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The pyrochlore metal Cd2Re2O7 has been recently investigated by second-harmonic generation (SHG)
reflectivity. In this paper, we develop a general formalism that allows for the identification of the relevant tensor
components of the SHG from azimuthal scans. We demonstrate that the secondary order parameter identified by
SHG at the structural phase transition is the x2 − y2 component of the axial toroidal quadrupole. This differs from
the 3z2 − r2 symmetry of the atomic displacements associated with the I4m2 crystal structure that was previously
thought to be its origin. Within the same formalism, we suggest that the primary order parameter detected in
the SHG experiment is the 3z2 − r2 component of the magnetic quadrupole. We discuss the general mechanism
driving the phase transition in our proposed framework, and suggest experiments, particularly resonant x-ray
scattering ones, that could clarify this issue.
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I. INTRODUCTION

Transition metal oxides with the pyrochlore structure
A2B2O7 have been intensively studied in the past twenty years,
mainly because of their highly-frustrated magnetic lattice
that leads to a rich phase diagram. In some pyrochlores,
the magnetic degrees of freedom can remain liquid-like
without any long-range order [1], in others, the ground-state
degeneracy can be lifted via a phase transition that either
lowers [2] or not [3] the symmetry of the lattice. Among these
materials, Cd2Os2O7 is characterized by a metal-insulator
transition [4] at 227 K, with an ordering of magnetic degrees
of freedom but no lattice distortion [5]. The order parameter
driving this transition was identified recently by resonant
elastic x-ray scattering (REXS) [6]. It is a ferro-ordering
of magnetic octupoles that breaks time-reversal symmetry
without leading to macroscopic magnetization and without
altering the crystal-lattice symmetry. This is also known as
“all in–all out” magnetic order, where spins on a given Os
tetrahedron either point inwards or outwards of the center,
resulting in novel physical properties [3].

Interestingly, the pyrochlore obtained by replacing Os with
Re, Cd2Re2O7, is also characterized by a phase transition at
about the same temperature (Tc1 ∼ 200 K), yet instead is char-
acterized by a large drop in the resistivity when moving into the
lower temperature phase. In this case, the phase transition is
also characterized by a crystal-symmetry reduction from cubic
Fd3m to tetragonal I4m2 [7]. This, along with the failure to
observe magnetic order by nuclear magnetic resonance (NMR)
[8–10], led to the transition being interpreted in terms of a soft
phonon mode [11], identified as the parity-odd doublet (Eu) of
the octahedral point group Oh [12]. In this framework, the drop
in the magnetic susceptibility [13] at Tc1 was interpreted as a
consequence of a reduction in the electronic density of states
[14]. Yet, the atomic displacements involved in the transition
are so small (less than 0.005 Å for the Re-O distance, less than
0.008 Å for the Re-Re distance [15,16]) that other mechanisms,
leading to the crystal-symmetry reduction as a secondary

effect, should not be excluded a priori. Moreover, the close
analogy with the case of Cd2Os2O7 might also suggest that
magnetic degrees of freedom could play a role here as well,
even though dipolar order has not been observed.

In this context, the recent study of the phase transition
of Cd2Re2O7 by second-harmonic generation (SHG) [17]
provides a clear indication that a primary order parameter
(OP) different from the softening of the phonon mode is
the driving element of the phase transition. The SHG results
were interpreted in terms of a primary, time-reversal even,
nematic order parameter [18] (of symmetry T2u) inducing
a parity-breaking lattice distortion as a secondary order (of
symmetry Eu). In order to achieve the necessary coupling in
Landau theory (where the secondary OP goes as the square of
the primary OP, as indicated by the temperature dependence
of the SHG signal), a third OP is needed, of T1g symmetry,
whose physical interpretation was unclear. All the irreducible
representations, or irreps, here refer to the octahedral group
Oh of the high-temperature phase.

As we will show below, the OP of Eu symmetry detected
in both SHG experiments conducted on Cd2Re2O7 [17,19]
is not the Eu OP proposed in Ref. [12], but rather an axial
toroidal quadrupole of x2 − y2 symmetry (in the cubic Fd3m

coordinates, with z along the tetragonal c axis). Concerning
the primary OP, we find that a time-reversal even scenario is
not the only possibility. In order to have a time-reversal even
primary OP, Harter et al. [17] had to suppose a symmetry
lowering to the point group 4, as a T2u primary OP is not
allowed in the space group I4m2 characterizing Cd2Re2O7

below Tc1. But this would imply the simultaneous breakdown
of the mirror symmetry and the twofold axes in the ab plane,
inconsistent with the findings of x-ray [7,15] and neutron [20]
diffraction. Instead, such a symmetry lowering is not necessary
for the case of time-reversal odd OPs. Many experimental
techniques, x-ray diffraction included, are blind to magnetic
multipolar OPs, so that a time-reversal odd multipolar primary
OP could be compatible with the absence of a magnetic
signature at the transition as measured by NMR [8–10]. In that
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TABLE I. Summary of the work in Secs. II and III. For each of the
scenarios, nonmagnetic (I4) and two magnetic (I4m′2′ and I4

′
m′2),

we list the order parameters (OP, secondary or primary) along with
their symmetry (± is the symmetry under time reversal and u/g the
parity under spatial inversion), and in parenthesis their interpretation
(ATQ is an axial toroidal quadrupole, MQ is a magnetic quadrupole,
and MO is a magnetic octupole). For the second scenario, I4m′2′,
one also has a toroidal octupole (T −

2u).

OP I4 I4m′2′ I4
′
m′2

secondary, u E+
u (ATQ) E+

u (ATQ) E+
u (ATQ)

primary, u T +
2u (?) T −

2u (MQ) E−
u (MQ)

primary, g T +
1g (?) T −

1g (MO) A−
2g (MO)

context, we have found that two magnetic space groups could
explain the SHG data without requiring a further lowering of
the crystal symmetry: I4m′2′ and I4

′
m′2, both characterized

by the breaking of the mirror symmetry for magnetic OPs, a
key feature that could explain the SHG data, as discussed in
Sec. II B.

In order to clarify the above statements and provide
a general framework to describe the phase transition of
Cd2Re2O7, the present paper is organized in three main
sections. Section II is devoted to the symmetry analysis of
the polarization tensors in an SHG experiment. This analysis,
usually not performed in the literature (i.e., just the symmetry
analysis of the matter tensor χijk is performed), allows us to
deduce the quadrupole nature of the primary OP by symmetry
considerations and the requirement of no measured signal in
an SS geometry [21]. In turn, this allows a straightforward
explanation of the azimuthal dependence of the SHG intensity.
Then, if we impose the requirement of no further reduction of
the point group symmetry at the transition (i.e., not to 4),
this naturally leads to the identification of the primary OP
as a magnetic quadrupole. Our polarization analysis leads, as
a byproduct, to the prediction of significant changes in the
azimuthal scan if the incidence angle of the laser beam is
varied.

In Sec. III, we focus on the analysis of all allowed
magnetic tensor components compatible with the known
experimental constraints, and we propose magnetic patterns
for the pyrochlore structure allowed by the two magnetic
groups. For a summary of the work in Secs. II and III, see
Table I.

In Sec. IV, we evaluate, both analytically and numerically,
the outcomes of REXS experiments that could provide an
experimental verification of our model and confirm the
existence of ferro-quadrupolar magnetic order. The numerical
analysis is performed via the FDMNES program [22] with the
proposed magnetic structures as input. As a byproduct of our
analysis, we also address the existence (or not) of a second
phase transition in Cd2Re2O7 around Tc2 ∼ 120 K that has
been claimed in the literature [7] but for which there is no
clear consensus [23]. We suggest a key REXS experiment to
clarify this issue as well. Finally, in Sec. V, we provide our
conclusions.

II. ANALYSIS OF SHG IN Cd2Re2O7

Second-harmonic generation is a third-order process in the
matter-radiation interaction, determined by two absorptions
of a photon h̄ω and the emission of a photon 2h̄ω [24]. Its
total scattering amplitude, ASHG, can be written in quantum-
mechanical terms using third-order perturbation theory [25],
instead of the semiclassical approach usually adopted in
the optics literature [26]. The advantage of the quantum
mechanical approach, compared to the semi-classical one,
is twofold. First, it makes ab initio quantum mechanical
calculations possible. Second, and more important for the
present work, it allows representing the SHG signal as a scalar
coupling of tensors describing the properties of the material
with the corresponding tensors describing the electromagnetic
field [see Eq. (2) below], in full analogy with the REXS
case [27], where it proved extremely useful in identifying
multipolar orders. In particular, as demonstrated below, such
a coupling highlights a general property of SHG signals
for purely electric dipole transitions (E1-E1-E1): in the SS
channel, SHG is blind to quadrupolar OPs. So the absence of
an SHG signal in the SS channel, as in the case of the SHG
experiments for Cd2Re2O7, necessarily points to a quadrupolar
OP. It is remarkable that E1-E1-M1 and E1-E1-E2 transitions
do not have this property (M1 is a magnetic-dipole transition,
E2 an electric-quadrupole transition). Therefore the absence
of an SS signal and the presence of an SP signal is a signature
of E1-E1-E1 transitions.

A. General derivation of the SHG signal

The full cross-section for SHG and its explicit derivation
have been reported in Appendix A 1 and in Sec. III of Di
Matteo and Norman [25] (DMN in the following). Here we
recall some of the results that can be useful for the present
analysis, in particular the analogy with the REXS tensor
interpretation [27]. We also explicitly write the coupling terms
of the susceptibility tensor, χijk , for each spherical-tensor
component, that was not done in DMN. Given the absence of
an inversion center in the low-temperature phase of Cd2Re2O7,
and because of the absence of an SS signal, we can neglect
magnetic dipole and electric quadrupole SHG transitions and
just focus on the E1-E1-E1 SHG amplitude, written as

A
(e)
SHG ∝ χ̃αβγ εo

αεi
βεi

γ = 1
2 (χ̃αβγ + χ̃αγβ)εo

αεi
βεi

γ , (1)

where χ̃αβγ represents the susceptibility leading to the SHG
field (here, i and o refer to the incoming and outgoing
polarizations of the electromagnetic field). Its full expression
is given in DMN. The second equality in Eq. (1) is a
consequence of the symmetry of the incoming polarization
(εo

αεi
βεi

γ = εo
αεi

γ εi
β), and it implies that SHG experiments are

only sensitive to the part of the χ̃αβγ tensor that is symmetrized
in the last two indices. In what follows, we call it χαβγ (so
χαβγ = χαγβ). As the overall amplitude ASHG is a scalar,
Eq. (1) can be written as a scalar product of the corresponding
irreducible representations of the three-dimensional rotation
group, SO(3). Following the results of Sec. A 3 in DMN,
the involved irreducible representations of the SO(3) group
are: two dipoles (l = 1), a quadrupole (l = 2) and an octupole
(l = 3). This can be obtained by first coupling the two identical
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vectors εi
β and εi

γ : the antisymmetric (vector) part is zero and
only the scalar and the symmetric rank 2 tensor appear. Their
coupling with εo

α leads to the above result. Therefore Eq. (1)
can be written as

A
(e)
SHG ∝

2∑
i=1

χ
(i)
l=1Õ

(i)
l=1 + χl=2Õl=2 + χl=3Õl=3. (2)

Given their importance in describing the azimuthal scans
in Cd2Re2O7, we list the expressions for the five quadrupole
components (Õl=2 for the polarization, χl=2 for the suscepti-
bilities). Dipoles and octupoles can be found in Appendix A.
Note Eq. (2) implies a sum over all components (for l = 2,
3z2 − r2, x2 − y2, xy, xz, yz). The polarization dependence
and the corresponding linear combination of susceptibilities
χijk for the five quadrupole components are:

Õ3z2−r2 = εi
z(�εo × �εi)z ↔ χ3z2−r2

= (χxyz + χxzy − χyzx − χyxz)/2;

Õx2−y2 = 1√
3

[
εi
x(�εo × �εi)x − εi

y(�εo × �εi)y
] ↔ χx2−y2

= (χxyz + χxzy + χyzx + χyxz

− 2χzxy − 2χzyx)/(2
√

3);

Õxy = 1√
3

[
εi
x(�εo × �εi)y + εi

y(�εo × �εi)x
] ↔ χxy

= (χyyz + χyzy − χxzx − χxxz (3)

+ 2χzxx − 2χzyy)/(2
√

3);

Õxz = 1√
3

[
εi
z(�εo × �εi)x + εi

x(�εo × �εi)z
] ↔ χxz

= (χxxy + χxyx − χzyz − χzzy + 2χyzz

− 2χyxx)/(2
√

3);

Õyz = 1√
3

[
εi
z(�εo × �εi)y + εi

y(�εo × �εi)z
] ↔ χyz

= (χzzx + χzxz − χyxy − χyyx + 2χxyy

− 2χxzz)/(2
√

3).

with the usual definition of the vector product: (�εo × �εi)z =
εo
xε

i
y − εo

yε
i
x .

