqs. (3) and (4). The center of mass of the entire
electron does not move, however, if calculated for each spinor
component respectively, they move away in an oscillatory
fashion with opposite phases and growing amplitude. In Fig. 7,
we see the time evolution of such a system. The expectation
value of position for the spin up (blue curve) is calculated
using the upper component of the spinor [Eq. (10)] as

x↑(t) =
∫ L

0 x|ψ↑(x,t)|2dx∫ L

0 |ψ↑(x,t)|2dx
, (12)

with L being the length of the quantum wire. The oscillations
of the center of mass of the electron density with spin down
x↓(t) (not presented) are similar, but with a phase shifted by π .
The expectation value of the Pauli-z matrix σ̂z (black curve),

FIG. 8. Comparison of the spatial z-spin density ρσ (x,t) (red
curve) with the total spatial density ρ(x,t) (black curve) at the moment
of maximal separation. The spin density divides into two separate
parts with opposite spins. Additionally, the confinement potential is
shown as a blue curve.

calculated in the right half of the quantum wire, is

σ R
z (t) = 〈�|σ̂z|�〉R =

∫ L

L/2
(|ψ↑(x,t)|2 − |ψ↓(x,t)|2)dx

(13)
and denoted by spin right in the figures.

The expectation position of the upward spin density x↑(t)
oscillates similarly to the expectation value of position of the
electron from Fig. 6. In the parabolic region of the potential,
the amplitude of oscillations grows linearly with time. As the
oscillations of spin-up and -down wave functions are phase
shifted by exactly π , these components separate. Now let us
look at the orientation of spin in the right half of the quantum
wire σ R

z (t) (black curve). The amplitude stops growing as
it reaches the value 0.5 (or −0.5), meaning that the entire
spin in the right half is oriented upwards (downwards). For
better visualization we can define the spatial z-spin component
density as

ρσ (x,t) = �†(x,t)σ̂z�(x,t)

= (ψ∗
↑(x,t),ψ∗

↓(x,t))
(

1 0
0 −1

)(
ψ↑(x,t)
ψ↓(x,t)

)

= |ψ↑(x,t)|2 − |ψ↓(x,t)|2, (14)

and compare it with the total electron density defined as

ρ(x,t) = �†(x,t)�(x,t) = |ψ↑(x,t)|2 + |ψ↓(x,t)|2. (15)

Figure 8 shows a comparison of the spin density (red
curve) and the total density (black curve) at the moment
of maximal spin separation (spin in the right half reaching
−0.5). In the left part of the wire the spin density completely
covers the total density, meaning that in this region the spin
is oriented upwards. Consequently, the right half contains the
spin oriented downwards. Now, if we put a potential barrier in
the center of the quantum wire, the spin density divides into
two spatially separated parts with opposite spins.

We should also notice that, as the amplitude of oscillation of
the spin-up position x↑(t) increases, the course of the spin in the
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FIG. 9. Simulation of the time evolution of the electron spin (as in
Fig. 7), but with the creation of a potential barrier at about t = 500 ps
with simultaneous cessation of the RSOI oscillations. Markings as in
Fig. 7.

right half of the wire σ R
z (t) (black curve in Fig. 7) starts to form

plateaus and resemble a square wave. Therefore, time intervals
with separated spins (plateaus) become longer compared to the
intervals of spin changes. This increases the tolerance for the
moment of the potential barrier creation. Figure 9 shows
the results of a simulation, in which a potential barrier was
created in the center of the potential well at about t = 500 ps.

The wave function of the electron state shown in Fig. 8
is of Schrödinger’s cat type [41,45] and it can be written
as |↑〉|L〉 + |↓〉|R〉 with states |↑〉 and |↓〉 denoting spin
orientations, and states |L〉 and |R〉 denoting localization of
the electron, respectively, in the left and right half of the
quantum wire. After separation of both parts of the spin
density with a potential barrier, the parts can be relocated
to arbitrary positions and the wave function still describes the
Schrödinger’s cat type state. Such a wave function also has
another important feature, that is, it constitutes an entangled
state of spin state and state localized in two different spatial
regions [41]. This state has been observed experimentally in
ion traps [45,47,55,60]. The purpose of our study is to design
a nanodevice based on a planar semiconductor heterostructure
in which this effect could be observed.

In simulations presented in Figs. 2–6, we have shown
movement of the electron as a whole. In this case, self-focusing
was beneficial, since it stabilizes the shape of the wave packet.
Its influence was calculated with the image charge method
under the assumption that distance d between the quantum wire
and the metallic gate was equal to 50 nm. In the subsequent
simulations (Figs. 7–9) the self-focusing effect disturbs the
spin separation process and had to be eliminated. During
separation both parts of opposite spins interact with each
other through the induced charge. The interaction potential
is nonparabolic and destroys the parabolicity of the total
confinement potential effectively changing the frequency of
oscillations. The self-focusing was mitigated by placing the
quantum wire at a greater distance from the gate (we assumed
d = 1000 nm). During the design stage of a real nanodevice
we cannot proceed this way and self-focusing has to be
compensated in a different manner.

FIG. 10. Schematic view of the proposed multigated nanodevice
for the spin-density separation, which leads to the generation of the
Schrödinger’s cat type states. The top gate is not shown.

