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Influence of the nuclear Zeeman effect on mode locking in pulsed semiconductor quantum dots
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The coherence of the electron spin in a semiconductor quantum dot is strongly enhanced by mode locking
through nuclear focusing, where the synchronization of the electron spin to periodic pulsing is slowly transferred
to the nuclear spins of the semiconductor material, mediated by the hyperfine interaction between these. The
external magnetic field that drives the Larmor oscillations of the electron spin also subjects the nuclear spins to
a Zeeman-like coupling, albeit a much weaker one. For typical magnetic fields used in experiments, the energy
scale of the nuclear Zeeman effect is comparable to that of the hyperfine interaction, so that it is not negligible.
In this work, we analyze the influence of the nuclear Zeeman effect on mode locking quantitatively. Within a
perturbative framework, we calculate the Overhauser-field distribution after a prolonged period of pulsing. We
find that the nuclear Zeeman effect can exchange resonant and nonresonant frequencies. We distinguish between
models with a single type and with multiple types of nuclei. For the latter case, the positions of the resonances
depend on the individual g factors, rather than on the average value.
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I. INTRODUCTION

The electronic spins in ensembles of quantum dots in
semiconductor materials, such as GaAs/InGaAs, have been
proposed as possible building blocks for quantum computers
[1–3]. At first glance, these systems appear to be unsuitable for
this application because of the fast decoherence caused by the
hyperfine coupling of the electrons to the nuclei of the con-
stituent material [4–10]. However, it has been demonstrated
[11–15] that the coherence time can be vastly increased by
subjecting the system to periodic optical pulses and an external
magnetic field. The underlying mechanism is understood as
mode locking: The spin dynamics gradually synchronizes to
the pulse repetition rate [14–16]. Nonresonant contributions
eventually die out. Because the resonant frequencies are set by
the pulse repetition rate only, the system becomes immune to
dephasing and to small variations between individual quantum
dots in the ensemble.

One can distinguish an electronic and a nuclear contribution
to mode locking. The electron spin is affected directly by the
pump pulses, and therefore responds rapidly: synchronization
builds up after a few pulses already. The nuclei are not
excited directly by the pulses, but the hyperfine interaction
mediates the electronic mode locking slowly to the nuclear
spins. As a result, nuclear contributions corresponding to
resonant frequencies of the electronic Larmor oscillations
grow, whereas nonresonant ones vanish. This phenomenon
is known as nuclear focusing, and is responsible for the long
coherence times reported in experimental works [14,15].

The resonant Larmor oscillations are characterized by
extremal electron spin polarization at the moment of each
pulse. In practice, this means that roughly an integer or a
half-integer number of electronic Larmor oscillations fits into
one pulse interval. Within a simplified model without nuclear
Zeeman interaction, the system prefers the half-integer case
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[17], because the nontrivial action of the pulse is dominant
over the “idle” pulses in the integer case. Although this
model provides intuitive understanding of mode locking,
the absence of the nuclear Zeeman interaction can alter the
mode-locking behavior dramatically: In the presence of the
nuclear Zeeman effect, the resonant frequencies may be found
at the integer values [18], which suggests that the nuclear
Zeeman coupling can introduce a π shift that exchanges
resonant and nonresonant frequencies.

In this work, we extend the perturbative method presented in
Ref. [17] by including the Zeeman coupling of the nuclei to the
external magnetic field. The nuclear Zeeman effect introduces
frequency shifts, which we extract quantitatively: the charac-
teristic magnetic-field strength, where the nuclear oscillations
(Larmor frequency ≈10 MHz/T) are synchronized with the
pulsing (≈76 MHz), lies at a few tesla. This value is within the
typical range used in pump-probe experiments [14–16,19,20].

First, we consider a model where all nuclei have the
same unique nuclear g factor. In parallel to earlier works
[17,18,21], we calculate the distribution of the Overhauser
field (magnetic field induced by the nuclear spins) and observe
the onset of mode locking. (Throughout this work, we shall
use the term mode locking as meaning the effect induced
by nuclear focusing, unless stated otherwise.) The peaks
in this distribution, the hallmark for mode locking [14,22],
appear at frequencies corresponding to either an integer or a
half-integer number of Larmor oscillations within one pulse
period, depending on the strength of the nuclear Zeeman effect.
The latter is linearly proportional to the nuclear g factor as well
as to the external magnetic field. We are thus motivated to study
the influence of variation of these quantities.

Subsequently, we consider a model with multiple nuclear
species (elements and isotopes), with different nuclear g

factors. In this scenario, the peak positions in the Overhauser-
field distribution (OFD) depend on the individual g factors,
rather than on the average value. Because the g factors
of the Ga and As nuclei differ significantly [23,24], it is
possible that for a specific magnetic field, some nuclear species
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are compatible with peaks at integer, and others with half-
integer resonant frequencies. We show that in this case, this
competition prevents the OFD from building a well-developed
peak structure.

Faraday rotation measurements in the typical pump-probe
experiments resolve the time-dependent expectation values
of the electron spin. The OFD cannot be measured directly,
but some information can be inferred indirectly from the
electron spin dynamics, more precisely its Fourier transform
[25]. However, the latter is dominated by the electronic
steady state that sets in rapidly. The effect of the nuclei (the
Overhauser field) is weak, but could be extracted from the
electronic dynamics by subtracting the electronic steady state,
as demonstrated in the Appendix.

