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Effects of interactions on dynamic correlations of hard-core bosons at finite temperatures
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We investigate how dynamic correlations of hard-core bosonic excitation at finite temperature are affected
by additional interactions besides the hard-core repulsion which prevents them from occupying the same site.
We focus especially on dimerized spin systems, where these additional interactions between the elementary
excitations, triplons, lead to the formation of bound states, relevant for the correct description of scattering
processes. In order to include these effects quantitatively, we extend the previously developed Brückner
approach to include also nearest-neighbor (NN) and next-nearest neighbor (NNN) interactions correctly in a
low-temperature expansion. This leads to the extension of the scalar Bethe-Salpeter equation to a matrix-valued
equation. As an example, we consider the Heisenberg spin ladder to illustrate the significance of the additional
interactions on the spectral functions at finite temperature, which are proportional to inelastic neutron scattering
rates.
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I. INTRODUCTION

Computing dynamic correlations in spin systems is one of
the main tasks necessary in order to understand the physics
in real quantum magnets. Many exotic ground states without
long-range order, for instance, spin liquids, can be identified
in neutron scattering experiments by their specific excitation
spectra [1]. From an experimental point of view, thermal
fluctuations often smear out the characteristic signatures in mo-
mentum and frequency space, making clear statements difficult
[2]. This calls for theoretical predictions extended to finite
temperatures in order to directly compare with experiments.
This goal, however, often proves challenging because at finite
temperatures the full trace over the Hilbert space has to be
taken into account, i.e., the complete Hilbert space contributes.
In particular, interactions between excitations can change the
energy landscape significantly by means of bound states or
long-range entanglement.

Recently it was shown that the Heisenberg ladder with
strong inter-rung frustration is such an extreme case [3].
This model exhibits bound states of the elementary triplon
excitations which exist even below the single-triplon gap.
Interestingly, these bound states are hidden in the observables
accessible by inelastic neutron scattering at zero temperature.
At finite temperatures, however, the bound states acquire finite
weight and can even dominate the spectrum. Thus, the low-
energy physics is best described by strongly interacting and
entangled triplons. This analysis shows that the interactions
between the elementary excitations can play a crucial role in
the dynamics of spin systems at finite temperature.

On the methodical side, there exists a variety of methods to
compute the dynamical response of a spin system at finite tem-
peratures [4–14]. In previous studies [15,16], we established
an analytical method to calculate correlation functions at finite
temperature based on the Brückner approach, first introduced
in nuclear physics and later transferred to solid-state physics
[17]. It was gauged against exact data obtained from the
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Jordan-Wigner mapping to interaction-free fermions [15]. In
contrast to most previous studies, the Brückner approach has
the advantage that it is not restricted to one dimension or
small system size, but in return it relies on a small parameter,
namely exp(−β�), where β is the inverse temperature and
� is the energy gap, so that it is particularly reliable at low
temperatures. It is important to dispose of methods which are
applicable for all dimensions because the thermal broadening
of hard-core bosonic line shapes is observed also in three
dimensions [18]. A good description has been obtained by
an expansion in the inverse coordination number [12]. This
approach, however, is not justified in low dimensions, so
the Brückner approach is the only one which is conceptually
applicable in arbitrary dimension.

The basic idea is to expand the single-particle Green’s
function in terms of interaction diagrams and to keep only those
diagrams which contribute in leading nontrivial order, i.e., in
exp(−β�). These are the ladder diagrams in the self-energy
of the single-particle propagator. For gapped spin systems,
local excitations generically obey a hard-core constraint due
to the limited size of the local Hilbert space. In order to
be able to apply bosonic perturbation theory, this hard-core
constraint is incorporated as on-site infinite repulsion U → ∞.
The Brückner approach was applied to quantitatively explain
the experimental data for two one-dimensional (1D) materials
[19,20]. It was also applied to predict such data in a two-
dimensional (2D) material [21].

So far, only the hard-core repulsion was taken into account
in calculations of the low-temperature spectral functions
based on the Brückner approach. Omnipresent additional
interactions were included only on a mean-field level [19–21].
This appeared justified by the dominating strength of the
diverging on-site repulsion in comparison to the additional
finite interactions. If, however, the additional interactions lead
to a significant restructuring of the energy landscape—see
the discussion of binding phenomena above—a mean-field
treatment is no longer justifiable. It is the main focus of this
paper to solve this issue.

We derive how the Brückner approach can be extended
in order to include additional interactions summing all lad-
der diagrams. The extended approach correctly captures all
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scattering processes of two given particles including the
formation of bound states. The extension leads to a natural
generalization of the scalar Bethe-Salpeter equation for the
scattering amplitude to a matrix-valued Bethe-Salpeter equa-
tion for the scattering matrix.