We remind that the susceptibility multipoles corresponding
to each polarization multipole, e.g., (χxyz + χxzy − χyzx −
χyxz)/2 for the 3z2 − r2 component, can have both a magnetic
and a nonmagnetic origin (see DMN, Sec. III). In both cases,
only inversion-odd multipoles can be detected by E1-E1-E1
SHG. For example, the polarization term Õ in Eq. (3),
with the symmetry of a quadrupole, can be coupled either
to a magnetic quadrupole, time-reversal odd and inversion
odd, or to a nonmagnetic quadrupole, time-reversal even
and inversion odd. Among the latter, we remind that the
axial toroidal quadrupole characterizes x-ray natural circular
dichroism (XNCD), and that a nematic quadrupole [18] has
been proposed by Harter et al. [17]. As anticipated above,
a key feature of the quadrupole term is that it is blind to
SS polarization, as clear from the vector product between
incoming and outgoing polarizations that is highlighted in the

formal expression of all five components of Eq. (3). This is
a general property of SHG, independent of the point-group
symmetries of the material to be studied (not yet specified in
the above equations). This property is analogous, for example,
to the well-known fact that, in REXS, magnetic dipoles cannot
be detected in SS geometry, but only in the polarization rotated
SP channel. We remark that, of all the terms of Eq. (3), the
quadrupole is the only multipole that gives a zero SS signal (as
clear from the direct inspection of dipole and octupole terms
reported in Appendix A that have nonzero contributions in SS
geometry, as well as for the E1-E1-M1 and E1-E1-E2 terms
reported in DMN).

By reducing the symmetry from spherical to octahedral,
the above irreps of the SO(3) group branch to the irreps of
the Oh group as follows: both dipoles become T1u irreps of
Oh. The octupole branches to T1u, A2u, and T2u irreps. Finally,
the quadrupole branches to a doublet, Eu, the first two terms
of Eq. (3), and a triplet, T2u, the last three terms of Eq. (3).
We end with a technical remark that will be useful for the
analysis of the quadrupole, Eq. (3). It is an axial spherical
tensor of rank two, inversion odd. This implies that it has
the opposite behavior under inversion than a polar spherical
tensor of rank two, which is inversion even [we remind that
inversion properties of polar spherical tensors go like (−1)p,
where p is the rank of the tensor]. This implies that if a polar
spherical tensor of rank two (e.g., the electric quadrupole Q)
has an invariant component Q3z2−r2 under the S4z symmetry
operation, for an axial tensor this will not be invariant any
more, as S4z is the product of a rotation, C4z and inversion, I .
Indeed, by direct inspection, O3z2−r2 changes sign under S4z,
whereas Ox2−y2 is invariant, contrary to the general behavior
of a polar spherical tensor of rank two (Q3z2−r2 is invariant
under S4z and Qx2−y2 changes sign). This property will be
used in the next subsection to classify the secondary OP in
Cd2Re2O7.

B. Application to Cd2Re2O7: the secondary OP
as an axial toroidal quadrupole

The considerations of the previous subsection are general,
applicable to any point group. In this section, we shall apply
them to the case of the 4m2 point group of the low-temperature
phase of Cd2Re2O7, as well as to some of its subgroups,
in order to explain the SHG experiments. We first make an
important notational remark; throughout this paper, we label
the SHG susceptibilities, χxyz, with x, y, and z referred to the
cubic axes of Fd3m, in keeping with previous papers [17,19].
This corresponds, in principle, to the 42m point group, not
4m2, the two being just a different description of the same
geometry related by a 45◦ rotation (see the end of Appendix B
for further explanation). Yet, the space group of Cd2Re2O7

below Tc1 is the tetragonal I4m2 space group [International
Tables for Crystallography (ITC) No. 119], that is physically
different from the tetragonal I42m space-group (ITC No. 121).
In what follows, with a slight abuse of notation, we shall omit
this notational difference for the point groups and refer also to
the point symmetry as 4m2 (the correct relation with the SHG
susceptibilities in the tetragonal frame is given at the end of
Appendix B).
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We remind that in the 4m2 point group, only the fol-
lowing susceptibilities are allowed (see Sec. III A): χxzy =
χxyz, χyzx = χyxz and χzxy = χzyx . If we limit to a time-
reversal even OP, also the constraint χxzy = χyzx appears (see
Sec. III A). The SP spectrum measured by Harter et al. [17]
breaks the mirror symmetry of 4m2. This, in turn, calls for
a second, independent, tensor component χijk that breaks
the mirror symmetry. Such a reduction can be achieved in
two ways: either with a symmetry lowering to the point
group 4 (the highest possible without the mirror plane), or
by considering a magnetic OP associated with a time-reversed
mirror symmetry. In the latter case, two magnetic groups are
possible: 4m′2′ and 4

′
m′2. In both cases, the mirror symmetry

is associated with time reversal so that any magnetic OP that is
odd with respect to the mirror symmetry alone can in principle
explain the symmetry breaking measured in the SP channel.
In previous work [17], the case of a nonmagnetic primary
OP was considered. In this paper, in the next section, we
discuss instead the case of a magnetic primary OP. However,
we briefly recall the main features of the 4 scenario for future
comparison.

Reducing the point symmetry to 4 allows the following
susceptibility terms to appear: χxxz = χxzx = −χyyz = −χyzy

and χzxx = −χzyy . Only terms with one z label are allowed,
which makes null the quadrupole terms coupled to Õxz and
Õyz in Eq. (3). The relations valid for time-reversal even OPs,
χxzy = χyzx and χxyz = χyxz, make null also the susceptibility
that couples to Õ3z2−r2 in Eq. (3). Extending the analysis to
dipole and octupole terms as well (listed in Appendix A), a
direct inspection shows that the only nonzero susceptibilities
are those that couple to the quadrupole Õx2−y2 (Eu) and Õxy

(T2u) or to the octupole Õxyz (A2u) and Õz(x2−y2) (T2u). Using
the above relations, valid for the 4 point group, the matter
tensors become: 2(χxyz − χzxy) (for Õx2−y2 ); 2(χzxx − χxxz)
(for Õxy); χzxy + 2χxyz (for Õxyz); and 2χzxx + 4χxxz (for
Õz(x2−y2)). In this framework, the additional symmetries
introduced in Ref. [17] in order not to have an SS signal,
i.e., that χzxy = −2χxyz and that χzxx = −2χxxz, can be
understood as the requirement of an absence of the octupole
OPs with symmetry xyz and z(x2 − y2). As we shall see in
Sec. III, this additional symmetry that needs to be imposed
here will be automatically recovered with the magnetic group
4

′
m′2.
The explicit dependence of the azimuthal scans for all the

nonzero tensors of the 4 point group is reported in Eq. (4). The
same expressions will also be useful for the magnetic point
groups 4m′2′ and 4

′
m′2 that we shall analyze in Sec. III A. The

detailed calculations are reported in Appendix B. We have, for
all allowed SP and SS terms:

ÕSP
3z2−r2 = −1

3
(
√

2 cos θ sin φH + sin θ sin(2φH )),

ÕSP
x2−y2 = 1

3
(−

√
2 cos θ cos φH + sin θ cos(2φH )),

ÕSP
xy = 2

3
√

3
(

1√
2

cos θ sin φH − sin θ sin(2φH )),

ÕSP
z(x2−y2) = 1

6
√

3
(cos θ (3 sin(3φH ) − sin φH ) (4)

+
√

2 sin θ sin(2φH )),

ÕSP
xyz = 1

3
(cos θ cos(3φH ) − 1√

2
sin θ ),

ÕSS
z(x2−y2) = 1

2
√

3
(cos(3φH ) − cos φH ),

ÕSS
xyz = −1

3
sin(3φH ).

Here, φH is the azimuthal angle measured by Harter et al.
[17] (see Fig. 10 in Appendix B), whereas θ = 10◦ is the
incidence angle with respect to the surface normal used in the
experiment. This value of θ makes cos θ 	 0.98, so that
the cos θ term is dominant compared to the sin θ term, though
the latter is not negligible (sin θ ∼ 0.17). We remark that
octupolar OPs, besides giving an SS signal, have the wrong
azimuthal scan even in the SP channel, with a sin(3φH )
or cos(3φH ) behavior. In order to recover the experimental
azimuthal scan, two OPs are required [17], one going like
sin φH and the other going like cos φH . The former is
associated with the primary OP and the latter with the
secondary OP. Equation (4) shows that there is only one
possibility for the secondary OP, which has necessarily the
symmetry of an x2 − y2 quadrupole. Instead, the primary OP
could have either the symmetry of a 3z2 − r2 quadrupole
or that of an xy quadrupole, both going like sin φH . The
latter belongs to a T2u irrep, compatible with the Landau free
energy proposed in Harter et al. [17]. The former does not
contribute in the 4 point group as stated above (it couples
to χxyz + χxzy − χyzx − χyxz that is zero in 4 in the absence
of magnetism). However, as we shall see in Sec. III A,
the inclusion of magnetic point groups makes the linear
combination χxyz + χxzy − χyzx − χyxz associated with the
3z2 − r2 quadrupole nonzero and its symmetry (Eu) is allowed
in the free energy. We shall discuss about the magnetic origin
of the primary OP in Sec. III. Here, we discuss the physical
interpretation of the secondary OP, an x2 − y2 axial toroidal
quadrupole. We remark that it is not the same OP as the atomic
displacements of 3z2 − r2 symmetry that have been proposed
before to explain the SHG secondary OP [17,19].

In order to understand the physical origin of the SHG
signal determined by the secondary OP, consider the following
model. We start with the positions of Re ions in the cubic Fd3m

phase [28]:

�r1 = (1/8,1/8,1/8), �r2 = (−1/8,−1/8,1/8),
(5)�r3 = (−1/8,1/8,−1/8), �r4 = (1/8,−1/8,−1/8).