III. NANODEVICE GENERATING SCHRÖDINGER’S
CAT TYPE STATES

A. Nanodevice design and principles of simulation

For practical realization of the nanodevice we propose a
typical gated planar semiconductor heterostructure grown in
the z direction, with a quantum well (QW) parallel to its surface
(x,y plane). Figure 10 shows a schematic view of the proposed
nanodevice. The QW is made of InSb which has a relatively
high Rashba coupling. Two blocking layers, below and above
the QW, are made of AlxIn1−xSb ternary with x = 25%, for
which the bottom of the conduction band is shifted up by 320
meV, creating potential barriers [61–63]. The substrate may
consist of AlxIn1−xSb highly doped with donors (n++). The
lower blocking layer is 230 nm thick, while the upper one is
of a thickness of 50 nm. The InSb QW inbetween is 20 nm
thick. An array of gates, as depicted in Fig. 11 (z0 denotes the
z position of the QW), is deposited on the heterostructure.
Similar, somewhat complex, gate layouts can be found in
various experimental works [16,64–66], being successfully
deposited on a surface of a heterostructure. Moreover, the top
of the structure is covered with a layer of dielectric material
(AlN) of thickness 320 nm. Finally, we put an additional layer
of metal on the dielectric (not shown in the picture).

We choose InSb for the quantum well material, as it is
characterized by a large value of spin-orbit coupling αso, which
allows for effective generation of cat type states in times much
shorter than the coherence time of the spin qubit. The choice of

FIG. 11. The layout of the gate array viewed from above: the
long rails between pairs of the side electrodes; the top gate (covering
whole device) is not visible. The density of the trapped electron is
also shown, localized at the initial moment in the center, calculated
as |�(x,y,t = 0)|2.
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InAs with a several times smaller value of αso would increase
several times the time of operation of the device.

If there is no electric field, the electrons fill the QW up
to the Fermi level, creating a two-dimensional electron gas
(2DEG). Electrons trapped in the QW have two degrees of
freedom in lateral directions (x and y). By applying negative
voltages to gates (in relation to the substrate) we can remove
the 2DEG from the quantum well leaving only one electron
trapped between two long central gates (rails). The voltages
applied to the rails block electron movement along the y axis.
To the remaining gates, we apply voltages creating a parabolic
confinement potential along the x axis.

The potential distribution in the nanodevice is calculated
by solving the Poisson’s equation in a computational box
surrounding the entire device. To simplify the boundary
conditions setup, we covered the entire structure with a layer of
metal, although it does not have any considerable impact on the
operation of the nanodevice. We have chosen a computational
box with dimensions Lx = 2340 nm, Ly = 1200 nm, Lz =
620 nm as optimal. In the simulations we consider all the
complexity of the structure by including the geometry details,
voltages applied to the substrate and gates, the time-dependent
distribution of the electron in the QW, and also the charge
induced on the gates or the (conducting) substrate.

The confined electron is treated as a particle in a 2D QW
with a motion frozen in the z direction; hence, we assume a
time-dependent Hamiltonian of the form

H (x,y,t) =
(
− h̄2

2m

(
∂2
x + ∂2

y

) − |e|ϕelst(x,y,z0,t)

)
12

+HR(x,y,z0,t). (16)

Here m = 0.014me denotes the effective band mass of an
electron in InSb material, and ϕelst constitutes the potential
felt by the electron calculated as

ϕelst(r,t) = ϕtot(r,t) − ϕself (r,t), (17)

with ϕtot being the total potential inside the nanodevice
calculated at each time step using the generalized Poisson’s
equation [39],

∇ · [ε0ε(r)∇ϕtot(r,t)] = −ρ(r,t). (18)

This is solved with boundary conditions created by voltages
applied to the gates. The charge distribution ρ(r,t) is calculated
as in Eq. (15), but here in three dimensions. We also need to
subtract the Coulomb potential, originating directly from the
electron distribution, from the total potential to avoid electron
self-interaction. This is calculated as

ϕself (r,t) = −|e|
4πεε0

∫
d3r′ ρ(r,t′)

|r − r′| . (19)

Details of this method can be found in [23]. The last term
of Eq. (16) constitutes the RSOI given by the following
Hamiltonian [28–30]:

HR(r,t) = αso|e|
h̄

Ez(r,t)(pyσx − pxσy), (20)

with the z component of the electric field Ez(r,t) =
−∂zϕelst(r,t) and the Rashba coupling αso = 5.23 nm2 for InSb
material [30].

The value of the Rashba coupling strictly depends on
quantum well material (InSb) parameters. It may also depend
on the barrier material and details of the electron confinement
within the heterostructure in the z direction. The exact coupling
calculations and the validity of the used Rashba model have
been included in the Appendix. If the InSb layer is grown in
the [111] crystallographic direction, the Dresselhaus spin-orbit
interaction Hamiltonian [1,67,68] can be reduced to a pure
Rashba-like term: ∼pxσy [69]. Such a term adds a constant
offset to the Rashba coupling and does not affect the presented
spin-density separation process.