As a test bed, we investigate the correlations at finite
temperature for Heisenberg spin ladders. These systems
feature triplons as elementary excitations which form bound
and antibound states in the two-particle sector due to additional
interactions. We investigate how these additional interactions
influence the single-triplon spectral function at finite temper-
ature. This paves the way to compute correlation functions in
more complicated models and thus to explore the interplay
of quantum interactions and thermal fluctuations in a broader
sense.

The article is set up as follows: In Sec. II, we introduce
the hard-core boson model and the parametrization for the
additional interaction. In Sec. III, we extend the Brückner
approach to additional interactions for hard-core bosons of
a single kind, i.e., for the single-flavor case. In Sec. IV, an
analysis of the approach for the Heisenberg ladder follows, for
which we extend it to several flavors as well. We conclude our
article in Sec. V.

II. MODEL

Here we introduce the general hard-core boson model and
discuss some of its properties. We consider a model with a
single kind of boson per site, i.e., a single flavor, in order
to keep the notation transparent. This setting can be extended
later on to several flavors. The Hamiltonian of the system reads

H0 = E0 +
∑
i,d

(hdb
†
i bi+d + H.c.)

+
∑

i,d1,d2,d3

Vd1,d2,d3b
†
i b

†
i+d1

bi+d1+d2
bi+d3

+ · · · , (1)

where E0 is the ground-state energy, i,d,d1,d2,d3 are site
indices, and b

†
i,α,bi,α are the hard-core bosonic creation and

annihilation operators. We describe the approach for the one-
dimensional case explicitly, but all definitions and equations
can be implement straightforwardly in higher dimensions as
well. The dispersion of the excitations is given by the Fourier
sum of the hopping matrix elements hd . We assume that
the model has an energy gap � between the ground state
and the minimum of the single-particle band. The general
two-particle interaction is described in real space by the
matrix elements Vd1,d2,d3 . Interactions among more particles,
for example, genuine three-particle interactions, are shown as
dots in (1) and can appear in the model but are neglected in
our approximation.

We assume that the Hamiltonian H0 describes the hopping
and interaction of conserved particles; i.e., the number of
particles (hard-core bosons) does not change. In general,
a microscopic Hamiltonian will not have this property, for
instance, if it is derived from a spin model [22]. But one
can map such microscopic nonconserving Hamilton operators
to effective Hamilton operators which conserve the particle
number. There exists a variety of methods in literature which
can be used to obtain such an effective Hamiltonian from a

FIG. 1. Diagrammatic representation of the interaction vertex in
Eq. (2).

general Hamiltonian [23–37]. Hence, here, we do not consider
this step but rather discuss the general properties of (1).

Transforming the interaction into momentum space yields
the interaction vertex including the on-site hard-core repul-
sion U

V (p,k,q) = U

N
+ 1

N

∑
d1,d2,d3

Vd1,d2,d3e
−id2pe−id1keid3q,

(2)

where U is taken later to infinity to implement the hard-core
property. The corresponding diagram is represented in Fig. 1.
We stress that the additional interactions, i.e., all terms
proportional to V , in Eq. (2) will depend on the momenta
k and q. Defining the momentum-dependent vector

f†(k) = (1,eik,e−ik,ei2k,e−2ik, . . . ), (3)

we can rewrite the interaction vertex as a bilinear form

V (p,k,q) = 1

N
f†(k)�

0
(p)f(q). (4)

The advantage of this notation is that the dependencies on the
momenta p,k, and q are factorized. The first few entries of the
matrix �

0
(p) read

�
0
(p)

=

⎛
⎜⎜⎜⎜⎝

U 0 0 · · ·
0

∑
d2

V1,d2,1e
−id2p

∑
d2

V1,d2,−1e
−id2p · · ·

0
∑

d2
V−1,d2,1e

−id2p
∑

d2
V−1,d2,−1e

−id2p · · ·
...

...
...

. . .

⎞
⎟⎟⎟⎟⎠

(5a)

=:

⎛
⎜⎝U 0 · · ·

0 0 · · ·
...

...
. . .

⎞
⎟⎠

︸ ︷︷ ︸
U

+V , (5b)

where U and V are block matrices acting on different
subspaces.