We have also the following displacements from the cubic
positions in the I4m2 and I4122 phases [28]:

�δ1 = (x1,y1,z1), �δ2 = (−x1,−y1,z1),

�δ3 = (−x1,y1,−z1), �δ4 = (x1,−y1,−z1). (6)

We remind that for I4m2, we have the relation x1 = y1 (and x1

and z1 have opposite signs), and for I4122 we have x1 = −y1

and z1 = 0. Though I4122 symmetry has been excluded at Tc1,
it is useful to consider it for further analysis in Sec. IV.

We can now evaluate the axial toroidal dipole [29] de-
termined by these displacements for the tetrahedral cell. We
remark that the value of this vector is independent of the choice
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of the origin, because the tetrahedron is nonpolar even after
the displacements (i.e.,

∑4
i=1

�δi = 0). The values we get for
each tetrahedron are equal to one-half those of the unit cell
in the tetragonal phase, because of the bcc translation. Using
�g = ∑4

i=1 �gi , with �gi = �ri × �δi , we obtain

�g1 = 1
8 (z1 − y1,x1 − z1,y1 − x1),

�g2 = 1
8 (−z1 + y1,−x1 + z1,y1 − x1),

(7)�g3 = 1
8 (−z1 + y1,x1 − z1,−y1 + x1),

�g4 = 1
8 (z1 − y1,−x1 + z1,−y1 + x1),

which gives, for the total axial toroidal dipole of the tetrahedron
�g = ∑4

i=1 �gi = 0, as expected for both 4m2 and 422 symme-
tries. We can now evaluate the corresponding axial toroidal
quadrupoles, Gij :

Gxy ≡ 1

4

4∑
i=1

rixgiy + riygix = 0, (8)

Gxz ≡ 1

4

4∑
i=1

rixgiz + rizgix = 0, (9)

Gyz ≡ 1

4

4∑
i=1

rizgiy + riygiz = 0, (10)

G3z2−r2 ≡ 1

4

4∑
i=1

3rizgiz − �r · �g ∝ x1 − y1, (11)

Gx2−y2 ≡ 1

4

4∑
i=1

rixgix − riygiy ∝ 2z1 − x1 − y1. (12)

Notice that Gx2−y2 �= 0 and G3z2−r2 = 0 in I4m2 because
of the condition x1 = y1 and the opposite sign of z1 and x1. In
the other case (I4122), we would have had instead G3z2−r2 �=
0 and Gx2−y2 = 0, because of the condition x1 = −y1 and
z1 = 0.

Now we can solve the apparent contradiction of 3z2 − r2

versus x2 − y2 OPs: the coordinate dependence of the axial
toroidal quadrupole Gx2−y2 ∝ x1 + y1 − 2z1 is the same as
that of the Eu (3z2 − r2) component of the Re atomic
displacements [12] associated with I4m2. Here, though, G

is a quadrupole of x2 − y2 symmetry and for this reason is
associated with the polarization spherical tensor Õx2−y2 . The
reason for this change in the nature of the tensor detected
by SHG (x2 − y2 instead of 3z2 − r2) was already sketched
at the end of Sec. II A. The displacement OP [12] is a polar
spherical tensor (the displacement is a polar vector) whose
behavior under the symmetry operations of I4m2 is such that,
in particular, 3z2 − r2 is invariant under the S4z symmetry
operation, whereas x2 − y2 changes sign. So, as correctly
found in the literature [12], the transition to the I4m2 space
group is characterized by a 3z2 − r2 polar tensor, as the
x2 − y2 polar tensor would not be invariant. However, SHG
is not sensitive to a rank-two spherical polar tensor, but to a
rank-two spherical axial tensor, that we have identified as the
axial toroidal quadrupole. Under the S4z ≡ IC4z symmetry

Top view

Re1

Re4Re2

Re3

(b)

Re1

Re4

Re2

Re3

(a)
δδδδ1

δδδδ2

δδδδ4

δδδδ3

δδδδ1xyδδδδ3xy

δδδδ4xyδδδδ2xy

x
y

z

g3 g1

g2 g4
FIG. 1. (a) The unit tetrahedron with the Rei positions of Eq. (5)

and the displacements of Eq. (6), depicted as green arrows. (b) View
from the top of the tetrahedron, with the axial toroidal dipoles of
Eq. (7) at each Rei position depicted as blue arrows. Both planes
(z = ± 1

8 ) contribute one-half to the total axial toroidal quadrupole.

operation, the inversion symmetry behavior is opposite for
polar and axial tensors. Therefore, for an axial rank-two
tensor, x2 − y2 is invariant under the S4z symmetry operation,
whereas 3z2 − r2 changes sign, in keeping with the above
discussion. We remark that our findings are further confirmed
by the fact that I4122 allows for an XNCD signal, whereas
I4m2 does not [30], since as is well known [31], when the
x-ray beam is along the tetragonal c-axis, XNCD is sensitive
to the G3z2−r2 component of the axial toroidal quadrupole
and not to Gx2−y2 . A pictorial representation of the axial
toroidal quadrupole for the single tetrahedron is reproduced
in Fig. 1.

We conclude this subsection by showing that both SHG
experiments on Cd2Re2O7 [17,19] are associated with the
axial toroidal quadrupole calculated above. The first SHG
experiment, by Petersen et al. [19], can be reproduced with
the formula cos2 αω sin2(αω − α2ω), plotted in the left frame
of Fig. 2(a). The details of the calculation, valid for the
I4m2 space group, and the experimental setup are reported
in Appendix B. The whole signal is provided only by the
ÕSP

x2−y2 term, the second line of Eq. (4). It is therefore the same
OP identified as the secondary OP in Harter et al. [17] and
it is associated with the axial toroidal quadrupole. We only
remark that in the present approach, we have not considered
the corrections reported in Ref. [19] due to linear birefringence
(see below and also the discussion in Appendix B).

Harter et al.’s azimuthal scan can be recovered as well
by means of Eq. (4). Technical details are provided in
Appendix B. We remark, however, that a clear discrepancy
with the experimental data can be seen in the right panel
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FIG. 2. (a) Left: description of Petersen et al. SHG experiment
[19] from ÕSP

x2−y2 of Eq. (4) (without the birefringence term, see

Appendix B). (Right) The result if ÕSP
3z2−r2 would be active in the

I4122 space group, was used instead. (b) Dots represent the fit of
Harter et al. [17] to their data at T = 199.7 (left) and at 196.6 K
(right). The azimuthal angle is φH (see Fig. 10). Curves are our fit,
for θ = 10◦, from term ÕSP

x2−y2 for the secondary OP and term ÕSP
3z2−r2

(dashed green) or ÕSP
xy (dashed red) for the primary OP.

of Fig. 2(b), around φ = 0 and φ = 180◦. This is mainly
determined by the interference of the cos φH and cos(2φH )
functions in ÕSP

x2−y2 . We can suggest two reasons for this
discrepancy. First, the effective incident angle θ could be
reduced with respect to its nominal value by refraction at
the sample surface. If the effective θ is sufficiently small,
Eq. (4) would properly describe the experimental data (Fig. 3).
Second, the interference can be reduced if one component of
the outgoing beam is dephased, say due to linear birefringence
[19]. If, for example, i multiplied the third component (εout

z′ )
of the last line of Eq. (B3), this dephasing by π/2 would
propagate to Eq. (4), leading to a sum in quadrature of the
cos φH and cos(2φH ) terms (for the secondary OP) and of the
sin φH and sin(2φH ) terms (for the primary OP), leading to the
azimuthal dependence measured by Harter et al.

The physical origin of the discrepancy (whether refraction
or birefringence) might be established through Eq. (4), by
performing the same experiment for larger values of θ . If the
origin of the effect were refraction, increasing θ would make
the interference terms more effective and a strongly asym-
metric pattern would appear (Fig. 3). Interestingly, varying
the incident angle θ also allows differentiating the two terms
ÕSP

3z2−r2 and ÕSP
xy , reproduced in Fig. 2(b), in dashed green

and dashed red, respectively, and barely distinguishable for
θ = 10◦. The two cases can instead be identified for θ = 20◦
from the left panel of Fig. 3(c), as the ÕSP

3z2−r2 term (dashed
green) is symmetric in the small lobes and asymmetric in the
big lobes, whereas the ÕSP

xy (dashed red) is symmetric in the big

FIG. 3. Same as Fig. 2(b), but for (a) θ = 0◦, (b) θ = 5◦, and
(c) θ = 20◦. For these three plots, the fit coefficients are the same as
Fig. 2(b). (d) A fit to the data where it is assumed that θ = 0◦.

lobes and asymmetric in the small lobes. The importance of the
latter point is that, as demonstrated in the next section, the two
terms are associated with two different magnetic groups and
OPs. We finally remark that this difference would not appear
if the discrepancy with the experimental data in Fig. 2(b) was
due to birefringence.

III. POSSIBLE MAGNETIC ORDER FOR Cd2Re2O7

In this section, we analyze the magnetic subgroups of
I4m2 in order to determine a possible magnetic origin of the
primary OP.
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TABLE II. Character table of A2 and B1 irreps of 4m2, corre-
sponding to the Õxy and Õ3z2−r2 components of the quadrupole. For
magnetic OPs, they become the totally symmetric irrep A1 for 4m′2′

and 4
′
m′2, respectively.

4m2 E 2S4 C2z 2C2x 2σd

A2 +1 +1 +1 −1 −1
B1 +1 −1 +1 +1 −1

A. Magnetic point group of Cd2Re2O7 below Tc1

A possible magnetic origin of the quadrupole primary OP
cannot be determined by the polarization analysis, since it
produces the same azimuthal scan for time-reversal even and
time-reversal odd quadrupolar OPs. As seen above, only two
terms can play the role of primary OPs, those associated with
the polarization terms Õxy and Õ3z2−r2 . Interestingly, there are
two irreps of 4m2 that break the mirror symmetry, A2 and B1,
the former with symmetry Õxy and the latter with symmetry
Õ3z2−r2 . Their character table is shown in Table II.

They become the totally symmetric irrep (i.e., A1) for
the magnetic groups 4m′2′ and 4

′
m′2, respectively. In fact,

for magnetic OPs, the 4m′2′ point group changes the sign of
C2x and σd because of the associated time-reversal operation,
making them positive and changing therefore A2 into A1.
Analogously, the 4

′
m′2 point group changes the sign of S4 and

σd for magnetic OPs because of the associated time-reversal
operation, making them positive and changing therefore B1

into A1.
We remark that, in the case of reduction to the 4 point group

[17], the two symmetry operations C2x and σd disappear, and
with them also the two associated negative characters. So, in
the 4 point group, the A2 irrep of the susceptibilities associated
with Õxy becomes totally symmetric and allowed as an OP (but
not B1).

We analyze now how the susceptibilities transform in the
two magnetic groups 4m′2′ and 4

′
m′2. We add the parent

group 4m2 for comparison. For simplicity, we remove the
identity and consider only the terms with one z label, whose
azimuthal scan is given by Eq. (4): χxyz and χyxz (allowed in
4m2), χxxz and χyyz. For the nonmagnetic group 4m2, we have
Table III.

From the first two components of Table III, we obtain that
the linear combination χxyz + χyxz behaves like the totally
symmetric irrep, whereas χxyz − χyxz = 0 (already used in
the previous section). Similarly, from the last two components,
we get χxxz = −χxxz = 0 and χyyz = −χyyz = 0, as already

TABLE III. Transformation properties of the relevant suscepti-
bilities for 4m2.

