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Dirac semimetal phase in hexagonal LiZnBi
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Based on first-principles calculations, we find that LiZnBi, a metallic hexagonal ABC compound, has a pair of
three-dimensional Dirac nodes and exhibits nontrivial topological properties under proper strain configurations.
The nontrivial topological nature of the strained LiZnBi is directly demonstrated by calculating its Z2 index
and the surface states. The low-energy states are shown to be sensitive to strain configurations, and we propose
that these nontrivial topological properties can be observed under compressive in-plane strain in experiments.
The finding of the Dirac semimetal phase in LiZnBi may intrigue further research on the topological properties
of hexagonal ABC materials and promote new practical applications.
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I. INTRODUCTION

Recently, topologically nontrivial quantum materials with
gapless band dispersions including Dirac semimetals and Weyl
semimetals began to attract increasing attention [1] due to
the existence of Fermi arcs on surfaces [2–6] and anomalous
transport phenomena [7–10]. A Weyl semimetal has multiple
crossings with nontrivial Berry fluxes near the Fermi level, in
which either spatial inversion symmetry (TaAs class [11,12])
or time-reversal symmetry (pyrochlore iridates [2]) is broken.
The Dirac fermions can be regarded as two copies of Weyl
fermions in Dirac semimetals, which are protected by crystal
symmetry regardless of time-reversal symmetry. The crystal
symmetry can be symmorphic (such as Na3Bi [4,13] and
Cd3As2 [14,15]) or nonsymmorphic (such as β-cristobalite
BiO2 [16] and antiferromagnetic CuMnAs [17]). The Dirac
or Weyl fermions in these materials mimic their counterparts
in high-energy physics: the dispersions near the Dirac or
Weyl node are linear along all three directions and the
Lorentz invariance is respected. Very recently, it has also been
shown that there exist type-II Dirac and Weyl semimetals in
condensed matter [18,19], where the Dirac cones are strongly
titled and the Lorentz invariance is violated. In experiments,
the type-II Dirac and Weyl semimetals can be realized in the
PtSe2 class [20,21] and WTe2 [22], MoTe2 [23], respectively.

From the view of material science, ABC compounds
represent an interesting compound family with many exotic
properties. Recent theoretical calculations indicated that the
hexagonal ABC compounds in the LiGaGe structure can be
a new family of ferroelectric and piezoelectric materials [24].
Their crystal structure is relatively simple and some of them
have polarizations with switching barriers comparable to those
of BaTiO3. Further studies showed that KMgBi, one member
of this family, is also a three-dimensional strong topological
insulator [25]. The interplay between ferroelectricity and
nontrivial topology can induce unique properties of the
topological surface states [25,26]. Different from topological
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insulators, a topological semimetal cannot be ferroelectric or
piezoelectric due to its gapless bulk spectrum. But when a
topological semimetal shares the same polar structure with its
piezoelectric substrate, the piezoelectric effect can provide an
effective approach to tuning its lattice structure and electronic
properties. Therefore, the hexagonal ABC compounds can be
a promising class of topological semimetals for their potential
versatility.

In this work, based on first-principles calculations, we show
that unstrained hexagonal LiZnBi hosts a pair of Dirac points;
but the corresponding Fermi arc surface states strongly couple
with the projections of bulk states around the � point, and thus
can hardly be observed in experiments. Via applying strain
without breaking crystal symmetry, the hexagonal LiZnBi
becomes an ideal three-dimensional (3D) Dirac semimetal.
By analyzing the orbital character of low-energy states, we
find that nontrivial topological characters of strained LiZnBi
result from a band inversion at the � point, and its topological
index and nontrivial Fermi arc surface states are confirmed by
our calculations. Finally, we study the response of low-energy
states to different strain configurations and find out that the
topological features of the Dirac nodes can be experimentally
revealed in LiZnBi by applying in-plane compressive strain.

II. METHODS

The first-principles calculations are carried out by using
density functional theory (DFT) with the projector aug-
mented wave method [27,28], as implemented in the Vienna
ab initio simulation package, VASP [29]. A plane-wave basis
set is used with a kinetic-energy cutoff of 300 eV. With
10 × 10 × 6 Monkhorst-Pack k points and the local-density
approximation (LDA) [30,31] for the exchange-correlation
interactions between electrons, the atomic structure is fully
relaxed until the residual forces are less than 1 × 10−3 eV/Å.
Then we used the modified Becke-Johnson exchange potential
[32,33] together with LDA for the correlation potential to get
the accurate electronic structure, where the spin-orbit coupling
is also included. The maximally localized Wannier functions
are obtained by the program WANNIER90 [34]. The Green’s
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FIG. 1. (a) Lattice structure of LiZnBi with the space group
P 63mc, where a and c are two lattice constants. Zn and Bi atoms
at Wyckoff positions 2b form a wurtzite structure, while Li atoms are
located at 2a. (b) The first Brillouin zone and its projections on (100)
and (001) surfaces. High-symmetry points are labeled.

function method [35] is used to calculate the surface electronic
spectrum and surface states.