Below, we investigate the single-particle spectral function
of the hard-core bosons defined by

A(p,ω) = −Im

π
√

L
lim

iων→ω+i0+

∫ β

0
dτeiωντ

∑
j

e−ipjG(j,τ ),

(6)
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FIG. 2. Ladder diagrams with the interaction vertex given in
Eq. (2).

where G(j,τ ) is the single-particle temperature Green’s
function

G(j,τ ) = −〈T {b†j (−iτ )b0(0)}〉 (7)

and L is the system size. The Matsubara frequencies are
denoted by ων = 2νπ/β where β = 1/T is the inverse
temperature, setting the Boltzmann constant to unity. The
spectral function is connected to the dynamic structure factor
by means of the fluctuation-dissipation theorem

S(p,ω) = 1

1 − e−βω
[A(p,ω) + A(p, − ω)], (8)

which is directly accessible in inelastic neutron scattering
experiments.

III. BRÜCKNER APPROACH

In this section, we show how additional interactions can
be included within the Brückner approach. To keep the
presentation transparent, we describe the procedure for a
single flavor of hard-core bosons per site. In Appendix A,
we show how the approach can be extended to include
multiflavored bosons such as triplons in dimerized spin
systems.

The Brückner approach is a low-temperature approximation
for the single-particle spectral function based on diagrammatic
perturbation theory. The key idea is to replace the hard-
core bosonic creation and annihilation operators by normal
bosonic operators and to enforce the hard-core constraint
by an onsite repulsion U , which is taken to infinity in
the end. The expansion parameter of the theory is the
low density of excitations, which is given proportional to
exp(−β�).

In leading order, all diagrams with a single propagator
running backward in imaginary time must be included. This
leads to the summation of ladder diagrams as shown in
Fig. 2. Here we extend the previous approach [15,16,21]
by including also the additional interaction matrix elements
Vd1,d2,d3 in the diagrammatic ladders. In this way, we can ex-
plore how the additional interactions affect the single-particle
properties.

In a first step, we calculate the scattering amplitude �

as defined graphically in Fig. 3. The scattering amplitude
describes the complete scattering of two particles. It can be
found as solution of the Bethe-Salpeter equation depicted in

FIG. 3. Graphical definition of the scattering amplitude �.

FIG. 4. Bethe-Salpeter equation for the ladder diagrams in Fig. 3.

Fig. 4 and denoted explicitly as

�(P,K,Q) = V (p,k,q)

β

− 1

β

∑
L

�(P,K,L)G(P+L)G(−L)V (p,l,q).

(9)

The capital letters are shorthand for the momentum and the
Matsubara frequency, e.g., P = (p,iωp). We stress that due
to the additional interactions � also depends on the relative
momenta K and Q, making the integration more challenging.

Since the dependence of the elementary interaction vertex
V (p,k,q) on the momenta factorizes, we apply the same ansatz
to the scattering amplitude

�(P,K,Q) = 1

N
f†(k)�(P )f(q), (10)

which implicitly defines the scattering matrix �(P ). Inserting
Eqs. (4) and (10) into Eq. (9) and separating the dependence
on the momenta yields

�(P ) = �
0
(p)

− 1

Nβ

∑
L

�(P )G(P + L)G(−L)f(l)f†(l)�
0
(p).

(11)

This equation is the generalization of the scalar Bethe-Salpeter
equation for the scattering amplitude to the matrix-valued
Bethe-Salpeter equation for the scattering matrix �(P ). In
addition, we also define the matrix

N(P ) := 1

N

∑
l

f(l)f†(l)M(P,l), (12)

where we used the scalar function

M(P,l) := 1

β

∑
iωl

G(P + L)G(−L). (13)

Since the frequency dependence of M(P,l) is in O(ω−1
p ),

the matrix N(P ) has a spectral Hilbert representation. We
denote its spectral function by ρ(p,ω). Inserting the previous

definitions into the Bethe-Salpeter equation (9) yields the
matrix expression

�(P ) = �
0
(p) − �(P )N (P )�

0
(p), (14)

which represents a geometric series for matrices. It can be
easily solved by the scattering matrix

�(P ) = [�−1
0

(p) + N (P )
]−1

. (15)
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In analogy to the scalar case [15], the spectral representation
of �(P ) has two contributions: (i) A high-energy contri-
bution stemming from a virtual antibound state at ω ≈ U

and (ii) a low-energy contribution, where ω ≈ �. In the
following two subsections, we will determine the exact form
of these contributions, taking the additional interaction into
account.

A. High-energy contribution

The aim is to perform the limit U → ∞ analytically. At low
energies, one can set U = ∞ in the equations and evaluate
them straightforwardly. But there also arise contributions
from an antibound state at high energies. The analytical
determination of these contributions required some care for
the onsite repulsion. Due to the additional interaction, these
contributions are modified, as we explain now.