4m2 2S4 C2z 2C2x 2σd

χxyz χyxz χxyz χxyz χyxz

χyxz χxyz χyxz χyxz χxyz

χxxz −χyyz χxxz −χxxz χyyz

χyyz −χxxz χyyz −χyyz χxxz

TABLE IV. Transformation properties of the relevant susceptibil-
ities for 4m′2′.

4m′2′ 2S4 C2z 2T C2x 2T σd

χxyz χyxz χxyz χ∗
xyz χ∗

yxz

χyxz χxyz χyxz χ∗
yxz χ∗

xyz

χxxz −χyyz χxxz −χ∗
xxz χ∗

yyz

χyyz −χxxz χyyz −χ∗
yyz χ∗

xxz

known. Doing this for the magnetic subgroups, we have instead
Tables IV and V.

The previous relations are valid only for polar Cartesian
tensors (like the SHG susceptibility χijk), as they are based
on the relations Ŝ4z(x,y,z) → (y,−x,−z) and σ̂d (x,y,z) →
(y,x,z). Their interpretation goes as follows: for 4m′2′, Ta-
ble IV shows that there are two independent totally symmetric
irreps, a nonmagnetic and a magnetic one: �(χxyz + χyxz) and
�(χxxz − χyyz). This also implies that �(χxyz − χyxz) = 0,
and �χxyz = �χyxz = 0 and that �(χxxz + χyyz) = 0, and
�χxxz = �χyyz = 0. The nonmagnetic A1g irrep, �(χxyz +
χyxz), cannot be associated with the quadrupole polarization
Õ3z2−r2 of the first line of Eq. (3), as the latter is proportional
to �(χxyz − χyxz) (=0). It can lead, however, to a signal
from the octupole term Õxyz of Eq. (A6), proportional to
�(χxyz + χyxz). Yet, the latter would give a signal in the SS
channel, from Eq. (4), in contradiction with experiment [17].
So, the nonmagnetic totally symmetric irrep of 4m′2′ can be
excluded, as expected, because it coincides with the 4m2 case.
The magnetic irrep �(χxxz − χyyz), a magnetic quadrupole, is
associated with the correct T −

2u symmetry of the primary OP
that couples to the Õxy polarization term in Eq. (3). However,
the same irrep also couples to the magnetic octupole term
Õz(x2−y2) in Eq. (A5), with the wrong angular dependence
in the SP case and a nonzero SS signal. In order to remove
this term, the extra condition �(2χxxz + χzxx) = 0 must be
fulfilled, analogous to the proposal of Harter et al. [17].

For the 4
′
m′2 magnetic group, from Table V, we get as well

one magnetic and one nonmagnetic totally symmetric irrep. In
this case, χxxz = χyyz = 0. The totally symmetric irrep is the
linear combination χxyz + χ∗

yxz, with a magnetic and a non-
magnetic contribution given by �(χxyz − χyxz) and �(χxyz +
χyxz), respectively. This also implies that �(χxyz − χyxz) = 0,
and �(χxyz + χyxz) = 0. We consider only the magnetic totally
symmetric irrep �(χxyz − χyxz), as the nonmagnetic case
would again lead to the same conclusion of the 4m2 case.
The term �(χxyz − χyxz) only couples to the polarization term
Õ3z2−r2 of Eq. (3). Remarkably, the coupling of this magnetic

TABLE V. Transformation properties of the relevant susceptibil-
ities for 4

′
m′2.

4
′
m′2 2T S4 C2z 2C2x 2T σd

χxyz χ∗
yxz χxyz χxyz χ∗

yxz

χyxz χ∗
xyz χyxz χyxz χ∗

xyz

χxxz −χ∗
yyz χxxz −χxxz χ∗

yyz

χyyz −χ∗
xxz χyyz −χyyz χ∗

xxz
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OP with the octupole term, proportional to �(χxyz + χyxz),

is automatically zero for 4
′
m′2 magnetic point group. There

is no need to impose extra conditions like the ones imposed
for the previous 4m′2′ group (�(2χxxz + χzxx) = 0) and for
the 4 group (2χxxz − χzxx = 0) [17]. So, all the symmetry
conditions needed to obtain the experimental azimuthal scan
are automatically satisfied in the 4

′
m′2 magnetic group, what

makes it the most serious candidate to explain all the details of
the SHG experiment. This is confirmed by explicit calculations
with a specific magnetic pattern satisfying the 4

′
m′2 symmetry,

proposed in Sec. III B.
We remark that all the previous terms are compatible

with the measured temperature dependence (linear in Tc1 − T

for secondary OPs and
√

Tc1 − T for primary OPs) and the
constraints imposed by Landau theory [17]. In the case of
the 4m′2′ magnetic point group, the OPs involved are E+

u ,
the secondary OP of x2 − y2 symmetry, time-reversal even
(the axial toroidal quadrupole) described in the previous
subsection, T −

2u, the primary OP that couples to the Õxy

polarization term, a magnetic quadrupole, and T −
1g , a magnetic

octupole of z(5z2 − 3r2) symmetry (not contributing to the
SHG signal, being inversion-even). All these OPs have the cor-
rect symmetry as required by the analysis already performed by
Harter et al. [17], and therefore provide the correct temperature
dependences for the secondary and primary OPs. A detailed
analysis of this case, with a possible microscopic mechanism
for its realization, is presented in the next subsection. In the
case of the 4

′
m′2 magnetic point group, the symmetries of

the OPs involved are different: the primary/secondary OP
coupling is of the kind E−

u E+
u A−

2g that is an allowed term
in the free energy, as the totally symmetric irrep A1g is
contained in the product. Here, E−

u is a primary magnetic
quadrupole of symmetry M3z2−r2 , time-reversal odd (−), and
parity-odd (u), E+

u is the same secondary OP as above, an axial
toroidal quadrupole of x2 − y2 symmetry, time-reversal even
(+), and A−

2g is an xyz component of the magnetic octupole, a
primary OP sharing the same physical origin as the magnetic
quadrupole E−

u . A possible physical realization of this state is
described in the next subsection. We conclude by highlighting
the following technical remark. Rule 2 of Harter et al.’s SM8
[17] seems to exclude the possibility of having a primary OP
transforming like a doublet Eu, as it forbids a linear coupling
of the primary and secondary OPs in the free energy that
would lead to a

√
Tc1 − T dependence for the secondary OP

as well. However, this rule only applies to nonmagnetic OPs:
this coupling is automatically forbidden in our case, because
it is of the kind E−

u E+
u , and would not be allowed in the free

energy since it is time-reversal odd.

B. Possible magnetic patterns for Cd2Re2O7

Here, we provide a possible physical realization of the two
magnetic groups, 4m′2′ and 4

′
m′2.

Case of 4m′2′: the 4m′2′ group corresponds to the following
magnetic configuration on a tetrahedron of Re ions [see
Fig. 4(a)]:

�m1 =
(

sin α√
2

,
sin α√

2
, cos α

)
,

FIG. 4. (a) Possible magnetic pattern for 4m′2′ magnetic group,
with its projection in the xy plane, showing a two-in, two-out pattern.
(b) Possible magnetic pattern for 4

′
m′2 magnetic group, with its

projection in the xy plane, showing an all-in all-out pattern.

�m2 =
(

− sin α√
2

,− sin α√
2

, cos α

)
,

(13)

�m3 =
(

sin α√
2

,− sin α√
2

, cos α

)
,

�m4 =
(

− sin α√
2

,
sin α√

2
, cos α

)

corresponding to the Re ions of Eq. (5). Here, α is the angle
between the magnetic moment and the c axis. The origin is
taken at the center of the tetrahedron, inscribed in a cube of
unit length. We remind that the group 4m2 is non-Abelian
as Ŝ4zĈ2x �= Ĉ2xŜ4z. This implies that the labeling of the
Re atoms on the tetrahedron must take into account the
correct space-group symmetry relations of the tetragonal I4m2
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crystal, as the Rei are not translationally equivalent, not even
in the cubic phase (see Sec. IV A). The total magnetic moment
in a tetragonal unit cell (made of the two identical tetrahedra)
is zero only if α = π/2. In this case, the magnetic quadrupole
is independent of the choice of the origin. Keeping the center
of the tetrahedron as the origin, we get the five components of
the magnetic quadrupole per Re ion:

Mxy ≡ 1

4

4∑
i=1

rixmiy + riymix = sin α

4
√

2
,

Mxz ≡ 1

4

4∑
i=1

rixmiz + rizmix = 0,

Myz ≡ 1

4

4∑
i=1

rizmiy + riymiz = 0, (14)

Mx2−y2 ≡ 1

4

4∑
i=1

rixmix − riymiy = 0,

M3z2−r2 ≡ 1

4

4∑
i=1

3rizmiz − �r · �m = 0.

Here, rix is the x component of the Rei atom, etc. The only
nonzero component, of T2u symmetry, combines with Õxy

polarization. For future use, we remark that the equivalent
components of the toroidal magnetic quadrupole (defined with
�ti = �ri × �mi replacing �mi in all previous formulas) are zero.
The three relevant components of the magnetic octupole are
(the remaining four are zero):

Oxyz ≡ 1

4

4∑
i=1

rixriymiz + rixmiyriz + mixriyriz = 0,

Oz(x2−y2) ≡ 1

4

4∑
i=1

miz

(
r2
ix − r2

iy

)

+ 2riz(rixmix − riymiy) = 0,

Oz(5z2−3r2) ≡ 1

4

4∑
i=1

miz

(
5r2

iz − r2
i

) + 2riz(5rizmiz − 3�ri · �mi)

= 3

32
(cos α −

√
2 sin α),

where the first term above has A2g symmetry, the second T2g

symmetry, and the last T1g symmetry relative to the (001)
direction. This last term has the same physical origin as the
magnetic quadrupole term, Mxy , so that the two can represent
the coupled T1g-T2u terms needed for the Landau symmetry
analysis given in Harter et al. [17]. We remind that the T1g

octupole component cannot be seen directly by SHG, at least as
a purely electric-dipole (E1-E1-E1) signal, since it is inversion
even.

There is, however, a drawback associated with the I4m′2′
magnetic point group: if we evaluate the toroidal octupole
(inversion odd) associated with this magnetic configuration,
we obtain the following nonzero component (the remaining

six, in particular Txyz, are zero):

Tz(x2−y2) ≡ 1

4

4∑
i=1

tiz
(
r2
ix − r2

iy

) + 2riz(rix tix − riy tiy)

= 1

128

(
cos α − sin α√

2

)
.

This nonzero component has T2u symmetry and couples
to the octupolar polarization terms ÕSP

z(x2−y2) and ÕSS
z(x2−y2)

evaluated in Eq. (4) for the SHG signal. In order to reproduce
the correct azimuthal SP scan and the absence of an SS signal,
they should have been instead zero (this corresponds to the
relation χzxx = −2χxxz imposed by Harter et al.). Tz(x2−y2)

is zero only for tan α = √
2, i.e., α 	 54.74◦, corresponding

to the magnetic moment along the trigonal axis. This result,
as for all the others in this subsection, has been calculated
for the cubic positions �ri . However, Tz(x2−y2) remains zero
for this value of α even with a tetragonal distortion. In
fact, even allowing �ri → �ri + �δi , the change in Tz(x2−y2) is

Tz(x2−y2) = ( x1+z1

16 + x1z1
2 )(cos α − sin α√

2
). We remark that the

other relation imposed by Harter et al., χzxy = −2χxyz, is
automatically satisfied, as it corresponds to the A2u term, Txyz,
which is null.