We apply voltages to the gate array depicted in Fig. 11.
Initially the rails and the top gate (not visible) are set to
U = −400 mV. To the side gates located in the center of
the structure (gates U0) we apply voltages 10 mV lower
(U0 = U − 10 mV = −410 mV). Voltages for the remaining
side gates are calculated as Ui = U0 − γ i2 with γ = 5 mV.
The zero reference voltage Uref = 0 is applied to the doped
substrate.

Now, we generate the ground state of an electron using
the imaginary time evolution method [70]. Then, during the
real time evolution of the system we change sinusoidally the
voltages applied to all the gates, according to the formula

U (t) = Ũ + 
Ũ sin(ωt), (21)

with Ũ = −400 mV, 
Ũ = 300 mV, and ω tuned to the
characteristic frequency of the obtained harmonic confinement
potential. Specifically, U (t) depicts the voltage applied to the
rails and the top gate. Voltages applied to the remaining (side)
gates are shifted in relation to the U (t) voltage in the same
way as at the beginning of the simulation. Consequently, the
shape of the confinement potential along the x axis remains
virtually the same (parabolic with the same curvature) for
the entire simulation, even though the potential is shifted
by a time-dependent value. Oscillations of the gate voltages
[Eq. (21)], relative to the zero voltage on the substrate, cause
oscillations of the electric field (Ez) perpendicular to the
surface of the heterostructure, and thereby the SOI oscillates
as well. According to Eq. (20), the RSOI oscillations force the
electron motion along the x axis (y motion is blocked), with
direction depending on the value of the spin projection on the
y axis. Let us now express the electron wave function as a
linear combination of two components with spin parallel and
antiparallel to the y axis:

�(x,y,t) = ψy(x,y,t)χy + ψ−y(x,y,t)χ−y, (22)

with eigenvectors of the Pauli σy matrix χy = (1
i) and χ−y =

( 1
−i). The RSOI moves these two components in opposite

directions, separating the electron wave packet into two parts
with the opposite orientation of the y-spin projection.

The separation will be tracked using two parameters. First
σ R

y (t), the expectation value of the Pauli-y matrix calculated
in the right half of the nanodevice, i.e., for x > Lx/2. And
second, the expectation value of the position calculated using
the wave function component with spin along the y axis:
x↑(t) = ∫ L

0 x|ψy(x,y,t)|2dxdy [with a similar definition of
x↓(t) for ψ−y component with spin along −y].
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FIG. 12. Simulation of the time evolution for the electron trapped
in the nanodevice presented in Figs. 10 and 11 with sinusoidally
varying voltages applied to the gates. Initially the electron spin is
oriented along the z axis. The blue curve shows the position calculated
for the ψy component (with the spin along y): x↑(t), and the black
one denotes the y-spin component calculated in the right half of
the potential well: σ R

y (t). This simulation neglects the self-focusing
effect.

B. Preliminary simulations

Since the simulation within the 1D model has shown
that self-focusing destroys the potential parabolicity, the first
3D simulations were performed without this effect. This
can be easily done by neglecting the presence of charge in
the Poisson’s equation (18). In Fig. 12, we see results of
such a simulation obtained for a frequency of oscillations
[Eq. (21)] corresponding to the harmonic oscillator energy
h̄ω = 0.331 meV.

We start from the electron wave function with spin oriented
along the z axis, i.e., an equally weighted linear combination of
components with spin parallel and antiparallel to y, generated
as the ground state of the parabolic confinement potential. We
perform simulations with a correctly tuned voltage oscillation
frequency [in Eq. (21)]. As a result, we get expectation values
of the y-spin component in the right half of the nanodevice
(black curve) similar to the time courses from Fig. 7. The curve
reaches the value σ R

y (t) > 0.499, which indicates almost full
spatial spin separation. The long plateau regions with σ R

y (t) ≈
0.5 mean that the intervals in which the spin remains separated
are long enough to set an additional potential barrier between
the separated spin density parts to further enhance separation.

The period of oscillations of voltages applied to the gates
of the order of 10 ps is near the limits of current technological
capabilities. However, we should note that the frequency of
oscillations depends on the parabolic confinement potential
and can be reduced several times by lowering the control
voltages Ui by reducing the γ coefficient.

In Fig. 13, we can see another case of such simulations,
but this time with the self-focusing effect included. The
Poisson’s equation is solved with the same permittivity (InSb)
ε = 17.9 for the entire computational box. This corresponds to
a hypothetical situation in which the nanostructure is covered
not with a dielectric layer but with a semiconductor layer of

FIG. 13. Simulation similar to that of Fig. 12 but with self-
focusing effect included and the permittivity value for InSb (ε = 17.9)
set for the entire computational box. The markings are as in Fig. 12.

permittivity similar to the InSb. This time the wave functions
with opposite spins do not fully separate and σ R

y (t) does not
reach the value of 0.5 (or −0.5) closely enough. The Poisson’s
equation solution includes the self-focusing effect caused by
the induced charge in both the gates and the conducting
substrate. The sources of this charge have an influence on
the potential felt by the electron.