This article is organized as follows. We introduce the
model and the methods briefly in Sec. II. We explore the
physics of the nuclear Zeeman effect in relation to mode
locking in Sec. III. In Sec. IV, we summarize our results
and discuss the perspectives toward experimental verification.
In the Appendix, we elaborate on the connection between
the OFD and the experimentally accessible electron-spin
dynamics.

II. MODEL AND METHODS

Our analysis is based on the central spin (Gaudin) model
[26] that governs the unitary time evolution of the central
and nuclear spins. This model incorporates the coupling of
the spins to the magnetic fields, as well as the hyperfine
coupling between the electron spin, on the one hand, and each
of the N nuclear spins, on the other hand [6,27]. We split the
Hamiltonian

H = He + HN + Hcoupl (1)

into three terms,

He = h̄λŜx + ET|T〉〈T|, (2a)

HN = h̄

N∑
j=1

�j Î
x
j , (2b)

Hcoupl = h̄

N∑
j=1

aj
�̂Ij · �̂S, (2c)

that describe the purely electronic part, purely nuclear part,
and coupling, respectively. Here, Ŝμ (μ = x,y,z) are the spin
operators for the central spin, and Î

μ

j (j = 1, . . . ,N) are the
spin operators of the N nuclei.1 For the electron, the coupling
to the external magnetic field �B = Bx̂ is governed by the
Larmor frequency λ = geμBB/h̄. The energy of the excited
trion (|T〉) state is ET. The nuclei couple to the magnetic field
according to HN, where �j = gN,jμNB/h̄ encodes the typical
frequency for nucleus j . The nuclear g factor gN,j depends on
the element and the isotope. The hyperfine interaction given

1In this work, we simplify the model by treating the nuclear spin
degrees of freedom as spin-1/2, although in fact the Ga and As nuclei
have total spin I = 3/2.

TABLE I. Magnetic moments μ, spin quantum numbers I , and
g factors gN = μ/μNI of the Ga and As isotopes. The right-hand
column gives the resonant frequency of the nucleus in megahertz
at 1 T. These values have been measured by nuclear magnetic
resonance experiments, and are listed in several reference tables (e.g.,
Refs. [23,24]).

gNμN/h

Isotope μ/μN I gN (MHz/T)

69Ga 2.01659(5) 3/2 1.34439 10.248
71Ga 2.56227(2) 3/2 1.70818 13.021
75As 1.43948(7) 3/2 0.95965 7.315

by Hcoupl between the central spin and nucleus j has a strength
h̄aj , which is proportional to the probability density given by
the electronic wave function at the position of the nucleus;
here, we assume a Gaussian wave function by choosing aj ∝
e−j/(N+1) [17,28,29].

The energy and time scales of the electronic Zeeman effect
are given by the effective g factor ge. The actual value can vary,
depending on the structure and composition of the sample
[20]; here, we consider the typical value |ge| = 0.555 [15].
The actual value of ge is negative, but in the following,
we shall tacitly consider its magnitude only, because the
sign is not relevant to our results. The value ge = 0.555
amounts to a Larmor frequency (per tesla of magnetic field) of
geμB/h = 7.77 GHz/T. The nuclear Zeeman effect is much
weaker due to the larger mass of the nuclei compared to the
electron. Typical values of the nuclear Larmor frequencies are
gNμN/h ≈ 10 MHz/T, i.e., roughly 800 times smaller than
the electronic value. For the nuclear isotopes in GaAs quantum
dots, the values of gN and gNμN/h are listed in Table I.

The aim of this work is to gain understanding from
a model that describes the nuclear Zeeman effect in the
simplest form. It should be noted that our assumption of
the nuclear spin splitting �j being proportional to B may be
violated in experiments which involve InGaAs quantum dots.
In these systems, the strain-induced crystal field gives rise
to an inhomogeneous quadrupole interaction that affects the
splitting between the nuclear spin states significantly [30,31].
Since we neglect these effects in this work, comparisons
between our theoretical results and experimental ones should
be made with due care.

For additional simplicity, we start by considering a model
with a single species of nuclei, to which we assign an effective
g factor of gN = 1.2246, which is the weighted average over
30% 69Ga, 20% 71Ga, and 50% 75As (by number of nuclei or
molar fraction) [32]. Then, the values of �j are all equal to a
single value �, so that Eq. (2b) simplifies to

HN = h̄�

N∑
j=1

Î x
j . (3)

The corresponding Larmor frequency per tesla is �/2πB =
gNμN/h = 9.337 MHz/T.

For the time evolution under periodic pulsing, we use the
same method as presented in Ref. [17]. The pump pulses are
applied every 13.2 ns and act instantaneously, as a unitary
matrix operation on the central-spin Hilbert space [21,33,34].
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Here, we consider π pulses only [35], and we assume that the
light is circularly polarized, so only one spin species (here, |↑〉)
can be excited to the trion state |T〉 [36]. The time evolution is
governed by the Lindblad equation [37]

dρ

dt
(t) = Lρ(t) (4a)

with

Lρ = − i

h̄
[H,ρ] − γ

(
1
2b†bρ + 1

2ρb†b − bρb†
)
, (4b)

where b = |↑〉〈T|. The last term describes the effectively
nonunitary process of the trion decay, with characteristic decay
rate γ ∼ (400 ps)−1 [19].