This confirms the general symmetry analysis of Sec. III A
with the important addition that for α 	 54.74◦, even with
a tetragonal distortion, this magnetic group could explain
the Harter et al.’s condition χzxx = −2χxxz. Yet, just hav-
ing a single angle where the condition is fulfilled seems
implausible. Moreover, this solution would be ferromagnetic,
against experiment (only α = π/2 would lead to an acceptable
antiferromagnetic solution). Interestingly, the above relations
for χzxx and χzxy are instead both automatically satisfied for
any angle α in the model presented below, corresponding to
the 4

′
m′2 group. This leads to a null SS signal, independent of

any other imposed constraint.
Case of 4

′
m′2: Magnetic moments are compatible with the

I4
′
m′2 magnetic group if they have the configuration [see

Fig. 4(b)]:

�m1 =
(

sin α√
2

,
sin α√

2
, cos α

)
,

�m2 =
(

− sin α√
2

,− sin α√
2

, cos α

)
,

(15)

�m3 =
(

− sin α√
2

,
sin α√

2
,− cos α

)
,

�m4 =
(

sin α√
2

,− sin α√
2

,− cos α

)
.

We remark that, as in Eq. (13), these magnetic moments
have to stay within the local mirror planes at sites Rei , so
as to enforce the m′ symmetry. Atoms Re1 and Re4 must be
related by the twofold axis around z (as well as Re2 and Re3).
Finally, �m2 = T̂ Ŝ4z �m1 and �m3 = T̂ Ŝ3

4z �m1. This configuration

has I4
′
m′2 symmetry for any α, which is the angle that the

magnetic dipole makes with the c axis. The total magnetic
dipole of the tetrahedron is zero.
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We can now evaluate the magnetic quadrupole and octupole
components for both the cubic and tetragonal phases. In the cu-
bic phase, we get that all magnetic quadrupole components are
identically zero, except M3z2−r2 ∝ cos α − sin α/

√
2. Analo-

gously, for the octupole magnetic moments, six components
are zero [Oz(x2−y2), Ox(y2−z2), Oy(z2−x2), Oz(5z2−3r2), Ox(5x2−3r2),
Oy(5y2−3r2)] and only one is different from zero, the A2g term,
that is given by: Oxyz ∝ cos α + √

2 sin α. We remark that
the magnetic quadrupole M3z2−r2 is zero when the magnetic
octupole Oxyz is maximal, i.e., for α = 54.74◦, corresponding
to magnetic dipoles along the threefold axis of the cube diago-
nal. Therefore, in the high-temperature cubic phase where the
threefold symmetry is present, the magnetic configuration of
Eq. (15) is equivalent to the all-in all-out magnetic pattern of
Cd2Os2O7 [3], with zero magnetic quadrupole and the Oxyz

magnetic octupole as the lowest nonzero magnetic multipole.
We now evaluate the same quantities in the I4m2

phase, where �ri → �ri + �δi , in order to identify a possible
relation between the magnetic quadrupole and octupole
and the tetragonal distortion. The displacements from the
cubic positions for each Re atom in the two tetragonal
phases, reported above in Eq. (6), can be rewritten for the
I4

′
m′2 magnetic group (x1 = y1) as �δ1 = (x1,x1,z1), �δ2 =

(x1,−x1,−z1), �δ3 = (−x1,x1,−z1), and �δ4 = (−x1,−x1,z1).
Then we get that again Mxz = Myz = Mxy = Mx2−y2 = 0
and Oz(x2−y2) = Ox(y2−z2) = Oy(z2−x2) = Oz(5z2−3r2) =
Ox(5x2−3r2) = Oy(5y2−3r2) = 0. The changes 
M3z2−r2 and

Oxyz in the terms M3z2−r2 and Oxyz between the tetragonal
and the cubic phases, up to the first order in the displacement
terms, are given by


M3z2−r2 = 2z1 cos α −
√

2x1 sin α,


Oxyz = x1

4
cos α + sin α

4
√

2
(x1 + z1). (16)

We remark that the tetragonal correction to the magnetic
quadrupole due to the displacements �δi is not zero even
when the magnetic moment is directed along the local
threefold axes. In this sense, Eq. (16) highlights the connection
between a nonzero value of the magnetic quadrupole and the
tetragonal distortion. For x1 and z1 around the experimental
values (x1 ∼ 0.002 and z1 ∼ −0.002, in fractional units), the
correction determined by Eq. (16) is almost constant for
small variations of α (as 
M3z2−r2 ∝ √

2 cos α + sin α is a
maximum for α = 54.74◦).

Interestingly, all toroidal octupole components associated
with this magnetic configuration are zero and, in particular,
Tz(x2−y2) = 0 and Txyz = 0, i.e., the only two components that
would have both given a spurious signal in the SS channel
and the wrong azimuthal scan in the SP channel, as detailed in
Sec. II B. So this solution is fully compatible with Harter et al.’s
azimuthal scan, as the constraints χzxx = −2χxxz and χzxy =
−2χxyz are automatically satisfied by this magnetic pattern,
in keeping with the general symmetry analysis of Sec. III A.
This is a remarkable result that suggests that 4

′
m′2 is the

actual magnetic point group. Moreover, as sketched above,
the nonzero component M3z2−r2 has E−

u symmetry. The only
nonzero component of the magnetic octupole generated by this
configuration, Oxyz, has A2g symmetry and can represent the
even-parity primary OP in the Landau free energy. So, all OPs

TABLE VI. Fractional positions (x,y,z) of Re atoms in the Fd3m

and I4m2 space groups. The twelve fcc translations (for Fd3m) and
the four bcc translations (for I4m2) are not reported. Of all symmetry
operations relative to Re1, only the one used to derive the resonant
structure factor is highlighted.

Atom (x,y,z) Fd3m Fd3m (x,y,z) I4m2 I4m2

Re1 ( 1
8 , 1

8 , 1
8 ) Ê (0.7529,0,0.8729) Ĉ2z

Re2 (− 1
8 ,− 1

8 , 1
8 ) Ĉ2z (0.2471,0,0.8729) Ê

Re3 (− 1
8 , 1

8 ,− 1
8 ) Ĉ2y (0,0.7529,0.1271) Î Ĉ4z

Re4 ( 1
8 ,− 1

8 ,− 1
8 ) Ĉ2x (0,0.2471,0.1271) Î Ĉ−

4z

are correctly represented by the nonzero magnetic multipoles
associated with this case. In the next section, we suggest new
REXS experiments that could highlight the magnetic pattern
of the I4

′
m′2 magnetic space group.

IV. REXS ANALYSIS OF THE PHASE
TRANSITIONS IN Cd2Re2O7

In this section, we analyze the possible outcomes of
the predicted magnetic-quadrupole ground state by means
of resonant x-ray elastic scattering (REXS), that has the
sensitivity to confirm the proposed magnetic configuration.
We shall also touch on the possible signature of the other
phase transition reported in the literature, around T = 120 K,
again investigated by REXS.

A. Probing by REXS the Tc1 phase transition of Cd2Re2O7: how
to confirm a magnetic-quadrupole OP

In Table VI, we report the fractional coordinates of Re
atoms for both Fd3m and I4m2 space groups as measured
by Huang et al. [15]. In keeping with the previous sections,
we have switched the origin choice 2 used by Huang et al. for
Fd3m to the origin choice 1, corresponding to a global shift of
(1/8,1/8,1/8) for all the atoms. We remark also that with our
choice of Re1 for the cubic phase, the corresponding Re atom
in the tetragonal phase is the second entry of the ITC, No. 119.
This point can be checked from the symmetry operations
reported in the ITC (Nos. 119 and 227), by reminding that
the group is not Abelian (as the Ŝ4z operator does not
commute with twofold rotations, the order is important):
Ŝ4zĈ2xx̄ = Ĉ2xxŜ4z = σ̂x , whereas Ŝ4zĈ2xx = Ĉ2xx̄ Ŝ4z = σ̂y .
So, the correct correspondence is Re1 → Ret

2; Re2 → Ret
1;

Re3 → Ret
3; Re4 → Ret

4, as shown in Fig. 5.
Here and in what follows, Î and Ê are the inversion and the

identity operators, and Ĉ2i are twofold rotations around the i

axis (x,y,z parallel to cubic a,b,c). In the following, we label
w = 0.2471 and u = 0.8729 [15]. Taking into account the
space-group symmetries, the resonant x-ray structure factor
for the Fd3m space group, summed over the 16 Re atoms,
can be written as

Fhkl

Fd3m
∝ (1 + (−1)h+k + (−1)h+l + (−1)k+l)

× (1 + (i)h+kĈ2z + (i)h+l Ĉ2y + (i)k+l Ĉ2x)f1,

(17)
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FIG. 5. Pyrochlore structure of Re ions depicted for the four
planes along the c-axis. Green arrows represent in-plane Re displace-
ments �δi . Tetragonal xy-unit cell is shown in red. The z coordinate
of each plane is reported for the cubic cell (zc) and for the tetragonal
cell (zt ). Re1 of the cubic cell (ITC No. 227) corresponds to Re2 of
the tetragonal cell (ITC No. 119). Six O ions around Re1 are reported
in blue. Their positions relative to Re1 are given in Appendix C. We
notice that O1 and O3 have both zc = 3/4.

where f1 is the resonant atomic scattering amplitude for Re
atom 1 (see, e.g., Ref. [27]).

The resonant x-ray structure factor for the I4m2 space
group, summed over the eight Re atoms, can be written as

Fhkl

I4m2
∝ (1 + (−1)h+k+l)(e2iπ(hw+lu)(1 + e−4iπhwĈ2z)

+ e−2iπ(kw+lu)(1 + e+4iπkwĈ2z)Î Ĉ4z)f1t , (18)

where f1t is the resonant atomic scattering amplitude for
tetragonal Ret

1. We remark that for the all-in, all-out I4
′
m′2

magnetic group, the only change in the structure factor is the
replacement of Î Ĉ4z in the last term by T̂ Î Ĉ4z.

A key class of reflections that can be used in REXS to
identify the breaking of the Fd3m space group is (0,0,4n + 2).
If we specialize Eq. (17) in this case, we get

F
0,0,4n+2
Fd3m

∝ 4(1 + Ĉ2z − Ĉ2y − Ĉ2x)f1, (19)

which is forbidden out of resonance (it gives zero if we
put Ĉ2z = Ĉ2x = Ĉ2y = 1, as appropriate out of resonance).
In anomalous conditions, though, such a reflection becomes
allowed. We remind that, at L2,3 edges, only E1-E1 transitions
are possible and REXS is sensitive only to a time-reversal even
OP, which is the electric quadrupole Q, and a time-reversal
odd OP, the magnetic dipole �m. In the high-temperature cubic
phase, there is no magnetism and only Q can be detected at the
(0,0,4n + 2) reflections. Of the five components of Q (Q3z2−r2 ,
Qx2−y2 , Qxz, Qyz, Qxy), the only term that is nonzero when

.

.

.

.

.

.

.

FIG. 6. The x-ray absorption intensity (XAS) near the Re L3 edge
for the Fd3m and I4m2 space groups. The two peaks are due to the
unoccupied t2g and eg states. We also show the REXS signal for the
(006) reflection in SP geometry, at both 0◦ and 45◦ azimuth. The latter
signal is zero, suggesting where to look for the magnetic signal in the
low-temperature phase.

acted upon by the linear combination (1 + Ĉ2z − Ĉ2y − Ĉ2x)
of Eq. (19) is Qxy (as Ĉ2zQxy = +Qxy , Ĉ2yQxy = −Qxy and
Ĉ2xQxy = −Qxy). All the other terms are zero.