III. RESULTS AND DISCUSSION

The stable lattice structure of LiZnBi, shown in Fig. 1(a),
belongs to the space group P 63mc. Li+ ions occupy the
interstitial sites of the wurtzite lattice of ZnBi− [36]. The cal-
culated equilibrium lattice constants of the wurtzite structure
are a0 = 4.47 Å and c0 = 7.28 Å, close to those experimental
values (a0 = 4.58 Å and c0 = 7.38 Å) reported in the Inorganic
Crystal Structural Database [37]. The first Brillouin zones
of the bulk, (001) surface, and (100) surface are shown in
Fig. 1(b).

Figure 2 shows the calculated band structures of LiZnBi
without and with strain. In both cases, the spin-orbit coupling
(SOC) is fully considered. We can see that the low-energy
states are mainly located near the � point. For the unstrained
case, some states along the M-L line also contribute to the
3D Fermi surface. Interestingly, even though the inversion
symmetry is broken in the lattice structure, all the bands along
the A-� line are doubly degenerate. Note that the little group
is C6v for any k point along that line. The double degeneracy
is protected by the combination of C6 rotation symmetry and
mirror symmetry because these two symmetry operators do not
commute with each other. For the states at the � point (labeled
by their representations in Fig. 2), our calculations indicate that
the �7 (s) and �8 states are dominated by s orbitals of Zn and
Bi atoms and the �8 states also have a substantial component
of Bi-pz orbitals. In contrast, the �9 and �7 (p) states are
mainly contributed by px ± ipy orbitals and pz orbitals of
Bi atoms, respectively. Since the states at k points along the
A-� line share the same little group with that at the � point,
the representation labels for states at the � point also apply
to four corresponding bands along the A-� line. As k moves
from A to �, the main components of the �9 and �8 states
change little because the coupling between states belonging
to different representations is forbidden by crystal symmetry.
For �7 (p) and �7 (s) states, the coupling mixes two states to
change their main components very much. This effect can be
clearly observed from the band structure along the A-� line in
Fig. 2, where the size of the red dots represents the relative
ratio of s orbitals from Zn and Bi atoms.

(b)

(a)

Dirac point

FIG. 2. Band structure along high-symmetry lines of LiZnBi in its
(a) unstrained structure and (b) strained structure. For (b), a = 0.98a0

and c is tuned to keep the volume of the unit cell. In both cases,
spin-orbit coupling is included and the Fermi energy is set to zero. The
size of the red dots along the A-� is proportional to the relative ratio
of s orbitals from Zn and Bi atoms. At the � point, four low-energy
states are labeled by their representations. The inset in (a) shows the
band structure near the � point. In (b), the 3D Dirac point is pointed
out by green arrows and the in-plane band dispersion around the Dirac
point is shown in the inset.

For the unstrained case, the calculated band structure
is shown in Fig. 2(a). At the � point, the band order is
�7 (p) > �9 > �8 > �7 (s). And for the states on these four
energy levels. the ẑ components of total angular momentum
Jz are ± 1

2 , ± 3
2 , ± 5

2 , and ± 1
2 , respectively. In LiZnSb, that

is a trivial semiconductor, �7 (p) and �9 belong to valence
bands, while �8 and �7 (s) are conduction bands [38]. By
substituting Sb atoms with Bi atoms, the chemical pressure in
LiZnBi makes the p orbitals of Bi and Zn dominated around
the Fermi level. In contrast to the trivial case, band inversions
can be observed at the � point for this compound, in which both
�7 (s) and �8 fall below �7 (p) and �9. And the strong coupling
between �7 (s) and �7 (p) will push their corresponding bands
away from the Fermi level. So only crossings between �8 and
�9 states exist along the A-� line with nonzero Z2 charge.
Considering different Jz for �8 and �9, we conclude that its
Z2 charge is 1 [39–41]. However, due to Dirac nodes in LiZnBi
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FIG. 3. LDOS for the (a),(c) (001) and (b),(d) (100) surface states of the strained LiZnBi. (a),(b) LDOS along high-symmetry lines where
the energy level of the bulk Dirac points, ED , is denoted by dashed white lines. (c),(d) The constant-energy contours at ED .

burying inside bulk states, it is difficult to experimentally
observe its topological properties, including Fermi arcs [5]
and chiral anomaly [10] (see Appendix A). Therefore, the
intrinsic LiZnBi is not a good Dirac semimetal candidate.