The numerical results in this work are obtained with the
perturbative method described in Ref. [17], appropriately
augmented in order to incorporate the nuclear Zeeman term,
Eq. (2b). In this method, the basis states are chosen to be
the eigenstates of Ŝx and Î x

j , the electron and nuclear spin
operators parallel to the magnetic axis (x̂). The zeroth order of
the perturbation theory is essentially the longitudinal part of the
Hamiltonian, which is diagonal in the basis states, and which
includes the nuclear Zeeman term HN [Eq. (2b)]. It should
be stressed that the perturbation is the transverse (y and z)
part of the hyperfine action only [6,17,27]. At the level of the
Hamiltonian, the nuclear Zeeman effect HN merely induces
shifts of the zeroth-order eigenenergies by

zp =
N∑

j=1

�j 〈p|I j
x |p〉 =

N∑
j=1

�js
p

j , (5)

where |p〉 = |sp

1 , . . . ,s
p

N 〉 is the nuclear configuration, with
s
p

j = ± 1
2 being the eigenvalues of the spin operator Î x

j . In the
simplified case with �j = � for all j , zp can only be an integer
or a half-integer multiple of �, namely, −(N/2)�,(−N/2+1)
�, . . . ,(N/2)�.

In the full perturbative treatment of the Liouville operator
L, the purely oscillatory contributions to the solutions of
the Lindblad equation involve exponentials of the form
exp[−it(εp,σ − εq,τ )], where εp,σ are the eigenvalues of the
Hamiltonian divided by h̄, with p,q labeling the nuclear
configuration, and σ,τ the central-spin state. In addition, the
solution has monotonically and oscillatory decaying contribu-
tions, which we may neglect here. Adding the nuclear Zeeman
contribution through the substitution εp,σ → εp,σ + zp, we
find the frequency shifts

Zpq = zp − zq =
N∑

j=1

�j

(〈p|I x
j |p〉 − 〈q|I x

j |q〉) (6)

to the oscillation frequencies εp,σ − εq,τ . Because the per-
turbation theory is an expansion in orders of the transverse
hyperfine coupling, i.e., in the number of spin flips, the kth
order involves shifts being k-fold sums of ±�j . In the
simplified model with one nuclear frequency �, the shifts are
exactly k′� with k′ = −k, . . . ,k. We note that the nuclear
Zeeman term not only affects the frequency eigenvalues,
but also the eigenvectors, which contain factors of the form
1/(εp,σ − εq,τ ). This statement is also true for higher-order

corrections to the eigenvalues. For simplicity of the argument,
we will not discuss these higher orders in detail.

III. MODE LOCKING

A. Single nuclear species

First, we explore mode locking for a single nuclear species,
where all nuclei share the same value of the g factor,
gN = 1.2246. The nuclear contribution to mode locking is
conveniently studied using the distribution of the longitudinal
spin operator Ôx = ∑

j aj Î
x
j [17,18,21], which is proportional

to the Overhauser field, the magnetic field generated by the
nuclear spins, in the x direction. This quantity is closely
related to the electronic Larmor frequency, which equals
λ + Ox in leading order [see Eqs. (2a) and (2c)]. (More details
are provided in the Appendix.) To be precise, we study the
histogram of values Ox

pp in the expectation value

〈Ox〉(t) = Tr[ρ(t)Ôx] =
∑

p

ρpp(t)Ox
pp, (7)

where ρ(t) is the density matrix that solves the Lindblad
equation, Eq. (4), in perturbation theory [17]. The resulting
histogram density at time t is denoted as ρt (Ox).

Because mode locking sets in slowly, the effect is barely
larger than the discretization noise caused by the histogram
binning. Thus, we do not study ρt (Ox) directly, but instead
divide out the initial distribution, and study the relative
difference

ρrel
t (Ox) = ρt (O

x)/ρ0(Ox) − 1. (8)

We shall refer to this quantity as the relative OFD.
In Fig. 1, we present the distributions of Ox for several

values of the magnetic field B. The dephasing time has been
fixed at T ∗ = 1 ns, and the pulsing period is Tpulse = 13.2 ns =
1/(75.8 MHz) [14]. The number of nuclei in the model is
N = 17. The resonant Larmor frequencies are given by, in
leading order,2

λ + Ox = mπ/Tpulse, (9)

where even and odd values of m correspond to an integer or a
half-integer number of Larmor oscillations fitting between two
subsequent pulses, respectively. The values of the Overhauser
field Ox that solve this equation are indicated by the vertical
lines—blue (dashed) for odd, red (dotted) for even multiples
of π/Tpulse.

In Ref. [17], we have demonstrated that in absence of the
nuclear Zeeman effect, the OFD exhibits peaks that reside
at odd values of m. The intuitive understanding, why odd is
preferred as opposed to even, is the action of the pulse: At
odd resonances, the pulse acts nontrivially by flipping the
electron spin (from 〈Sz〉 < 0 to 〈Sz〉 > 0). At even resonant
frequencies, the electron spin has performed an integer number
of Larmor oscillations since the previous pulse; the pulse
then acts trivially. We intuitively expect the nontrivial pulsing

2The effects of the quadratic frequency shifts and the trion decay
[17] have been included tacitly in the calculation, but they are
irrelevant for the discussion.