If we perform an azimuthal scan around �q = (0,0,4n + 2),
and put the azimuth zero corresponding to the incoming S
polarization (perpendicular to the scattering plane) along the
�a axis, then we get an azimuthal scan ∼cos2(2φ) for SP and
PS scattering and ∼sin2(2φ) for SS and PP scattering, because
of the xy dependence for the only allowed term Qxy . We
remark that each P polarization further introduces a reduction
by sin θ , where θ is the Bragg angle. This azimuthal behavior
for nonmagnetic REXS is the same as obtained by Yamaura
et al. [6], who studied the (006) reflection for Cd2Os2O7. We
finally remark that the Qxy electric quadrupole does not probe
only Re dxy orbitals, because the local oxygen octahedron
around each Re ion is not oriented along the �a, �b, and �c cubic
axes. The calculation to rotate the local axes to the crystal
axes is performed in Appendix C. The result shows that in
the energy scan of the (0,0,4n + 2) reflections, both t2g and
eg local states are detected with a relative weight of 65%
for t2g and 35% for eg . The eg peak is further smeared by
lifetime broadening, which increases by a factor of about two
when passing from the lower energy t2g states to the higher
energy eg ones. This is confirmed by our FDMNES numerical
calculations [22], fully relativistic (spin-orbit included) in SP
geometry for φ = 0◦ and 45◦ shown in Fig. 6 at the Re L3 edge.
We remark that similar results are obtained at the L2 edge [32].
Huang et al.’s positions [15] for the Fd3m space group were
used. As Cd2Os2O7 is a metal, we did not include a Hubbard
U , but we checked that nonzero values of U (up to 2 eV for
both Cd and Re) do not affect the main conclusions of this
section. As noted above, no signal appears for φ = 45◦. The
t2g-eg separation is about 5 eV, in keeping with the ab initio
calculations of Huang et al. [15].
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Below the transition, in I4
′
m′2 group, (0,0,4n + 2) reflec-

tions become instead Bragg-allowed. In fact, if we specialize
Eq. (18) to the case (0,0,4n + 2) for the magnetic group
I4

′
m′2, we have

F
0,0,4n+2

I4
′
m′2

∝ 2(1 + Ĉ2z)(e
iπ(8n+4)u + e−iπ(8n+4)uT̂ Î Ĉ4z)f1t .

(20)

Though l = 4n + 2 reflections are Bragg-allowed, the
Bragg term only contributes to SS or PP scattering, whereas
the magnetic signal is only visible in SP or PS geometry,
together with the electric-quadrupole terms, Q. However, in a
real experiment, there is the further issue of possible leakage
in the SP channel of Bragg scattering from the SS channel.
Because of this, a full symmetry analysis for all the possible
terms must be performed. Of the five electric-quadrupole
components, Qx̃z and Qỹz give exactly no signal, being odd
with respect to Ĉ2z. The other three are even under Ĉ2z. Q3z2−r2

is also even for T̂ Î Ĉ4z, whereas Qx̃2−ỹ2 and Qx̃ỹ are odd,
because of the Ĉ4z rotation (all electric quadrupoles are even
under T̂ Î ). Therefore Q3z2−r2 is reduced by cos(2πu(4n + 2))
[33], whereas Qx̃2−ỹ2 and Qx̃ỹ go as i sin(2πu(4n + 2)). We
remark that Eq. (20) is written in terms of tetragonal symmetry
operations, with x and y cubic and x̃ and ỹ tetragonal axes
rotated by 45◦—see Fig. 5. So, Qx̃2−ỹ2 corresponds to Qxy

of the cubic phase. A numerical calculation of the order of
magnitude of these terms by the FDMNES program shows
that Qx̃ỹ and Q3z2−r2 , i.e., the components induced by the
tetragonal distortion (∝δ2

i ) are totally negligible compared to
Qx̃2−ỹ2 , to the magnetic mz term, and to the Bragg term. If
we fix to 1000, the intensity of the Bragg term is IQ3z2−r2 ∼
10−2, IQx̃ỹ

∼ 10−4, IQx̃2−ỹ2 ∼ 10, and Imz
∼ 10. As above, our

calculations were fully relativistic, with spin-orbit included.
Huang et al.’s atom positions [15] for the I4m2 space group
were used. Therefore the total intensity can be simplified as
follows (l = 4n + 2):

F 00l

I4
′
m′2

= 8[cos(2lπu)(fQ0 + fQ3z2−r2 ) − sin(2lπu)fmz
]

+ 8i sin(2lπu)[fQx̃2−ỹ2 + fQx̃ỹ
]

	 8[cos(2lπu)fQ0 − sin(2lπu)fmz
]

+ 8i sin(2lπu)fQx̃2−ỹ2 , (21)

where we have explicitly written each multipole contribution
to the atomic scattering factor f1t , including the Bragg term,
fQ0 .

In an ideal experiment, fQ0 does not contribute to SP
scattering and the magnetic contribution fmz

can be easily
separated from the Templeton term fQ

x̃2−ỹ2 because of their
different azimuthal dependence, the magnetic term being
proportional to sin2(2φ), the Templeton term (as seen above
in SP geometry) to cos2(2φ). The zero of the azimuthal scan
is always given relative to the cubic �a axis. Therefore a signal
measured at 45◦ is purely due to magnetism, analogous to
the case of Cd2Os2O7 [6]. This is further confirmed by the
numerical calculations performed with the FDMNES program
for the I4

′
m′2 magnetic space group (relativistic calculation

with two magnetic 5d electrons per Re ion and atomic positions
of I4m2 [15]) and shown in Fig. 7(a). Its intensity is purely
magnetic.

FIG. 7. (a) Re L3-edge SP (0,0,4n + 2) energy scans. The signal
is purely magnetic, with a main contribution at the t2g energy and
a smaller one at the eg energy. The azimuthal scan for (0,0,14) is
also shown in the inset (black curve for 5 eV, red curve for 10 eV,
multiplied by 5). (b) Re L3-edge SS (0,0,4n + 2) energy scans.
(c) SP (0,0,4n + 2) energy scans with 1% leakage from the SS
channel. The inset is a zoom in to highlight the different energy
positions of the lowest-energy peak for (0,0,2). This and other
interference features are discussed in the text in order to identify
the presence of a magnetic component in the signal.
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However, in a real experiment, a leakage from the SS
channel of around 1% would contaminate this magnetic signal.
The SS Bragg scattering is shown in Fig. 7(b). Luckily,
the magnetic term, usually out-of-phase by π/2 with the
Bragg term, brings with it an extra i coming from the
i sin(2πu(4n + 2)) factor. Therefore, as already shown in
Eq. (21), the magnetic contribution fmz

is in phase with the
Bragg scattering of SS origin fQ0 (contrary to the quadrupolar
terms Qx̃2−ỹ2 , out of phase with both). This situation is shown
in Fig. 7(c), where the magnetic signal can still be clearly
identified as a modulation of the SS signal. Three features can
be experimentally identified to provide evidence of a magnetic
signal in SP geometry, as a consequence of the interference
with the Bragg scattering (we remind that in the case of
no magnetism, the SP energy scan would be just a reduced
intensity version of the SS energy scan): (1) the maximum of
the (002) SP reflection is shifted to a lower energy compared
to the other peaks [inset of Fig. 7(c)]. This condition implies
interference between fQ0 and fmz

, which is not present in the
ideal case [Fig. 7(a)]: in the case of a pure magnetic signal,
all peaks are proportional to each other. (2) The peak at the
t2g energy is bigger than that at the eg energy for (0,0,10) and
(0,0,14) [Fig. 7(c)]. This is not the case for the Bragg SS signal
of Fig. 7(b), having three peaks instead. (3) Finally, the tails of
the Bragg signal are characterized by a Lorentzian decrease as
a function of the energy whereas the magnetic peaks usually
fall off faster than a Lorentzian. In any case, the above
signal must be measured at 45◦ (or at 135◦), where Qx̃2−ỹ2

is zero.
To conclude this subsection on the search for magnetic

ordering at Tc1, we remark that it is in principle also possible
to look for a magnetic signal determined by the magnetic
quadrupole (and not by the dipole component mz, as above).
This can be done at the L1 pre-edge by E1-E2 transitions,
that are allowed by inversion-breaking. Several multipoles can
contribute in principle to the pre-edge intensity (the full list
can be found, e.g., in Ref. [31]). For the I4

′
m′2 magnetic

group, only the magnetic quadrupole and the axial toroidal
quadrupoles can be detected, so that if we could single out
the two signals, their dependence as a function of Tc1 − T

is expected to follow a square root and a linear dependence,
respectively, in keeping with the SHG measurement. However,
the interest in this approach is unfortunately strongly reduced
by our FDMNES calculations, showing, in the same energy
range as the E1-E2 terms, the presence of E2-E2 contributions
(mainly determined by an hexadecapolar OP), which are 10 to
30 times bigger, and would completely hide the inversion-odd
signal of E1-E2 origin.

B. Probing by REXS the 120 K phase transition of Cd2Re2O7

Two different phase transitions have been reported in
Cd2Re2O7. Besides the phase transition at Tc1, from the
high-temperature Fd3m cubic phase to the I4m2 phase,
studied above, a second phase transition has been measured
around Tc2 	 120 K [7,15]. The crystal space group below
Tc2 was identified as I4122 [15]. However, several doubts
were raised in the literature about its existence [23]. Here we
propose a REXS experiment that can definitely settle the issue.

TABLE VII. Fractional positions of Re atoms in the I4122 space
group [15]. The four bcc translations are not shown. Of all symmetry
operations relative to Re1, only the ones used to derive the resonant
structure factor are highlighted.

Atom (x,y,z) I4122 I4122

Re1 (0.9967,0.25,0.125) Ê

Re2 (0.5033,0.25,0.625) Ĉ2z

Re3 (0.75,0.4967,0.375) Ĉ4z

Re4 (0.75,0.0033,0.875) Ĉ−
4z

The resonant x-ray structure factor for the I4122 space
group, summed over the eight Re atoms (Table VII), can be
written as

Fhkl
I4122 ∝ (1 + (−1)h+k+l)[e2iπ(hs+k/4+l/8)

× (1 + (−)h+le−4iπhsĈ2z) + e2iπ(3h/4+ks+k/2+3l/8)

× (1 + (−)k+le−4iπksĈ2z)Ĉ4z]f1. (22)

Here, s = 0.9967 [15].
In order to have a clear differentiation of the I4122 and

I4m2 space groups, we need to look for reflections of the
kind (h,h,4n + 2) near the resonant energy of Re ions. In
fact, these reflections are forbidden at the special positions
(8f ) of Re ions in the I4122 space group (ITC No. 98) for SS
geometry. The only contribution to it would come from oxygen
sites O1 (8d) and O3 (8e), therefore nonresonant. Instead, for
the I4m2 space group, a clear resonant behavior appears in
the SS geometry. A specific calculation by FDMNES for the
(666) reflection near the Re L3 edge shows this quantitatively,
as seen in Fig. 8. Therefore a resonant behavior onsetting at

FIG. 8. The REXS intensity for the (666) reflection near the Re
L3 edge. The black curve is calculated by FDMNES for the I4122
space group and is multiplied by 10. The weak intensity, constant in
energy, is due to the nonresonant contribution from the oxygens. The
red curve represents the calculation for the I4m2 space group. The
strong energy dependence is clearly seen at the Re L3 edge. Far from
the edge, the signal is about 35 times bigger than for I4122. Both
curves are calculated in SS geometry.
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Tc1 is the signature of the I4m2 space group. A change to
the nonresonant behavior at Tc2 would signal the transition to
I4122.