Let us look at Fig. 14. It presents how the potential energy in
the QW changes with the inclusion of the self-focusing effect.
The case with self-focusing (blue curve) clearly deviates from
the case without self-focusing (red curve). The potential energy
for the first case (blue curve) remains acceptably parabolical,
but during wave-function separation, the interaction with the
induced charge weakens, since the wave packet splits into two
separated parts and the potential felt by each one changes.
These changes and the resulting nonparabolicity hinder the

FIG. 14. Potential energies in the vicinity of their minima,
calculated for three cases: (red curve) with self-focusing neglected,
(blue curve) with self-focusing taken into account, and (black dashed
curve) with self-focusing included for a nanostructure covered with a
dielectric layer. All potentials are shifted, so that the minima coincide.
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FIG. 15. Simulation of the time evolution of the electron trapped
in the nanostructure with dielectric compensation of self-focusing.
Markings as in Fig. 12.

electron acceleration. The effect of self-focusing could be
mitigated by increasing the distance between the QW and the
gates or the substrate.

C. Effect of adding a dielectric

In the proposed nanostructure (Fig. 10), the distance
between the QW and the substrate is 240 nm and for
the top metallic gate 380 nm, which are high enough for
negligible self-focusing. However, to neutralize the influence
of self-focusing originating from the rails and the side gates,
we employ another nanodevice design. This is achieved by
placing a dielectric layer on top of these gates, see Fig. 10
(but under the top gate), with permittivity lower than the
permittivity of the QW material. For this purpose, we used
AlN material with permittivity εAlN = 7.6 (εInSb = 17.9). If we
simply used the image charge method for the interface of two
dielectric media, the image charge induced within the material
of lower permittivity −q(εAlN − εInSb)/(εAlN + εInSb) � 0.4q

would have the same (negative) sign as the primary charge
q = −|e| (located in the material of higher permittivity).
Therefore, such a dielectric addition could compensate the
(positive) charge induced on the metallic gates.

We observe such an effect in simulations. In Fig. 14, the
black dashed curve shows the potential energy calculated for
one such case of compensation. In the device region between
800 and 1500 nm in which the electron is accelerated and
separated [x↑(t) oscillations range—see Fig. 13], the black
curve from Fig. 14 coincides with the red one. This clearly
means that self-focusing has been neutralized by defocussing
due to the presence of the dielectric layer. Such a compensation
also requires a careful tuning of the rail widths and the distance
between them. Figure 11 shows relatively large areas not
covered with any gates. In these areas the semiconductor comes
into direct contact with the dielectric.

Figure 15 shows results of the simulation with spin-
dependent electron acceleration due to oscillating spin-orbit
coupling in the nanostructure covered with the dielectric
layer. This time the tuned voltage oscillation frequency is
of h̄ω = 0.325 meV. The course of the expectation value

FIG. 16. Fragment of the time evolution with visible results of
setting up the barrier, dividing the nanodevice into two regions.
Markings as in Fig. 12.

of the spin right σ R
y (t) starts to resemble ones from Figs. 7

and 12. Characteristic plateaus appear again, giving a lot of
time for setting up a potential barrier between the separated
parts. The most favorable moment to create such a barrier
is at t1 = 123 ps. At this moment we stop any oscillations
of voltages and keep them fixed. Moreover, for the two
gates marked as U0 the voltages are decreased by 150 mV,
namely U0(t1) = U (t1) − 160 mV. This procedure elevates the
potential in the center of the structure, creating a potential
barrier. This effectively divides the nanodevice into two
regions: left and right. The last fragment of the simulation
depicting the barrier setup moment is shown in Fig. 16. The
σ R

y (t) (black curve) remains close to the value −0.5, which
means that spin in the right part of the nanodevice is oriented
along −y. The position of part with spin along y-x↑(t) (blue
curve) no longer returns to the upper part of the graph but it
falls and remains down due to the repulsive influence of the
barrier.

Now, the x↑(t) starts to oscillate in the left half of
the nanodevice. These oscillations indicate that, during the
separation stage, the electron did not get rid of the excess of
energy. The frequency of the oscillations has also changed,
since the local curvature of the confinement potential is now
slightly different. The oscillations have a negative influence on
the nanodevice operation, because the separated spin-density
part can tunnel through the barrier while colliding with it. This
manifests itself via a small rise in the final part of the σ R

y (t)
course (barely visible in Fig. 16).

Oscillations, however, can be easily eliminated by sub-
sequent elevation of the barrier at the moment when the
velocity of spin density parts [i.e., d

dt
x↑(t) and d

dt
x↓(t)] is

zero. Figure 16 shows a good candidate for such a moment
at t2 = 127 ps. The barrier is elevated by decreasing the
voltage applied to the U0 gate by additional 100 mV [now
U0(t2) = U (t1) − 260 mV]. Figure 17 shows results of a
simulation for that case, with no rise in the final part of the
σ R

y (t). Figure 18 shows the wave packet and the potential
barrier in the nanodevice center at the moment of maximal
separation. This time we compare the spin and total electron
densities calculated along the x axis but, unlike the 1D case,
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FIG. 17. The final fragment of the time evolution of the system
with the potential barrier setup and its subsequent elevation. Markings
as in Fig. 12.

here also integrated along the y direction. We use the following
formulas:

ρσ (x,t) =
∫ Ly

0
dy �†(x,y,t) σ̂y�(x,y,t)

=
∫ Lz

0
dy(|ψy(x,y,t)|2 − |ψ−y(x,y,t)|2), (23)

ρ(x,t) =
∫ Ly

0
dy �†(x,y,t)�(x,y,t)

=
∫ Ly

0
dy(|ψy(x,y,t)|2 + |ψ−y(x,y,t)|2). (24)

The potential energy has two minima with a barrier between
them. Both parts of the spin density are separated and oscillate
closely around these minima, but the amplitude of oscillation
is much smaller than in the case in which the potential barrier
was elevated only once. If we raise a barrier of full height at
the first time by lowering the voltages by the full 250 mV at

FIG. 18. Final shapes of the spin density divided into two spatially
separated parts with opposite y spins (red curve), the total density
(black curve), and the confinement potential at y0 = Ly/2 (blue
curve). The densities are defined according to Eqs. (23) and (24).

time t1, the amplitude of the oscillations will be significantly
higher.