115303-3



BEUGELING, UHRIG, AND ANDERS PHYSICAL REVIEW B 96, 115303 (2017)

−2 −1 0 1 2

0.05

0

−0.05

ρ
re

l
t

(O
x
)

(a) B = Bπ ≈ 2.03 T

−2 −1 0 1 2

0.01

0

−0.01

(b) B = 3
2
Bπ ≈ 3.05 T

−2 −1 0 1 2

0.01

0

−0.01

(c) B = 2Bπ ≈ 4.06T

−2 −1 0 1 2

0.01

0

−0.01

ρ
re

l
t

(O
x
)

Ox [ns−1]

(d) B = 5
2
Bπ ≈ 5.07 T

−2 −1 0 1 2

0.005

0

−0.005

Ox [ns−1]

(e) B = 3Bπ ≈ 6.09 T

−2 −1 0 1 2

0.005

0

−0.005

Ox [ns−1]

(f) B ≈ 6.09T, no NZ

FIG. 1. Relative OFDs ρrel
t (Ox) = ρt (Ox)/ρ0(Ox) − 1 with t = 1000Tpulse for various values of B. The system size is N = 17 and the

pulse period is Tpulse = 13.2 ns. For (a)–(e), the g factor is gN = 1.2246. In (f), we plot the relative OFD without nuclear Zeeman effect (no
NZ) as a reference. The vertical blue (dashed) lines indicate the odd resonant frequencies, and the red (dotted) lines the even ones. Note that
the vertical scales differ.

action (i.e., at odd resonant frequencies) to dominate. We are,
however, unaware of a rigorous proof.

The aim of the following discussion is to investigate how
the nuclear Zeeman effect changes the positions of the peaks.
We draw attention especially to the behavior at the values
B = 2.03 and 4.06 T [see Figs. 1(a) and 1(c)]. At these values,
there are peaks exclusively at either even or odd multiples
of π/Tpulse, respectively. This behavior can be understood
as follows. The leading order of the frequency shifts Zpq

[Eq. (6)] induced by the nuclear Zeeman effect is ±�. Also
other multiples of � are present, but the amplitudes of these
contributions are much weaker, so they can be neglected
in the perturbation theory. Thus, the “magic” values of the
magnetic field can be obtained from equating the nuclear
Larmor frequency (Zeeman energy) to the pulsing frequency

2� = nπ/Tpulse (10)

with integer n. If n is odd (even), then the peaks reside at the
even (odd) resonant frequencies. In particular, for � = 0, in
absence of the nuclear Zeeman effect, the peaks are at the odd
positions [see Fig. 1(f) and Ref. [17]].

The factor of 2 on the left-hand side of Eq. (10) derives
from the two-spin-flip nature of mode locking: The OFD is
determined by the diagonal elements of the density matrix
in the spin-x basis. Acting with a single spin flip onto a
diagonal element yields a nondiagonal element. In order to
reach a diagonal element again, an even number of spin
flips is required. In Ref. [17], this argument has been used
to understand why the mode-locking rate is quadratic in the
perturbation parameters aj/λ (and consequently, proportional
to B−2) in leading order. This argument extends to the
present case: The contribution of the nuclear Zeeman effect
to the frequency associated to a matrix element of the form

|p; σ 〉〈q; τ | is (approximately) Zpq , as stated by Eq. (6); a
single spin flip of the nuclei thus contributes a factor e±it�

in the time evolution of this matrix element. In other words,
all contributions are thus shifted in frequency by c� with
c = −2,0,2.3 Thus, the frequency shifts of the resonances
of the OFD, induced by the nuclear Zeeman effect, involve
multiples of 2� rather than of �, which one may have expected
naively based on Larmor precession of the nuclei.

For the following, we will find it convenient to denote the
smallest nonzero magnetic field strength for which there are
peaks only at the even resonant frequencies as Bπ . Its value

Bπ = πh̄

2gNμNTpulse
= h

4gNμNTpulse
≈ 2.03 T (11)

follows from solving Eq. (10) for n = 1. If the external mag-
netic field B is increased beyond Bπ , the OFD alternates be-
tween resonances at odd and even frequencies with a period of
2Bπ = 4.06 T. The typical magnetic field value of 6 T [15] ap-
proximately corresponds to n = 3, from which even resonance
frequencies are expected. The result in Fig. 1 is compatible
with similar observations in other theoretical works [18,25].

At intermediate fields, where Eq. (10) is not fulfilled for
integer n, as in Figs. 1(b) and 1(d), there are peaks at even
and odd multiples of π/Tpulse. There is a continuous crossover
between the even and odd cases: If one varies the magnetic field
continuously from the even to the odd case, the peaks at the
even resonances decrease in amplitude, approximately until

3The statement that the OFD involves only even numbers of spin
flip holds in any perturbation order. In higher order, where terms with
more than two spin flips play a role, c may be equal to other even
integers as well.
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FIG. 2. Relative OFDs ρrel
t (Ox) for various values of gN. The

magnetic field is B = 6 T in all cases. The vertical blue (dashed)
lines indicate the odd resonant frequencies, and the red (dotted) lines
the even ones. The vertical scales are equal for all panels. Here,
N = 17 and t = 1000Tpulse.

halfway, i.e., where 2� ≈ (n + 1
2 )π/Tpulse. Then, peaks at the

odd resonances grow, until reaching their maximum amplitude
for odd integer n. There are no peaks at other frequencies than
the even or odd resonant ones. This feature has also been
reported in other studies of the nuclear Zeeman effect based
on the central-spin model [25,38].

B. Mode-locking rate; dependence on gN

The question arises as to whether the nuclear Zeeman term
affects the rate at which mode locking sets in. We cannot
answer this question from Fig. 1, because the mode-locking
rate scales proportionally to B−2 already in absence of the
nuclear Zeeman effect [17]. In order to take out the effect of
the magnetic field, we fix it at 6 T, and vary the value � by
varying gN instead. We note that this procedure is an artificial
theoretical construct, which is not possible in any kind of
experiment, where the g factor is not a tunable variable. In
theory, however, it allows us to identify the effect of the nuclear
Zeeman term in a convenient manner.