On the other hand, we find that the relative positions of
four energy levels at the � point are sensitive to strain. This
property provides an opportunity to tune electronic properties
of LiZnBi by applying proper strain without breaking crystal
symmetry. When the lattice constant c is enlarged and a

is reduced, the band order changes, as shown in Fig. 2(b).
Compared to the unstrained case in Fig. 2(a), the relative
positions of the �7 (p) and �8 states are exchanged. Due to
the symmetry-allowed coupling between �7 (s) and �7 (p),
only band crossings between �7 (p) and �9 states are observed
along the A-� line. These kinds of crossings are Dirac points
with nonzero Z2 charge [42,43]. The detailed calculations for
the Z2 index are shown in Appendix B. Herein, the crossing
at (0, 0, kD

z ≈ 0.074 × 2π/c), indicated by green arrows in
Fig. 2(b), can be described by the effective Hamiltonian near
the � point (shown in Appendix C). The band dispersions are
also linear along the in-plane momentum directions [see the
inset of Fig. 2(b)], leading to a 3D Dirac cone. Time-reversal
symmetry ensures that the same crossing also occurs at
(0, 0,−kD

z ). More importantly, a global gap at the �-K-M
plane emerges, accompanied by the change of band order at
the � point. So the Dirac nodes separate from the bulk bands
around the � point in the momentum space, and LiZnBi in
the strained structure becomes an ideal Dirac semimetal with
a pair of Dirac points near the Fermi level.

To further confirm the topological nature of strained
LiZnBi, we calculate its surface states on the (001) and (100)
surfaces. Figure 3(a) shows the surface states on the (001)
surface along K̃-�̃-M̃ . On this surface, two bulk Dirac points
are projected onto the same �̃ point. Their corresponding
surface states are just one linear Dirac cone with band
dispersion in the kx-ky plane. Figures 3(b) and 3(d) show
the surface bands and Fermi surface contour at the Fermi
level for the (100) surface. On this side surface, two bulk

Dirac nodes related by time-reversal symmetry are projected
to different points that are separated from the projected bulk
states and connected by Fermi arcs. In projected surface bands,
the nontrivial surface states terminate exactly at two projected
Dirac points and merge into bulk states, which is a signature
of nontrivial topology.

Because the strained LiZnBi is demonstrated to be a
topological Dirac semimetal, it is necessary to understand
how the strain affects the low-energy band structure and which
type of strain mostly favors the existence of those topological
properties. Our calculations indicate that main components
of the low-energy states near the � point are s,p orbitals
from Zn and Bi atoms. To simplify the following discussions,
we focus on the wurtzite sublattice (Zn-Bi) instead of the
whole LiGaGe structure. In conventional wurtzite materials,
such as GaN and InN, both the spin-orbit coupling and the
crystal-field splitting strongly affect the low-energy bands
around the Fermi level [44]. Compared to spin-orbit coupling,
the crystal-field splitting should be more sensitive to strain,
especially anisotropic strain. Similar to the case in wurtzite
materials, the crystal-field splitting here also originates from
the lattice distortion, which breaks the tetrahedral symmetry
(for one Zn/Bi atom, the length of the out-of-plane Zn-Bi bond
is different from those of the other three bonds). For example,
in the strained LiZnBi without SOC, the crystal-field effect
removes the degeneracy between px,y and pz orbitals. And
the crystal-field splitting �CF is defined as the gap between
�5(px,y) and �1(pz), as shown in Fig. 4(a). The dependence of
�CF on the two lattice constants (namely, a and c) is also
calculated and the results are presented in Fig. 4(b). The
crystal symmetry is preserved when the lattice constants differ
from a0 and c0. It can be seen that �CF is almost linearly
proportional to c

a
. And when �CF > 0.2 eV, the variations of

the lattice constants a and c have little effect on the crystal-field
splitting �CF as long as c

a
remains constant. The contour plot

in Fig. 4(b) confirms an important role of the crystal-field
splitting in opening the gap between px,y and pz orbitals.
Typically, in LiZnBi, the crystal-field splitting can change
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(b)(a)