We mention that our proposal is robust against decoherence
effects. The presented operation times on the electron spin
are about 100 ps for the complete electron-spin-density
separation—see, e.g., Figs. 12 or 15—and are much shorter
than the electron-spin coherence times in InSb material [71].
These operation times might be further improved (reduced) by
increasing the frequency ω/2π .

Detection of the obtained Schrödinger’s cat type states
could be based on measuring a fraction of charge of a definite
spin, so-called spin-to-charge conversion, using a quantum
point contact (QPC) interface.

IV. SUMMARY

We proposed a design for a nanodevice based on a typical
planar semiconductor heterostructure in which it is possible
to create an entangled state of Schrödinger’s cat type. This
is achieved by spatial separation of the electron densities
corresponding to opposite spin directions. Such a state has
been generated in quantum optics [45–47].

To create this state in our nanostructure, we need to use
coherent states of the harmonic oscillator which are obtainable
only for ideally parabolic confinement potentials. Generation
of such a potential is one of the most important results of
this paper. Nearly ideal parabolic potential along the x axis is
achievable in the proposed multigate nanodevice (see Figs. 10
and 11) if we neglect the interaction of the electron confined in
the quantum well with the induced charge on the device gates.
This interaction causes self-focusing of the electron density,
making spin separation much harder. A remedy for this effect
is defocusing achieved by covering the entire nanostructure
with a dielectric of lower permittivity compared to the well
material. We have shown that self-focusing can be effectively
compensated by adding a dielectric layer with simultaneous
careful adjustment of the inner gate (rails) geometry.

We have performed simulations of numerous variants of our
nanodevice via solution of the time-dependent Schrödinger
equation with simultaneous tracking of the potential via
solution of the Poisson’s equation at every time step. As a
result, we were able to take into account the geometry details,
varying voltages applied to gates and changes of the electron
density, including also oscillating spin-orbit interaction, which
induces the spin separation effect.
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APPENDIX: RASHBA SPIN-ORBIT COUPLING
IN SEMICONDUCTOR HETEROSTRUCTURES

Here we will briefly review valid models of the Rashba
effect in III–V asymmetric semiconductor heterostructures.
We will make calculations of the spin-orbit coupling for these
models, and compare them showing the validity of our chosen
model [Eq. (20)].
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Starting with the earliest works of Bychkov and Rashba
[28,29], where they introduce discussed models, electrons
confined at the heterojunction form two-dimensional electron
gas (with x and y degrees of freedom):

HR = α k2D× ẑ · σ , (A1)

with two-dimensional electron momentum h̄k2D = h̄(kx,ky,0),
and versor ẑ normal to the junction surface. The coupling
strength α in the Hamiltonian (A1) is proportional to the
external electric field Ez (introducing asymmetry to the
confinement) and some material dependent parameter αso,
which describes material details of the junction in the z

direction: α = αso[z]eEz. Moreover in [30] we find a summary
of the famous discussion between Ando [72] and Lassnig [73],
which states that the Rashba spin coupling in the conduction
band results from the electric field in the valence band: 〈Ev〉c.

In work [74] the authors skip the band offset at the junction
assuming an infinite barrier. Therefore, when calculating the
αso, they take the parameters of the conduction and valence
bands only for the well material, using the formula

αso = h̄2

2m




Eg

2Eg + 


(Eg + 
)(3Eg + 2
)
. (A2)

For the InSb band parameters [75] Eg = 235 meV, 
 =
810 meV, m = 0.0135me we get from the above formula
αso = 5.125 nm2. A more complicated formula than (A2)
but also a more accurate formula [30, Eq. (6.22)] gives a
similar value 5.23 nm2. The coupling is proportional to the
external field E, which in general is three dimensional [30, Eq.
(6.9)]. In this work we assume a similar model, by replacing
αẑ = αsoeEzẑ → αsoeE in Eq. (A1), thus obtaining Eq. (20),
and taking the parameter value of αso = 5.23 nm2.

Let us now see if our model [30,74] is sufficient and
compare it with the model presented in [76]. The latter is a
refinement of [74] and is complete in the sense that it contains
the confinement details within the heterostructure quantum
well in the growth direction (z)—including different material
parameters on both sides of the junction (effective masses, cou-
pling values, and bands parameters). Now we assume a single
electron confined in the z direction within our heterostructure,
i.e., in a 20-nm-wide AlxIn1−xSb/InSb/AlxIn1−xSb quan-
tum well (with x = 25%) and the conduction-band offset
v0 = 320 meV together with the external field Ez. Such a
conduction-band profile for the heterostructure used in our
device is shown in Fig. 19 (green curve).