The results are shown in Fig. 2. As we vary gN, condition
(10) is satisfied alternatingly for odd and even n (even and
odd resonances, respectively). The period of this alternation is
0.828 at this magnetic field value.

Comparing Figs. 2(a) and 2(d), which satisfy Eq. (10)
for n = 0 and n = 2, respectively, we observe no significant
difference in the peak amplitudes. Similarly, the even case
gN = 0.414 [n = 1, Fig. 2(b)], can be compared to the even
case n = 3 shown in Fig. 1(d), at an approximately equal
magnetic field. The intermediate values [Fig. 2(c)] show
markedly different behavior, i.e., with peaks at different
positions and of different heights. Based on these observations,
we conjecture that the peak structure and amplitude depends
on the phase value of 2�Tpulse modulo 2π , but not on the
integer number �2�Tpulse/2π of multiples of 2π . In other

0 2 4 6 8

2.0

1.5

1.0

0.5

0.0

g N

B [T]

E

E

E

O

O

O

O

2(b)

2(c)

2(d)

1(a) 1(b) 1(c) 1(d) 1(e)

2(a) 1(f)

FIG. 3. “Phase diagram” for the odd (O, blue) and even (E, red)
resonance conditions governed by Eq. (10) as a function of the
magnetic field B and g factor gN. The labels odd and even correspond
to the frequencies where peaks are observed in the OFD: odd and even
multiples of π/Tpulse, respectively. The color coding is determined by
the values of cos 2�Tpulse with � = gNμNB/h̄, which expresses the
resonance condition Eq. (10) in terms of gN and B. The horizontal
dashed line corresponds to a value of gN = 1.2246 and the vertical
dashed line to a value of B = 6 T, i.e., the “sweeps” that constitute
Figs. 1 and 2, respectively. The panels of these figures are indicated by
the green triangles with the appropriate labels. The red circle indicates
a typical experimental situation at B = 6 T, and the blue square the
theoretical model without nuclear Zeeman effect, corresponding to
Figs. 1(f) and 2(a).

words, the mode-locking rate is essentially independent of
the nuclear Zeeman coupling strength �, although the peak
structure depends on the value of 2�Tpulse modulo 2π .

In an experimental setting where the g factor is fixed, but the
magnetic field is varied, the mode-locking rate scales roughly
∝B−2. In the presence of the nuclear Zeeman effect, the
dependence is more complicated, because it is a combination
of both the dependence on ∝B−2 and the dependence on the
value of 2�Tpulse modulo 2π .

In the long time scales typical for experiments, the mode-
locking rate cannot be extracted. Instead, experiments provide
information about the steady state, where the system converges
to at long times. Also, saturation effects and additional
interactions beyond the present theory may play a role, e.g.,
the quadrupolar [30,39] and dipole-dipole couplings [40]. In
contrast, the mode-locking rate is the “speed” at which the
system converges to the steady state. Its signatures (e.g., in the
amplitudes of prepulse and post-pulse Larmor oscillations)
should be sought instead at short time scales, typically
microseconds up to milliseconds.

For the mode-locking resonance condition, only the value
of � is relevant, not the separate values of the magnetic field B

and the g factor gN. Varying either of those, we alternatingly
enter regimes where the resonant peaks are at odd and even
resonant frequencies (odd and even multiples of π/Tpulse). In
Fig. 3, we present a “phase diagram” as a function of B and
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gN. The sweeps that constitute Figs. 1 and 2 are represented
by the horizontal and vertical dashed lines, respectively.

C. Two nuclear species

As a next step, we will lift the simplification of a single
“average” nuclear species. Instead, we suppose the system
is made up of an equal number of Ga and As nuclei. For
the Ga nuclei, we take the same isotope ratio as before, i.e.,
60% 69Ga and 40% 71Ga, which yields the average g factor
gN,Ga = 1.4899. For As, there is only one isotope, and we read
off gN,As = 0.959 65 directly from Table I.

The g factors not only affect the couplings �j of the nuclear
Zeeman effect itself, but also the couplings aj between the
nuclei and the central spin. For the latter, we recall that [5,6]

aj = 8π

3
μBμNgN,jV0|ψ(�rj )|2, (12)

where |ψ(�rj )|2 is the probability density of the central electron
at nucleus j , V0 is an appropriate volume factor [5], and gN,j =
μj/(μNIj ) is the appropriate nuclear g factor. Because we are
limited to small numbers of nuclei, we are interested in the
correct ratio of the aj ’s only, and in order to keep capturing
the correct collective behavior, we fix the value

∑
j a2

j such
that the dephasing time equals T ∗ = 1 ns. The distribution of
the aj ’s is thus set up as follows. First, we distribute the values
exponentially [17,28], which models the Gaussian shape of
the wave function ψ(�r). Then, the values aj (j = 1, . . . ,N )
are multiplied by gN,Ga for odd j and gN,As for even j . Finally,
the aj are scaled uniformly such that

∑
j a2

j = 8/(T ∗)2 with
T ∗ = 1 ns.

In this two-species scenario, the nuclei are not all resonant
at the same magnetic field, i.e., for a given magnetic field,
Eq. (10) cannot be satisfied for all nuclear species simultane-
ously. [We recall that the value gN implicitly appears in Eq. (10)
as a factor in �.] In other words, the characteristic magnetic
field [cf. Eq. (11)] is species specific. In this two-species
model, we have Bπ,Ga = h/(4gN,GaμNTpulse) ≈ 1.67 T and
Bπ,As = h/(4gN,AsμNTpulse) ≈ 2.59 T.