V. DISCUSSION AND CONCLUSIONS

As we demonstrated above, a magnetic scenario gives a
natural interpretation for the primary even-parity and odd-
parity order parameters implied by the second harmonic
generation data. This is in contrast to a structural scenario,
where only the interpretation of the secondary order parameter
as an axial toroidal quadrupole, common to the magnetic
interpretation, is obvious. On the other hand, there is no
evidence for magnetic order from NMR and NQR data. Such
order should show up as a splitting of the lines, which to
date has not been observed [34]. Both our magnetic patterns
should show such a splitting, unless the actual magnetic order
parameter at the Re site itself is a magnetic octupole. However,
both polarized REXS and polarized neutrons should be able to
settle the question of magnetic order in the Re compound. In
the case of REXS, we have explicitly shown how, in Sec. IV.
Regardless, we think that a magnetic quadrupole/octupole
explanation for the primary odd/even-parity order parameters
is an attractive possibility worth exploring.

The other issue concerns the fact that Harter et al.’s SHG
data are most consistent with the εout

z′ component being in
quadrature with εout

x ′ and εout
y ′ [here, outgoing polarization

components refer to the last line of Eq. (B3)]. From our
exact quantum mechanical expressions, these quantities should
instead interfere. As we stated in Sec. II B and in Appendix B,
a possible solution is represented by either birefringence or
refraction. In the latter case, we suppose that the effective
θ inside the sample could be lower because of refraction,
thus suppressing the interference with the εout

z′ term. This
could be tested by increasing the incidence angle of the
incoming beam as shown in Fig. 3. As discussed at the end
of Sec. II B, this case could also allow a clear identification
of the magnetic OP, whether M3z2−r2 or Mxy , because of their
different interference properties. Birefringence was already
proposed to explain outgoing elliptical polarized radiation in
Petersen et al. [19], but the geometry of this SHG experiment
had εout

z′ = 0 and so it might not be directly related to the case of
Harter et al. [17].

Also in this paper, we have avoided any real discussion
concerning microscopics, but we offer a few remarks here.
First, unlike the Os compound, which is 5d3 and an insulator,
the Re compound is 5d2 and a metal. Surely, these two
differences have something to do with the differences between
the two materials, which should be investigated by further
theoretical studies beyond those done in Ref. [15]. And, in
regards to the spin nematic scenario of Ref. [18], we wish to
point out that from the work of Ref. [15], the atomic spin-orbit
coupling is already large enough to cause a large splitting of
the originally Kramers degenerate Fermi surfaces (i.e., their
Fig. 8). So, why an additional splitting of a similar form would
occur from another mechanism is not apparent to us.

We also note that the two magnetic structures proposed in
Figs. 4(a) and 4(b) correspond, respectively, to particular cases
of the so-called indirect and direct magnetic configurations
[35] induced by the Dzyaloshinsky-Moriya (DM) interaction

FIG. 9. Pictorial representation of the Re1-O5-Re2 distortion that
would increase the DM interaction (see text).

in a pyrochlore lattice. This line of thought is further motivated
by the recent study of the microscopic origin of the DM
interaction in d1 pyrochlores [36], where it is shown that it
arises from a bond corresponding, in our case, to Re1-O5-Re2 in
Fig. 5. Although this bond locally breaks inversion symmetry,
it keeps the mirror symmetry in the Re1-O5-Re2 plane
associated with time-reversal symmetry (i.e., the m′ in the
I4

′
m′2 space group). We show this in Fig. 9 in the ac tetragonal

plane. The strength of the DM interaction, D, is determined
by this bond angle (Fig. 2 of Ref. [36]). Its value increases
with decreasing γ in Fig. 9 (D being zero when this angle is
180◦). This is exactly the trend at the Tc1 transition, where,
as shown in Fig. 9, in the tetragonal phase Re1 and Re2 move
towards each other, whereas O5 moves down by �δO . Thus the
bond angle decreases to 136.1◦ (versus a value of 139.6◦ in
the cubic phase), thereby increasing D [37]. We remark that
this is the largest Re-O-Re angle change at the transition and
might explain the structural coupling to the magnetic degrees
of freedom in Cd2Re2O7: the angle tends to decrease, so as to
increase the DM strength D, at the expense of elastic energy,
and a new minimum is found with a tetragonal distortion.
In this picture, the magnetic degrees of freedom would be
primary, the distortion a secondary consequence. Whether the
scenario of Ref. [36] works as well in 5d2 pyrochlores like
Cd2Re2O7 is, however, beyond the scope of the present paper.

Finally, we would like to emphasize that SHG is a
wonderful method to identify hidden order associated with
novel electronic states and magnetic configurations character-
ized by higher order, parity-odd, multipoles (e.g., magnetic
quadrupoles). We remark that such multipoles are not nec-
essarily associated with orbital currents. In the future, we
expect that a photon energy sweep will be critical in helping
to unravel the nature of the optical transitions, in particular
the electronic states involved in the transition, so as to provide
further insight into the origin of the observed SHG signals in
Cd2Re2O7 and Sr2IrO4. To this aim, we also believe that further
advances in understanding can be obtained by developing a full
polarization analysis of both linear and circular polarization
channels: having access to circular polarization, for example,
would be useful to investigate the origin of the � ∼ π/2
phase shift noted by Petersen et al. [19] and discussed in
Appendix B. We remind that linear incoming polarization
can be transformed to circular outgoing polarization by two
resonances that are close in energy [38].
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APPENDIX A: EXPLICIT MULTIPOLAR EXPRESSION
OF SHG AMPLITUDES

We give here the explicit general expressions for the
dipole and octupole terms of the E1-E1-E1 transitions, not
given in Sec. II. The two dipoles are (here α is any of x,

y, or z):

Ō (1)
α = 1√

3
εo
α�εi · �εi ↔ (χαxx + χαyy + χαzz)/

√
3, (A1)

Õ(2)
α = 1√

15
εo
α�εi · �εi − 3√

15
εi
α�εo · �εi

↔ 1√
15

[
χαxx + χαyy + χαzz − 3

2
(χxαx + χxxα

+χyαy + χyyα + χzzα + χzαz)

]
. (A2)

We remind that the dipoles form T1u irreps in Oh symmetry.
The octupole terms, in the axial representation of DMN

[25], can be written as

Õy(3x2−y2) = 1

2

[
εo
y

(
εi
xε

i
x − εi

yε
i
y

) + 2εo
xε

i
xε

i
y

]
, Õx(3y2−x2) = 1

2

[
εo
x

(
εi
yε

i
y − εi

xε
i
x

) + 2εo
yε

i
yε

i
x

]
,

Õz(x2−y2) =
√

2

3

[
εi
z

(
εo
xε

i
x − εo

yε
i
y

) + 1

2
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z (εi

xε
i
x − εi

yε
i
y)

]
, Õxyz =

√
2

3

[
εo
z ε

i
xε

i
y + εo

xε
i
zε

i
y + εo

yε
i
xε

i
z

]
,

Õz3 =
√

2

45

[(
5εo

z ε
i
z − 3�εo · �εi

)
εi
z + 1

2
εo
z

(
5εi

zε
i
z − 3�εi · �εi

)]
,

Õxz2 = 1√
15

[(
5εo

z ε
i
z − �εo · �εi

)
εi
x + 1

2
εo
x (5εi

zε
i
z − �εi · �εi)

]
, Õyz2 = 1√

15

[(
5εo

z ε
i
z − �εo · �εi

)
εi
y + 1

2
εo
y

(
5εi

zε
i
z − �εi · �εi

)]
.

(A3)

We remark that we have rewritten this equation in a slightly different form than in Eq. (A48) of DMN [25], in order to highlight
the symmetry of the tensor, that was less evident in the original form [25]. In fact, we remind that Õz3 is a shorthand notation for
Õz(5z2−3r2), Õxz2 for Õx(5z2−r2) and Õyz2 for Õy(5z2−r2). Equation (A3) is however equal, line by line, to the octupole expression
in Eq. (A48) of DMN.

When the symmetry is cubic, it is more appropriate to work with the irreps of the octupole under Oh: T1u and T2u triplets and
the singlet, A2u. We give the corresponding χijk irreducible components in this case.

The T1u triplet can be obtained by combining the first two and the last three terms of Eq. (A3):

Õx3 =
√

2

45

[(
5εo

xε
i
x − 3�εo · �εi

)
εi
x + 1

2
εo
x

(
5εi

xε
i
x − 3�εi · �εi

)] ↔
√

2

5

[
χxxx − χyyx + χyxy + χxyy

2
− χzzx + χzxz + χxzz

2

]
;

Õy3 =
√

2

45

[(
5εo

yε
i
y − 3�εo · �εi

)
εi
y + 1

2
εo
y

(
5εi

yε
i
y − 3�εi · �εi

)] ↔
√

2

5

[
χyyy − χxxy + χxyx + χyxx

2
− χzzy + χzyz + χyzz

2

]
;

Õz3 =
√

2

45

[(
5εo

z ε
i
z − 3�εo · �εi

)
εi
z + 1

2
εo
z

(
5εi

zε
i
z − 3�εi · �εi

)] ↔
√

2

5

[
χzzz − χxxz + χxzx + χzxx

2
− χyyz + χyzy + χzyy

2

]
,

(A4)

where Õx3 is a shorthand notation for Õx(5x2−3r2), and Õy3 for Õy(5y2−3r2).
The T2u triplet can be obtained by combining the first three and the last two terms of Eq. (A3):

Õx(y2−z2) = 1√
6

[
2εi

x

(
εo
yε

i
y − εo

z ε
i
z

) + εo
x

(
εi
yε

i
y − εi

zε
i
z

)] ↔ (χxyy − χxzz + χyxy + χyyx − χzxz − χzzx)/
√

6;

Õy(z2−x2) = 1√
6

[
2εi

y

(
εo
z ε

i
z − εo

xε
i
x

) + εo
y

(
εi
zε

i
z − εi

xε
i
x

)] ↔ (χyzz − χyxx + χzyz + χzzy − χxyx − χxxy)/
√

6;

Õz(x2−y2) = 1√
6

[
2εi

z

(
εo
xε

i
x − εo

yε
i
y

) + εo
z

(
εi
xε

i
x − εi

yε
i
y

)] ↔ (χzxx − χzyy + χxzx + χxxz − χyzy − χyyz)/
√

6. (A5)
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Finally, the A2u singlet corresponds to the fourth term of Eq. (A3):

Õxyz =
√

2

3

[
εo
z ε

i
xε

i
y + εo

xε
i
zε

i
y + εo

yε
i
xε

i
z

] ↔ (χxyz + χxzy + χyzx + χyxz + χzxy + χzyx)/
√

6. (A6)

Equations (A1), (A2), (A4), (A5), and (A6), together with
Eq. (3) in Sec. II A, represent the recoupling scheme in
spherical tensors of the SHG amplitude, valid in the general
case for Oh and its subgroups. In the case of axial symmetries
(e.g., C6), the first two terms of Eq. (A4) and the first two
terms of Eq. (A5) should be replaced by the first two and the
last two terms of Eq. (A3).