Let us now assume the effective Hamiltonian in the z

direction for a conduction electron [76] (nonparabolicity is
negligible here) as

Hc(z) =
{− h̄2

2m
d2

dz2 + |e|Ezz z in InSb,

− h̄2

2M
d2

dz2 + v0 + |e|Ezz elsewhere
. (A3)

Note that the effective mass is discontinuous here, with the
value of m = 0.0135me for the InSb well, and M = 0.028me

outside in the Al0.25In0.75Sb barriers region. The band mass in
the heterostructure is denoted by the blue curve in Fig. 19.

For AlSb band mass is mAlSb = 0.140 [75] thus for the barrier
alloy we assume mb = 0.75 m(InSb) + 0.25 mAlSb � 0.045 me.
Similarly, for the AlSb material we get Eb

g = 773 meV,
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FIG. 19. The conduction-band profile (green curve) for the
AlInSb/InSb/AlInSb heterostructure present in our device, together
with the electron density (magenta) obtained for the Hamiltonian [76]
(Eq. (A3)) with the discontinuous effective mass (blue). Assumed
electric field Ez = 1.33 mV/nm.


b = 777 meV, and, resulting from Eq. (A2), the spin-orbit
coupling αb

so = 0.33 nm2. The band mass and the spin-orbit
coupling should be further renormalized in the barrier region.
Using formulas (7) and (9) from [76] we finally obtain
M � 0.62mb = 0.028me and Aso � 3.35 αb

so = 1.10 nm2.
For these parameters we find eigenstates of the Hamiltonian

Eq. (A3). We assume that the electron confined in the junction
is in the ground state ψ0(z). For such a narrow quantum well
(20 nm) the first excited state is separated on the energy
scale by about 120 meV. In a quantum well of height of
320 meV and width of 20 nm we have three bound states
of energies: 39.82 meV, 154.05 meV, and 287.25 meV. For
this calculated conduction electron density ρ(z) = |ψ0(z)|2
(magenta in Fig. 19) we can finally calculate the average value
of the Rashba coupling in the heterostructure:

αh
so =

∫
z in InSb

dzρ(z) αso +
∫

z in barrier
dzρ(z)Aso. (A4)

Note that the αh
so depends on the external electric field Ez via

the Hamiltonian (A3).
For comparison, we additionally calculate the RSOI cou-

pling value in our heterostructure within the simple toy model
αt

so [30]. The α coupling is here simply calculated as a product
of the αso (in InSb) and the average electric field within the
valence band Ev(z) (orange curve in Fig. 20) weighted with the
electron density (magenta curve) in the conduction band (green
curve): αso〈Ev(z)〉c. For a given Ez the effective coupling is
αt

so = αso〈Ev〉c/Ez. The electron density is calculated here
as in Fig. 19. We compare this result with the analytical
expression for 〈Ev〉c = v0+vv

v0
Ez [Eq. (6.33) from [30]], with

the offset in the valence band vv/v0 � 0.22 [75], giving
αa

so � 1.22αso.
Let us now compare all the presented models as a function

of the external electric field Ez assuming values, as in our
nanodevice, between 0.33 and 2.33 mV/nm. In Fig. 21 we
plotted αh

so for the most accurate model [76], taking into
account confinement details in the z direction as well as
the barrier material (green curve); αt

so, the simple toy model
calculating a mean field in the valence band [30] (blue curve).
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FIG. 20. The conduction- (green curve) and the valence-band
profile (orange one) for the heterostructure. In the simple toy model
the electric field from the valence band averaged with the conduction
electron density (magenta) allows us to determine the spin-orbit
coupling.

Both are compared with αso from a model that neglects details
about the barrier in the junction [30,74] (magenta) and the
analytic solution from a toy model [30] αt

so. The last two
curves are independent of the electric field Ez. Values for the
toy model (blue and orange) slightly overestimate the value
we assumed (magenta). Nevertheless the most accurate and
complex model (green) produces results that are about 1%
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FIG. 21. Comparison of the all presented models. The toy models
(blue and orange curves) overestimate the RSOI coupling, while
the most accurate model (green curve) gives only small (about 1%)
correction to the one assumed in the work (magenta curve).

lower for the range of electric fields used in our device (not
greater than about 2.33 mV/nm).

According to presented calculations we conclude that
within the range of electric fields present in our device,
corrections to αh

so taking into account details of confinement
in the junction are negligible (of the order of 1%). Thus in
our calculations we use a simpler spin-orbit coupling model,
which takes into account only the QW material, for which we
get the coupling constant αso = 5.23 nm2.
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[2] I. Žutić, J. Fabian, and S. Das Sarma, Rev. Mod. Phys. 76, 323
(2004).

[3] T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe,
and J. L. O’Brien, Nature (London) 464, 45 (2010).

[4] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).
[5] P. Zhang and F. Nori, Phys. Rev. B 92, 115303 (2015).
[6] L. Fu and C. L. Kane, Phys. Rev. Lett. 100, 096407 (2008).
[7] R. M. Lutchyn, J. D. Sau, and S. Das Sarma, Phys. Rev. Lett.