FIG. 4. (a) Band structure of the strained LiZnBi along A − � − K . The lattice structure is the same as that of Fig. 2(b), but the spin-orbit
coupling is not included here. The valence-band maximum is set to zero. The two topmost energy levels in the valence bands are �5 and �1

(labeled by their representations), whose main components are px,y and pz orbitals of Bi atoms, respectively. The energy difference between
these two energy levels is defined as the magnitude of crystal-field splitting, �CF = E[�5] − E[�1]. (b) �CF vs two lattice constants a,c with
the contours (black dashed lines) labeled by the corresponding values. The inner atomic coordinates are all fully relaxed before calculating the
electronic structure.

as large as several-hundred millielectron volts with ∼1%
strain.

When SOC is considered, the energy level �5 in Fig. 4(a)
splits into two doubly degenerate energy levels in which the �9

state is the one closer to the Fermi level. Meanwhile, the energy
level �1 in Fig. 4(a) transforms to �7 (p). So, for the low-energy
states, we have �5 ⇒ �9, �1 ⇒ �7 (p). The gap between �9

and �7 (p) is affected by two factors—spin-orbit coupling
and crystal-field splitting. When a small anisotropic strain is
applied, the crystal-field splitting should be the key factor.
And our calculations support this argument. The contour plot
of E[�9] − E[�7 (p)] versus the two lattice constants a,c is
shown in Fig. 5(a). One can see that the gap between �9 and
�7 (p) indeed shares the same pattern with the crystal-field
splitting �CF shown in Fig. 4(b). As c

a
increases, the gap

or splitting becomes larger and correspondingly the color
becomes more red in both contour plots. Now, we are ready to
explain how the strain changes the low-energy band structure
in Fig. 2(b), especially the band order at the � point that
is important for understanding the appearance of the Dirac
fermion in the present system. In the unstrained case, the
band order at the � point is �7 (p) > �9 > �8 > �7 (s), as
shown in Fig. 2(a). When we apply the strain to decrease a or
enlarge c, the crystal-field splitting will reverse the band order
between �9 and �7 (p), as discussed above. Figure 5(b) shows
the contour plot of E[�8] − E[�7 (p)]. In general, the decrease
of a and increase of c tend to align the Zn-Bi bonds with the c

axis and push up the antibonding state of the Bi-pz orbital and
Zn-s orbital (�8 state). For the strained case [see Fig. 2(b)],
our calculations indicate that the strain actually makes �8

(a) (c)(b)

FIG. 5. Energy differences between low-energy levels at the � point in LiZnBi with different lattice constants. (a) E[�9] − E[�7 (p)],
(b) E[�8] − E[�7 (p)], and (c) min{E[�8],E[�9]} − max{E[�7 (p)],E[�7 (s)]}. The black dotted lines denote the zero-energy difference.
The green line in (c) represents the effect of the biaxial strain in the basal plane. For each green dot, c is determined by searching for the
lowest-energy structure with a fixed. And it is found that LiZnBi is an ideal Dirac semimetal when a = 0.97a0 or 0.98a0 (pointed out by black
arrows). The atomic coordinates are fully relaxed before electronic structure calculations.
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be the topmost energy level and we have the band order of
�8 > �9 > �7 (p). Moreover, a small anisotropic strain has
little influence on the s orbital if the unit-cell volume barely
changes. Therefore, the �7 (s) state still has the lowest-energy
level and there exists one band inversion between �9 and �7 (s)
at the � point. Away from the � point, we have a finite global
gap at the kz = 0 plane and two band crossings between �7 (p)
and �9 along the A-�-A line.

For the strained LiZnBi, the global band gap at the kz = 0
plane [as shown in Fig. 2(b)] is critical for observing the
topological properties of Dirac semimetals because the cross-
ing points are separated from other states in the momentum
space under this situation. We find that if min{E[�8],E[�9]}
is higher than max{E[�7 (p)],E[�7 (s)]}, this kind of global
band gap can be observed generally. To simplify the study
of other strain conditions, we can approximately use the
positive band gap at the � point between min{E[�8],E[�9]}
and max{E[�7 (p)],E[�7 (s)]} as the signature of realizing the
same band structure as that in Fig. 2(b). The variation of that
positive band gap with different lattice constants is shown in
Fig. 5(c): in general, smaller a and larger c favor the positive
band gap, consistent with our previous argument. Furthermore,
we propose that about 2% biaxial in-plane compressive strain
can reveal the topological properties of the Dirac nodes in
LiZnBi [the green line in Fig. 5(c)], which could be realized
in experiments by growing LiZnBi on a substrate with smaller
in-plane lattice constant.