APPENDIX B: CALCULATION OF THE SHG AZIMUTHAL
SCANS FOR THE ALLOWED SUSCEPTIBILITIES

OF THE I4m2 SUBGROUPS

The azimuthal scan in Harter et al. [17] was performed
around the (111) cubic direction. Here we calculate the
transformation from the coordinate set associated with the
cubic �a, �b, �c axes of the high-temperature Fd3m space group
(called x, y, z, here and in the rest of the paper) and the
coordinate set associated with the azimuthal scan, called x ′,
y ′, z′, with the z′ axis along the (111) cubic direction and the x ′
axis parallel to the projection of the �c axis in the (111) plane,
as shown in Fig. 10. We have

x ′ = 1√
6

(−x − y + 2z),

y ′ = 1√
2

(x − y),

z′ = 1√
3

(x + y + z). (B1)

FIG. 10. Projection of the SHG experiment onto the plane
perpendicular to the (111) cubic direction. The z′ axis, parallel to
the (111) cubic axis, is out of the plane of the drawing. Both φ′

and Harter et al.’s φH refer to the angle of the projection of Harter
et al.’s �ko

H in the x ′-y ′ plane. Petersen et al.’s αω refers instead to
the incoming in-plane polarization vector, as �ko

P is directed along the
(111) cubic direction.

The opposite transformations can be written as

x = − x ′
√

6
+ y ′

√
2

+ z′
√

3
,

y = − x ′
√

6
− y ′

√
2

+ z′
√

3
,

z =
√

2

3
x ′ + z′

√
3
. (B2)

We remark that the usual azimuthal angle φ′ goes from x ′ to
y ′ and has the opposite rotation as the azimuthal angle chosen
by Harter et al. [17]: φH = −φ′. Petersen et al.’s angle, α, is
related to the 90◦-shifted xP -yP frame, but it refers to the εS

component, as shown in Fig. 10. The incoming and outgoing
S and P polarizations in the x ′, y ′, z′ frame of the azimuthal
scan for Harter et al. experiment are given by

�εin
S = (sin φH , cos φH ,0) = �εout

S ;

�εin
P = (cos θ cos φH ,− cos θ sin φH , sin θ );

�εout
P = (− cos θ cos φH , cos θ sin φH , sin θ ). (B3)

The angle θ is the angle between the incident beam and the
(111) direction.

We remind that in Secs. II and III, tensor labels χijk have
been given with respect to the cubic crystal axes, even in the
low-temperature I4m2 phase. So, it is necessary to transform
incoming and outgoing polarizations, associated with the
nonzero susceptibilities, in the cubic frame. We get

�εin
S = �εout

S = (− sin φH/
√

6 + cos φH/
√

2,

− sin φH/
√

6 − cos φH/
√

2,
√

2/3 sin φH );

�εin
P = (− cos θ cos φH/

√
6 − cos θ sin φH/

√
2 + sin θ/

√
3,

− cos θ cos φH/
√

6 + cos θ sin φH/
√

2 + sin θ/
√

3,

+
√

2/3 cos θ cos φH + sin θ/
√

3);

�εout
P = (cos θ cos φH/

√
6 + cos θ sin φH/

√
2 + sin θ/

√
3,

cos θ cos φH/
√

6 − cos θ sin φH/
√

2 + sin θ/
√

3,

−
√

2/3 cos θ cos φH + sin θ/
√

3). (B4)

Using the definition of the quadrupole and octupole
polarization tensors given in Eqs. (3), (A5) and (A6), we get
the azimuthal contributions for each of the relevant tensors in
the I4m2 subgroups that are reported in Sec. II B, Eq. (4).

It is then possible to reproduce the experimental data of
Fig. 4(a) of Petersen et al. [19] with only the second line of
Eq. (4), i.e., the term Õx2−y2 associated with the axial toroidal
quadrupole Gx2−y2 . In fact, the experimental geometry is in
this case limited to both incoming and outgoing polarizations,
�εi and �εo, lying in the (111) plane (we remind that θ = 0◦ in
Ref. [19]). The two polarizations are associated, respectively,
with the angles αω and α2ω, both varying from 0 to π . This is a
mixed configuration between SS and SP. In fact, the outgoing
in-plane electric polarization can have both a component
along the incoming electric polarization (which would give
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an SS configuration with zero intensity) and a component
perpendicular to the incoming polarization (leading to a signal
due to the SP configuration). The nonzero projection in the
SP channel is proportional to sin |αω − α2ω|. This must be
weighted by the rotation of the incoming polarization vector
from αω = 0 (parallel to xP ) to αω = π (antiparallel to −xP ),
leading to a factor cos αω, from the Õx2−y2 term of the second
line of Eq. (4) with θ = 0. Squaring the result for the intensity,
we get cos2 αω sin2(αω − α2ω), as reported in Sec. II B and
in Fig. 2(a), left plot. In the case of I4122, we would have
gotten instead the contribution of the first term of Eq. (4),
Õ3z2−r2 , this time sin2 αω (again for θ = 0). So the final result
is sin2 αω sin2(αω − α2ω), as plotted in Fig. 2(a), right plot. We
remark that a proper description of the experimental data, as in
the original paper [19], cannot be obtained in this way, and an
extra parameter � has to be added to describe the effect of bire-
fringence. The value quoted in Petersen et al. is � = 1.1e1.3i .
We remark that the effect of such a parameter is to add a phase
shift of roughly π/2 between the outgoing polarizations in the
x ′ and y ′ directions. This means that the outgoing electric field
is elliptically (and almost circularly) polarized.

In order to reproduce the results of Harter et al. [17],
with θ = 10◦ (cos θ ∼ 0.985, sin θ ∼ 0.174), a second
component is needed going like sin φH , either from Õ3z2−r2

or from Õxy , as discussed in the text. It is then possible
to reproduce the experimental data by fitting the second
and the third (or the first) line of Eq. (4) together with
a surface component going like cos(3φH ). This is shown
in Fig. 2(b). In particular, the green dashed lines in
Fig. 2(b) is obtained through Õ3z2−r2 , Õx2−y2 and the surface
component, whereas the red dashed line is a linear combination
of Õxy , Õx2−y2 and the surface component.

However, again, a proper description of the experimental
data cannot be obtained, mainly because of the interference
between the cos φH and the cos(2φH ) terms in Õx2−y2 . This
is visible in the deformed shape of the theoretical plot in the
right frame of Fig. 2(b) for φH = 0 and φπ . Such a discrepancy
might be explained in terms of a lower effective θ angle for
the incoming beam, due to refraction, that would reduce the
interference with cos(2φH ) in Õx2−y2 , as the latter term is
weighted by sin θ [39]. If this were the case, we might expect to
resolve the issue about whether the primary OP is determined
by Õ3z2−r2 or by Õxy , by exploiting the different phase of
the interference [sin φH versus sin(2φH )] in the two terms
(opposite sign for Õxy , same sign for Õ3z2−r2 ), as described at
the end of Sec. II B and shown in Fig. 3(c), left panel.

We conclude with a remark on the tetragonal set of
coordinates for the space group I4m2. They correspond to
a rotation of the cubic coordinates by 45◦ around the �c axis.
For such a set, say x̃, ỹ, z, the mirror symmetry becomes
perpendicular to the x̃ or ỹ axes (it was 45◦ from the x and
y in the cubic frame), and the twofold rotation is along the
diagonals in the x̃ỹ plane (it was along x and y axes in the
cubic frame), as can be deduced from Fig. 5. This implies a
label switching of the susceptibilities, in the same way as used
for the electric quadrupole operator in Sec. IV: χxyz + χyxz =
χx̃x̃z − χỹỹz. This is valid for any point group. In particular, for
point group 42m with the twofold rotations along x and y, we
have χxyz = χyxz. This is what is used throughout the whole
paper (tetragonal space group described with cubic axes) with

the alternative notation 4m2, for reasons explained at the
beginning of Sec. II B. Actually, the 4m2 notation describes
the same physical situation when expressed in the 45◦-rotated
x̃ỹ frame with the twofold rotations along the diagonals (we
remind that in the ITC notation, the first symmetry operation
after the 4 fold axis refers to the orthogonal coordinate axis,
the second to the diagonal). In this tetragonal frame, the
former relation becomes χx̃x̃z = −χỹỹz. So, as χxyz = χx̃x̃z,
the same physical susceptibility appears with two different
labels according to the coordinate choice in the xy (x̃ỹ) plane.
So, particular care should be taken in specifying the coordinate
set associated with the susceptibilities.

APPENDIX C: SPHERICAL HARMONICS ROTATION
FROM THE LOCAL TO THE CUBIC BASIS

In Sec. IV, we have determined that reflections of the
kind (0,0,4n + 2) are sensitive to the electric-quadrupole
operator Qxy , with the labels referring to the cubic axes.
However, the local oxygen-octahedral environment of the Re
ions in the cubic frame is rotated with respect to the cubic
crystallographic axes (and trigonally compressed). In order
to evaluate the weight of Re 5d orbitals contributing to the
signal, we should perform the rotation. For Re1 at (000), as
shown (projected) in Fig. 5, the six nearest-neighbor oxygens
(48f Wyckoff label) are at positions: O1 = (−0.0652,0.125,

0.125), O2 = (0.0652,−0.125,−0.125), O3 = (0.125,

−0.0652,0.125), O4 = (−0.125,0.0652,−0.125), O5 =
(0.125,0.125,−0.0652), and O6 = (−0.125,−0.125,0.0652)
[15].

Referring to Fig 5, if we choose to orient the z′′ axis from
Re1 to O6, the x ′′ axis from Re1 to O3 and the y ′′ axis from
Re1 to O1, then Euler angles are α = −45◦, β = 69.75◦, and
γ = 45◦. From the general transformation for spherical tensors
(θ and φ are the usual spherical angles referred to the cubic
frame, whereas θ ′′ and φ′′ refer to the local frame with z′′ axis
along Re1-O6):

Qxy(θ,φ) = − i√
2

[Y2,2(θ,φ) − Y2,−2(θ,φ)]

= Qy ′′z′′ (θ ′′,φ′′)(sin α sin β cos β sin γ

− cos α sin β cos γ )

+Qx ′′z′′ (θ ′′,φ′′)(cos α sin β cos β sin γ

+ sin α sin β cos γ )

+Qx ′′y ′′ (θ ′′,φ′′)
[

cos(2α) cos β cos γ

− sin(2α)
1 + cos2 β

2
sin γ

]

−Qx ′′2−y ′′2 (θ ′′,φ′′)
[

cos(2α)
1 + cos2 β

2
sin γ

+ sin(2α) cos β cos γ

]

−Q3z′′2−r2 (θ ′′,φ′′)

√
3

2
sin2 β sin γ, (C1)

we get the contribution for the (0,0,4n + 2) reflection as
determined by the local 5d Re orbitals, in the frame
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x ′′y ′′z′′:

Qxy(θ,φ) 	 0.245Qx ′′2−y ′′2 (θ ′′,φ′′) − 0.539Q3z′′2−r2 (θ ′′,φ′′)
+ 0.396Qx ′′y ′′ (θ ′′,φ′′) + 0.631Qy ′′z′′ (θ ′′,φ′′)
− 0.307Qx ′′z′′ (θ ′′,φ′′). (C2)

The first line in Eq. (C2) refers to the contribution of
the eg orbitals to the reflection and the last two lines to the

contribution of the t2g ones. We remark that the choice of x ′′,
y ′′, and z′′ orbitals in the local basis is arbitrary, so that the
only physical information is the total t2g weight and the total
eg weight. Squaring the first two coefficients and summing
them up gives a 35% contribution from eg orbitals to the
reflection and squaring the last three coefficients and summing
them up gives a 65% contribution from t2g orbitals, as reported
in Sec. IV.
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