105, 077001 (2010).
[8] J. Klinovaja, P. Stano, and D. Loss, Phys. Rev. Lett. 109, 236801

(2012).
[9] Y. Oreg, G. Refael, and F. von Oppen, Phys. Rev. Lett. 105,

177002 (2010).
[10] E. T. Owen, M. C. Dean, and C. H. W. Barnes, Phys. Rev. A 89,

032305 (2014).
[11] A. Bertoni, P. Bordone, R. Brunetti, C. Jacoboni, and S.

Reggiani, Phys. Rev. Lett. 84, 5912 (2000).
[12] T. Hayashi, T. Fujisawa, H. D. Cheong, Y. H. Jeong, and Y.

Hirayama, Phys. Rev. Lett. 91, 226804 (2003).
[13] K. D. Petersson, J. R. Petta, H. Lu, and A. C. Gossard, Phys.

Rev. Lett. 105, 246804 (2010).
[14] D. Loss and D. P. DiVincenzo, Phys. Rev. A 57, 120 (1998).
[15] C. Kloeffel and D. Loss, Annu. Rev. Condens. Matter Phys. 4,

51 (2013).

[16] M. D. Shulman, O. E. Dial, S. P. Harvey, H. Bluhm, V. Umansky,
and A. Yacoby, Science 336, 202 (2012).

[17] L. Trifunovic, O. Dial, M. Trif, J. R. Wootton, R. Abebe, A.
Yacoby, and D. Loss, Phys. Rev. X 2, 011006 (2012).

[18] L. Trifunovic, F. L. Pedrocchi, and D. Loss, Phys. Rev. X 3,
041023 (2013).

[19] A. Pal, E. I. Rashba, and B. I. Halperin, Phys. Rev. B 92, 125409
(2015).

[20] S. Mehl and D. P. DiVincenzo, Phys. Rev. B 92, 115448 (2015).
[21] F. Hassler, G. Catelani, and H. Bluhm, Phys. Rev. B 92, 235401

(2015).
[22] P. Szumniak, J. Pawłowski, S. Bednarek, and D. Loss, Phys.

Rev. B 92, 035403 (2015).
[23] S. Bednarek, B. Szafran, R. J. Dudek, and K. Lis, Phys. Rev.

Lett. 100, 126805 (2008).
[24] S. Bednarek and B. Szafran, Nanotechnology 20, 065402

(2009).
[25] S. Bednarek, P. Szumniak, and B. Szafran, Phys. Rev. B 82,

235319 (2010).
[26] S. Bednarek and B. Szafran, Phys. Rev. Lett. 101, 216805

(2008).
[27] E. Rashba, Sov. Phys. Solid State 2, 1109 (1960).
[28] Y. A. Bychkov and E. Rashba, JETP Lett. 39, 78 (1984).
[29] Y. A. Bychkov and E. I. Rashba, J. Phys. C 17, 6039 (1984).
[30] R. Winkler, Spin-orbit Coupling Effects in Two-Dimensional

Electron and Hole Systems (Springer-Verlag, Berlin, 2003).