We consider the relative difference ρrel
t (Ox) of the OFD,

as before, at several magnetic-field values which correspond
to some resonance condition. In Figs. 4(a) and 4(b), B =
2Bπ,Ga and B = 2Bπ,As, respectively, i.e., the resonance
condition, Eq. (10), is fulfilled for n = 2. Here, we would
intuitively expect peaks at the odd resonance frequencies (the
blue dashed lines in the figure). By visual inspection, this
prediction is certainly valid for B = 2Bπ,Ga [Fig. 4(a)]. For
B = 2Bπ,As = 5.18 T, the peak structure is more complicated,
and the strongest peaks are at the even (red dotted lines)
resonance frequencies, because the odd-n magnetic-field value
B = 3Bπ,Ga = 5.00 T [see Fig. 4(c)] lies nearby and appears
to dominate. The odd-n magnetic-field value B = 3Bπ,As =
7.77 T for As; the peaks are quite well developed. Indeed,
this value of B lies a considerable distance from any even-n
resonance (e.g., B = 2Bπ,Ga = 6.67 T).

For reference, we include the OFD ρrel
t (Ox) for the

magnetic fields B = 2Bπ,avg and 3Bπ,avg, which correspond
to odd and even resonances, respectively, for the average
g factor gN,avg = 1.2246 [see Figs. 4(e) and 4(f)]. For B =
3Bπ,avg [Fig. 4(f)], the peaks align well with the odd resonant
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FIG. 4. Relative OFDs ρrel
t (Ox) at t = 1000Tpulse in the two-

species model with gN,Ga = 1.4899 and gN,As = 0.959 65, equally
distributed among the N = 18 nuclei. We probe the distribution at
five different magnetic fields where some resonance condition has
been fulfilled, namely, (a) B = 2Bπ,Ga ≈ 3.34 T, (b) B = 2Bπ,As ≈
5.18 T, (c) B = 3Bπ,Ga ≈ 5.00 T, (d) B = 3Bπ,As ≈ 7.77 T, (e) B =
3Bπ,avg ≈ 4.06 T, and (f) B = 3Bπ,avg ≈ 6.09 T. Additionally, we
show the OFD in absence of nuclear Zeeman coupling (no NZ) in
(g) and (h), using the same magnetic-field values as in (e) and (f),
respectively.

frequencies, although they are not so well developed as, for
instance, in Fig. 4(a). This is a significant difference to the
one-species model, where the peaks are aligned with the even
frequencies [see Fig. 1(d)]. For B = 2Bπ,avg [Fig. 4(e)], neither
even nor odd peaks dominate.

The OFDs in the latter two cases may be compared to the
result in absence of nuclear Zeeman effect, shown in Figs. 4(g)
and 4(h) for additional reference. If we do not consider the
nuclear Zeeman effect, the OFD is qualitatively identical
to the one-species case [cf. Fig. 1(f) versus Fig. 4(h)]. The
difference in the set of couplings aj , determined by Eq. (12)
with either one or two values of gN,j , does affect the OFD

115303-6



INFLUENCE OF THE NUCLEAR ZEEMAN EFFECT ON . . . PHYSICAL REVIEW B 96, 115303 (2017)

0 2 4 6 8

2.0

1.5

1.0

0.5

0.0

g N

B [T]

GaAs (avg)

69Ga

71Ga

Ga (avg)

75As

E

E

E

O

O

O

O

4(e) 4(f)

4(a) 4(c)

4(b) 4(d)

FIG. 5. “Phase diagram” for the odd (O, blue) and even (E, red)
resonance conditions governed by Eq. (10) as a function of the
magnetic field B and g factor gN (cf. Fig. 3). The horizontal dashed
lines indicate the g factor values of Ga and As isotopes. The dotted
lines are average g factors [labeled as (avg)] over the Ga isotopes
and for GaAs, respectively. The solid curve expresses the relation
between gN and Bπ given by Eq. (11). The colored markers indicate
the resonances fulfilled for the cases shown in Figs. 4(a)–4(f); the
crosses indicate the other isotope(s) in the two-species model for
which no resonance condition is fulfilled.

significantly: in both cases, the peaks are aligned with the odd
resonant frequencies.

In Fig. 5, we provide a “phase diagram” similar to Fig. 3,
with markers indicating the resonances and nonresonances
relevant to the two-species model, with magnetic fields
corresponding to the cases shown in Fig. 4. In particular,
we mention the cases B = 4.06 T and B = 6.09 T. For
B = 4.06 T, we find odd peaks in the one-species model
[see red markers in Fig. 5 at gN = gN,avg and Fig. 1(c)], but
peaks at both even and odd frequencies in the two-species
model. Indeed, the individual nuclei (Ga and As) are both on
the boundary of even and odd for this value of the magnetic
field, which explains the ambiguous behavior in Fig. 4(e). For
B = 6.09 T, the OFD shows even peaks in the one-species
model but odd peaks in the two-species model. We observe
from Fig. 5 that both Ga and As lie in the blue area for this
magnetic field, which indicates that for both species the odd
resonance lies closer than the even resonance.

D. Multiple species

The two-species results suggest that for the physics of
mode locking, the specific g factors are relevant. The naive
simplification to a single average value of gN yields a
qualitatively different OFD. Extending this idea further to a
larger number of nuclear species, we find that the two-species
model is also insufficient to provide reliable results, because
realistically, the materials are composed of more than two
isotopes. In particular, gallium contains large fractions of two
isotopes 69Ga and 71Ga with significantly different nuclear g

factors (see Table I).