IV. CONCLUSIONS

In summary, our first-principles calculations indicate that
LiZnBi, one of the hexagonal ABC compounds, is a 3D Dirac
semimetal, but its topological nodes bury inside hole pockets
of bulk states. When an in-plane compressive strain and/or
out-of-plane tensile strain is applied, new emergent Dirac
nodes are separated from the bulk states in the momentum
space and LiZnBi becomes an ideal Dirac semimetal. This
finding is confirmed by our surface state calculations in which
Fermi arcs are observed to connect two projected Dirac points
on the (100) surface. Furthermore, we demonstrate the physical
mechanism for the strain effect on low-energy band structures
in LiZnBi and find that a small strain facilitates the experi-
mental observation of its topological Fermi arcs. Therefore,
via growing on proper substrates (such as LiZnSb [37]), the
nontrivial topological properties in LiZnBi are achievable in
experiments. Our results not only unveil a candidate of Dirac
semimetal with great versatility, but also provide a promising
platform for further investigations of mutual effects between
ferroelectricity and nontrivial topology.
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FIG. 6. The constant-energy contour at E0
D on the (100) surface

of LiZnBi in the unstrained case. E0
D is the energy level of the 3D

Dirac node and the corresponding bulk band structure is shown in
Fig. 2(a).

APPENDIX A: (100) SURFACE STATES IN THE
UNSTRAINED LiZnBi

In the surface states on the (100) surface, the 3D Dirac nodes
are projected onto two distinct points. But the projections are
invisible in the constant-energy contour in Fig. 6 as they merge
into the normal surface states.

APPENDIX B: Z2 INDEX OF LiZnBi IN THE STRAINED
STRUCTURE

Besides the band inversion shown in Fig. 2(b), the eval-
uation of the Z2 index can directly identify the nontrivial
topology in the strained LiZnBi. Because the inversion
symmetry is absent, the Z2 index at the �-M-K plane is
determined by calculating the Wannier charge centers (WCCs).
The results are shown in Fig. 7. The center of the largest gap
jumps over seven WCC bands from � to M . The number of
the total jumps is odd, confirming the nonzero Z2 index in the
strained LiZnBi.

FIG. 7. WCCs along the �-M at the �-M-K plane are presented
by black dots. The red dots correspond to the center of the largest
WCC gap at the k point between � and M .
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APPENDIX C: EFFECTIVE HAMILTONIAN

As stated in the main text, it is the band inversion between �9 and �7 (s) at the � point [shown in Fig. 2(b)] that induces the
nontrivial topology. But at the � point, the �7 (p) is above �7 (s) and the coupling between these two bands along A − � strongly
pushes down s-orbital dominate states near the � point. Because �9 and �7 (p) are much closer to the Fermi level than �7 (s)
and the low-energy Dirac point is the crossing between bands belonging to �9 and �7 representations, we can exploit a minimal
basis set |�9,

3
2 〉, |�9, − 3

2 〉, |�7 (p), 1
2 〉, |�7 (p), − 1

2 〉 to construct an effective Hamiltonian around the � point by following the
crystal symmetry and time-reversal symmetry. Then we have

H(�k) = ε0(�k) +

⎛
⎜⎜⎝

M(�k) 0 Ak− 0
0 M(�k) 0 −Ak+

Ak+ 0 −M(�k) Dk−
0 −Ak− Dk+ −M(�k)

⎞
⎟⎟⎠, (C1)

where k± = kx ± iky, ε0(�k) = C0 + C1k
2
z + C2(k2

x + k2
y), and M(�k) = M0 + M1k

2
z + M2(k2

x + k2
y). The nonvanishing terms Dk±

result from the intrinsic inversion symmetry breaking. Fitting the first-principles calculations gives C0 = 0.203 eV, C1 =
25.465 eV/Å

2
, C2 = 3.184 eV/Å

2
,M0 = 0.118 eV, M1 = −30.017 eV/Å

2
,M2 = −8.396 eV/Å

2
, A = 4.570 eV/Å, and D =

3.582 eV/Å. Based on the fitting results, we can deduce the Dirac point by setting M(kx = 0,ky = 0,kz) = 0. The result is
0.076 × 2π/c, very close to kD

z = 0.074 × 2π/c in Fig. 2(b). Due to the inversion asymmetry, the in-plane velocity around the
Dirac point takes two values,

√
A2 + D2/4 ± D/2 (3.12 eV/Å and 6.70 eV/Å).
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