115308-12

https://doi.org/10.1103/RevModPhys.79.1217
https://doi.org/10.1103/RevModPhys.79.1217
https://doi.org/10.1103/RevModPhys.79.1217
https://doi.org/10.1103/RevModPhys.79.1217
https://doi.org/10.1103/RevModPhys.76.323
https://doi.org/10.1103/RevModPhys.76.323
https://doi.org/10.1103/RevModPhys.76.323
https://doi.org/10.1103/RevModPhys.76.323
https://doi.org/10.1038/nature08812
https://doi.org/10.1038/nature08812
https://doi.org/10.1038/nature08812
https://doi.org/10.1038/nature08812
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/PhysRevB.92.115303
https://doi.org/10.1103/PhysRevB.92.115303
https://doi.org/10.1103/PhysRevB.92.115303
https://doi.org/10.1103/PhysRevB.92.115303
https://doi.org/10.1103/PhysRevLett.100.096407
https://doi.org/10.1103/PhysRevLett.100.096407
https://doi.org/10.1103/PhysRevLett.100.096407
https://doi.org/10.1103/PhysRevLett.100.096407
https://doi.org/10.1103/PhysRevLett.105.077001
https://doi.org/10.1103/PhysRevLett.105.077001
https://doi.org/10.1103/PhysRevLett.105.077001
https://doi.org/10.1103/PhysRevLett.105.077001
https://doi.org/10.1103/PhysRevLett.109.236801
https://doi.org/10.1103/PhysRevLett.109.236801
https://doi.org/10.1103/PhysRevLett.109.236801
https://doi.org/10.1103/PhysRevLett.109.236801
https://doi.org/10.1103/PhysRevLett.105.177002
https://doi.org/10.1103/PhysRevLett.105.177002
https://doi.org/10.1103/PhysRevLett.105.177002
https://doi.org/10.1103/PhysRevLett.105.177002
https://doi.org/10.1103/PhysRevA.89.032305
https://doi.org/10.1103/PhysRevA.89.032305
https://doi.org/10.1103/PhysRevA.89.032305
https://doi.org/10.1103/PhysRevA.89.032305
https://doi.org/10.1103/PhysRevLett.84.5912
https://doi.org/10.1103/PhysRevLett.84.5912
https://doi.org/10.1103/PhysRevLett.84.5912
https://doi.org/10.1103/PhysRevLett.84.5912
https://doi.org/10.1103/PhysRevLett.91.226804
https://doi.org/10.1103/PhysRevLett.91.226804
https://doi.org/10.1103/PhysRevLett.91.226804
https://doi.org/10.1103/PhysRevLett.91.226804
https://doi.org/10.1103/PhysRevLett.105.246804
https://doi.org/10.1103/PhysRevLett.105.246804
https://doi.org/10.1103/PhysRevLett.105.246804
https://doi.org/10.1103/PhysRevLett.105.246804
https://doi.org/10.1103/PhysRevA.57.120
https://doi.org/10.1103/PhysRevA.57.120
https://doi.org/10.1103/PhysRevA.57.120
https://doi.org/10.1103/PhysRevA.57.120
https://doi.org/10.1146/annurev-conmatphys-030212-184248
https://doi.org/10.1146/annurev-conmatphys-030212-184248
https://doi.org/10.1146/annurev-conmatphys-030212-184248
https://doi.org/10.1146/annurev-conmatphys-030212-184248
https://doi.org/10.1126/science.1217692
https://doi.org/10.1126/science.1217692
https://doi.org/10.1126/science.1217692
https://doi.org/10.1126/science.1217692
https://doi.org/10.1103/PhysRevX.2.011006
https://doi.org/10.1103/PhysRevX.2.011006
https://doi.org/10.1103/PhysRevX.2.011006
https://doi.org/10.1103/PhysRevX.2.011006
https://doi.org/10.1103/PhysRevX.3.041023
https://doi.org/10.1103/PhysRevX.3.041023
https://doi.org/10.1103/PhysRevX.3.041023
https://doi.org/10.1103/PhysRevX.3.041023
https://doi.org/10.1103/PhysRevB.92.125409
https://doi.org/10.1103/PhysRevB.92.125409
https://doi.org/10.1103/PhysRevB.92.125409
https://doi.org/10.1103/PhysRevB.92.125409
https://doi.org/10.1103/PhysRevB.92.115448
https://doi.org/10.1103/PhysRevB.92.115448
https://doi.org/10.1103/PhysRevB.92.115448
https://doi.org/10.1103/PhysRevB.92.115448
https://doi.org/10.1103/PhysRevB.92.235401
https://doi.org/10.1103/PhysRevB.92.235401
https://doi.org/10.1103/PhysRevB.92.235401
https://doi.org/10.1103/PhysRevB.92.235401
https://doi.org/10.1103/PhysRevB.92.035403
https://doi.org/10.1103/PhysRevB.92.035403
https://doi.org/10.1103/PhysRevB.92.035403
https://doi.org/10.1103/PhysRevB.92.035403
https://doi.org/10.1103/PhysRevLett.100.126805
https://doi.org/10.1103/PhysRevLett.100.126805
https://doi.org/10.1103/PhysRevLett.100.126805
https://doi.org/10.1103/PhysRevLett.100.126805
https://doi.org/10.1088/0957-4484/20/6/065402
https://doi.org/10.1088/0957-4484/20/6/065402
https://doi.org/10.1088/0957-4484/20/6/065402
https://doi.org/10.1088/0957-4484/20/6/065402
https://doi.org/10.1103/PhysRevB.82.235319
https://doi.org/10.1103/PhysRevB.82.235319
https://doi.org/10.1103/PhysRevB.82.235319
https://doi.org/10.1103/PhysRevB.82.235319
https://doi.org/10.1103/PhysRevLett.101.216805
https://doi.org/10.1103/PhysRevLett.101.216805
https://doi.org/10.1103/PhysRevLett.101.216805
https://doi.org/10.1103/PhysRevLett.101.216805
http://www.jetpletters.ac.ru/ps/1264/article_19121.shtml
https://doi.org/10.1088/0022-3719/17/33/015
https://doi.org/10.1088/0022-3719/17/33/015
https://doi.org/10.1088/0022-3719/17/33/015
https://doi.org/10.1088/0022-3719/17/33/015


GENERATION OF SCHRÖDINGER CAT TYPE STATES IN . . . PHYSICAL REVIEW B 96, 115308 (2017)

[31] K. C. Nowack, F. H. L. Koppens, Y. V. Nazarov, and L. M. K.
Vandersypen, Science 318, 1430 (2007).

[32] S. Nadj-Perge, S. Frolov, E. Bakkers, and L. P. Kouwenhoven,
Nature (London) 468, 1084 (2010).

[33] S. Nadj-Perge, V. S. Pribiag, J. W. G. van den Berg, K. Zuo,
S. R. Plissard, E. P. A. M. Bakkers, S. M. Frolov, and L. P.
Kouwenhoven, Phys. Rev. Lett. 108, 166801 (2012).

[34] M. Malard, I. Grusha, G. I. Japaridze, and H. Johannesson, Phys.
Rev. B 84, 075466 (2011).

[35] A. López, Z. Z. Sun, and J. Schliemann, Phys. Rev. B 85, 205428
(2012).

[36] Y. Ban, X. Chen, E. Y. Sherman, and J. G. Muga, Phys. Rev.
Lett. 109, 206602 (2012).
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