We have indicated the nuclear g factors of the common
isotopes in Fig. 5. The nature of the resonance (peaks at even
or odd frequencies) associated to each nuclear species can
be read off conveniently by intersecting a constant-magnetic-
field (vertical) line with the constant-g-factor (horizontal) line
corresponding to the isotope.

For large magnetic fields (B � 3 T), the range of g factors
covers multiple even/odd areas in the phase diagram, meaning
that generally there will be “even” as well as “odd species” at
the same field strength. With the competition between opposite
types of resonances, it is difficult to predict where the peaks
in the OFD will lie, or even whether there are well-developed
peaks at all. This model predicts that for very small magnetic
fields (B � 1

2Bπ,71Ga ≈ 0.72 T), the nuclear Zeeman effect
is too weak for all isotopes, and thus the resonance peaks
will be at odd frequencies, as predicted in the model without
nuclear Zeeman effect. Interestingly, there is an intermediate
region where the magnetic field B approximately matches
Bπ for all nuclear species, i.e., all nuclei contribute to peaks
at even resonance frequencies. This region is bounded by
1
2Bπ,As ≈ 1.29 T and 3

2Bπ,71Ga ≈ 2.18 T. These results should
be considered with due care, because the accuracy of the
perturbative method is decreased in this low-field regime.

IV. DISCUSSION AND CONCLUSION

Mode locking arises due to synchronization of the elec-
tronic Larmor oscillations (frequency ≈geμBB/h̄) to the
pulsing frequency. The hyperfine interaction mediates this
effect to the nuclei, which become “focused” at a sequence
of resonant frequencies spaced by 2π/Tpulse. The nuclear
Zeeman effect can induce a shift of the resonant frequencies.
The relevant frequency scale is set by 2� = 2gNμNB/h̄, with
the factor of 2 deriving from the two-spin-flip nature of the
mode-locking dynamics. The ratio between 2� and the pulse
frequency determines whether the mode-locking peaks in the
OFD are at the odd or even resonant frequencies. In addition,
we find that for nuclei with different g factors, the individual
values are important, and that this may lead to an essentially
different OFD compared to the situation where the average
g factor is considered. Thus, for larger magnetic fields, we
cannot satisfy the resonance condition of a specific nature
(odd or even) for all possible g factors simultaneously. This
issue is absent for smaller magnetic fields of B � 2 T.

Unfortunately, we are unable to study the competition
between odd and even in more detail, due to possible finite-size
effects inherent to the method: the perturbative method is
limited to small numbers of nuclei N , and we cannot reach
values of N where finite-size effects will be eliminated. Thus,
we propose studies of the nuclear Zeeman effects with other
methods that may reach larger values of N as an interesting
perspective for future research. In particular, infinite N can
be treated in a classical approach, which mimics the present
quantum results fairly well [41].

Direct measurements of the Overhauser field are elusive;
the typical manner of probing the spin dynamics is through
Faraday rotation and ellipticity measurements in a pump-probe
configuration [14–16,42], which typically gives access to the
time evolution of the electron spin. The Fourier transform of
this quantity does not correspond immediately to the OFD.
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The amount of mode locking in the nuclei can be retrieved
indirectly from comparison of the amplitude and phase of the
electron spin Larmor oscillations before and after each pulse.
In order to confirm the effects proposed here, the magnetic-
field dependence of the phase shift of the electronic Larmor
oscillations at the pulse must be measured. The transition from
odd to even resonance conditions reported in this theoretical
work should be visible as a difference of π (half oscillation)
in the phase shift. In addition, it is required that the amplitude
before and after the pulse be (approximately) equal in size, in
order to ensure that the mode locking in the nuclear system
is sufficiently strong, and that the signatures are not mistaken
for the steady-state behavior of the electron that arises on very
short time scales [15,17].

To the best of our knowledge, the predicted phase difference
of π has not been demonstrated in experiment. Measurements
show that the prepulse phase at the pulse arrival times has a
rather regular dependence on the magnetic field, with piece-
wise constant values across wide ranges at magnetic fields, and
a sudden jump around B = 3.7 T, accompanied by a sharp
reduction of the prepulse Larmor amplitude [25]. This field
strength lies within the range where our theory predicts the
even-odd transitions, which suggest that the nuclear Zeeman
effect may be a possible origin. However, the aforementioned
requirements are not fulfilled: Firstly, the amplitude of the
prepulse Larmor oscillations suggests that the nuclei are not
strongly mode locked. Secondly, the phase values do not match
the expected values 0 or π . Finally, the magnetic field where
the jump occurs appears to be independent on the pulsing
frequency, which contradicts the theory exhibited in this work
[cf. Eq. (11)]. Thus, we cannot conclude that the observed
phase jump originates from the nuclear Zeeman effect. Further
research, both experimentally and theoretically is required
in order to understand this feature. In particular, the linear
dependence � = gNμNB/h̄ of the Zeeman splitting may be
replaced by a more general dependence �(B), in order to
account for nonlinearities in the splitting between nuclear spin
eigenstates, caused by the nuclear quadrupolar coupling [30]
and other additional interactions.
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APPENDIX: RELATION BETWEEN THE OFD
AND THE ELECTRON-SPIN DYNAMICS

In experiments, the OFD cannot be accessed directly.
Instead, mode locking is probed using Faraday rotation and/or
Faraday ellipticity measurements of the electron spin. The
relation between the two is not one-to-one, but they share some
common features. In this Appendix, we discuss this relation in
detail, in order to provide a connection between the theoretical
and experimental observations.
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FIG. 6. (a) Relative distribution f rel
t (�) [Eq. (A3)] of the elec-

tronic spin-z component [ρrel
t (Sz)] as a function of the frequency

�. The Larmor frequency λ is indicated. The red (dotted) and blue
(dashed) vertical lines indicate even and odd multiples of π/Tpulse,
respectively. The external magnetic field is B = 2Bπ ≈ 4.06 T. (b)
The difference between the Fourier distribution f rel

t (�) and the steady
state f st(�) [see Eq. (A4)]. (c) The corresponding relative OFD.
(d)–(f) The same quantities for B = 3Bπ ≈ 6.09 T. In all cases,
we have N = 16, t = 1000Tpulse, and gN = 1.2246 (single nuclear
species).

The basic idea of the connection between the Overhauser
field Ox and the electronic spin component Sz is the Over-
hauser shift of the Larmor frequency from λ = geμBB/h̄ to
approximately λ + Ox . There are additional corrections due
to a phase induced by the trion decay and the transverse
components Oy and Oz of the Overhauser field. The latter
contribution is responsible for the relation between Ox and
the electronic Larmor frequency being approximately, but not
completely one-to-one [17].

The electron spin rapidly synchronizes to the pulsing
frequency, because of its direct coupling to the pump pulses.
Thus, the electron-spin dynamics settles at a nearly steady
state after a few (≈10) pulses. From the combined action
of the pulse Sz → −( 1

4 − 1
2Sz) and of the (approximate)

time evolution Sz → Sz cos(�Tpulse), where � is the Larmor
frequency, we find the steady-state distribution [17]

s̄z(�) = cos �Tpulse

−4 + 2 cos �Tpulse
, (A1)

s̄y(�) = sin �Tpulse

−4 + 2 cos �Tpulse
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for the electronic degrees of freedom. If we consider the full
system including the nuclear degrees of freedom, then the
Fourier transform

Sz(�) =
∫ (k+1)Tpulse

kTpulse

dt e−i�tSz(t) (A2)

is approximately equal to s̄z(�) multiplied by a Gaussian
envelope function from the nuclear frequency distribution,
essentially the OFD ρt (Ox).

Thus, in order to extract the effect of the nuclear
mode locking from the electronic dynamics, we eliminate the
dominant contributions of the Gaussian envelope and the short-
term electronic steady state. First, we find the divide Sz(�)t at
large time (typically t = 1000Tpulse) by the initial distribution
Sz(�)0, which represents the Gaussian envelope apart from
some binning noise. Thus, we obtain the relative Fourier
distribution

f rel
t (�) = |Sz(�)t /S

z(�)0| − 1 (A3)

[cf. Eq. (8)]. We discard the phase information by
considering the amplitude |s̄| =

√
(s̄y)2 + (s̄z)2 rather than

the components. For the single-species model with N = 16
and B = 2Bπ , the numerically extracted relative Fourier
distribution is shown in Fig. 6(a). The resulting curve is almost
indistinguishable from the electronic steady-state distribution

f st(�) = |s̄(�)|/ 1
4 − 1 = 2 cos(�Tpulse)

4 − 2 cos(�Tpulse)
(A4)

[see Eq. (A1)].
Next, we subtract the contribution of the electronic steady

state by considering the difference f rel
t (�) − f st(�), which

is shown in Fig. 6(b). Here, the positive values at the odd
resonant frequencies and the negative values at the even ones

indicate that the peaks in f rel
t (�) slightly decrease in amplitude

compared to f st(�). The origin is the nuclear focusing; indeed,
if we compare the difference f rel

t (�) − f st(�) to the relative
OFD [for reference, included as Fig. 6(c)], we find that the
peak structure is highly similar.

We also present analogous results for B = 3Bπ [see
Figs. 6(d)–6(f)]. The relative Fourier distribution f rel

t (�)
is again almost indistinguishable from f st(�) [Eq. (A4)].
However, the difference f rel

t (�) − f st(�) exhibits positive
values at the even resonant frequencies and negative ones at
the odd ones—the opposite situation from B = 2Bπ . This
observation is compatible with the idea that the origin is
nuclear, as is indeed demonstrated from the relative OFD,
which has peaks at the even resonant frequencies, in this case.

Here, for relatively small degrees of mode locking, the
effect on the electronic dynamics 〈Sz〉(t) is small. Between
Figs. 6(a) and 6(d), the differences are unnoticeable. Peaks
reside at even multiples of π/Tpulse in both cases, which
corresponds to an even number of Larmor oscillations within
the period Tpulse. On the other hand, if we were able to probe
the system at large times, and assume a large degree of mode
locking, then in the “odd” case (e.g., B = 2Bπ ) the Fourier
spectrum of f rel

t exhibits strong peaks at odd multiples of
π/Tpulse, and correspondingly a half-integer number of Larmor
oscillations is found between two subsequent pulses.

Thus, time-resolved measurements 〈Sz〉(t) do show sig-
natures of mode locking (nuclear focusing), but the effect
is small unless the nuclei are subject to a high degree of
mode locking. The degree of mode locking may be estimated
from the ratio between the prepulse and postpulse (negative
and positive time, respectively) amplitudes of the Larmor
oscillations. Strong mode locking is characterized by nearly
equal amplitudes. We stress that this ratio depends nonlinearly
on the size of the peaks in the OFD [17].
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