To compute the exact contribution we need to calculate the
position of the pole in the spectral representation of �(P ) for
ω ≈ U . The pole can be obtained from the zero eigenvalue of
the matrix inverse of Eq. (15):

�(P )−1 = �−1
0

(p) + N (P ). (16)

Note that

�−1
0

(p) = U−1 + V −1 (17)

holds where it is understood that the matrix inverses of U and V

are in the respective subblocks where the matrices contribute;
see Eq. (5b). This means that U−1 only has an entry in the

(1,1) matrix element, and V −1 only for matrix elements (m,n)
with m,n > 1.

If we expand N (P ) for ω → ∞, we obtain

N (P ) =
ρ

0
(p)

ω
+

ρ
1
(p)

ω2
+ O

(
1

ω3

)
, (18)

where ρ
m

(p) denotes the mth moment in x of the matrix-

valued spectral function ρ(p,x). This is in complete analogy

to the scalar case in Refs. [15,16] but generalized here to
matrices.

We introduce the parametrization ω = ω̄U , such that ω̄ =
O(1) for U → ∞. Inserting the expansion of N (P ) into

FIG. 5. Self-energy diagrams obtained from summing the scat-
tering matrix �(P,K,Q) with another dressed propagator.

Eq. (16) yields

U−1 + V −1 + 1

Uω̄
ρ

0
(p) + 1

U 2ω̄2
ρ

1
(p)

= V −1 + 1

U

(
1

ω̄
ρ

0
(p) + UU−1

)
︸ ︷︷ ︸

X1

+ 1

U 2

(
ρ

1
(p)

ω̄2

)
︸ ︷︷ ︸

X2

.

(19)

To determine the correct contribution from the antibound state
at frequencies ω ≈ U , we need to calculate the scattering
matrix in this frequency range. For this purpose, we employ
matrix perturbation theory in the parameter 1/U . The zeroth
order is given by V −1. The perturbations are the matrices
X1 and X2 in first and second order, respectively. We
denote by (λi,ei) the unperturbed eigenpair, i.e., eigenvalue
and corresponding eigenvector, of V −1. The first eigenpair
represents the important contribution of the antibound state
and reads

λ1 = 0 , e1 = (1,0,0, . . . )T. (20)

But for any finite U , higher order contributions mix into this
eigenpair. We refer the reader to Appendix B for the discussion
of the matrix perturbation theory, which is essentially standard
first- and second-order perturbation theory from any quantum
mechanics textbook.

Once the scattering matrix has been calculated, the self-
energy contribution from the antibound state at high energy
(denoted “he”) can be calculated by closing the scattering
matrix by another propagator; see the arrowed propagator
in Fig. 5. The first diagram on the right-hand side in
Fig. 5 corresponds to the Hartree contribution and the second
corresponds to the Fock contribution. Explicitly, they are given
by

�he(P ) =
∑
K

G(K)[�(P + K,−P,−P ) + �(P + K,−K,−P )]. (21)

The explicit sum over the Matsubara frequencies is similar to the one in the scalar case [15,16]. Inserting the expression for the
scattering amplitude yields for the Hartree contribution

�Hart,he(P ) = − 1

N

∑
k

∫ ∞

−∞
dx ′

Ak(x ′)U 2ρ11
0 (p + k)

[
1 − 1

U

∑
j 	=1

1
ρ11

0 (p+k)
2Re[Wj (p + k)∗fj (−p)]

]
iωp − [ωU (p + k) − x ′]

1

eβx ′ − 1
, (22)

where the functions Wj (and Vj for later use), fj , and ωU are defined in Appendix B. The Hartree and Fock contribution of the
pure hard-core repulsion reads

�Hart,U = �Fock,U = 1

N

∑
k

∫ ∞

−∞
dx ′Ak(x ′)U

1

eβx ′ − 1
. (23)
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Expanding the high-energy Hartree term in 1/U and combining it with �Hart,U of the pure hard-core repulsion, we eventually
perform the limit U → ∞ and obtain

�Hart,he(P ) + �Hart,U = − 1

N

∑
k

∫ ∞

−∞
dx ′Ak(x ′)

[
−iωp

ρ11
0 (p + k)

−
∑

i 	=1 Vi(p + k)

ρ11
0

2
(p + k)

− ρ11
1 (p + k)

ρ11
0

2
(p + k)

+ x ′

ρ11
0 (p + k)

−
∑
j 	=1

1

ρ11
0 (p + k)

2Re[Wj (p + k)∗fj (−p)]

⎤
⎦ 1

eβx ′ − 1
. (24)

Note that this results directly reflects the relevant expression for the hard-core particles.
The Fock term can be computed in a similar fashion, yielding

�Fock,he(P ) + �Fock,U = − 1

N

∑
k

∫ ∞

−∞
dx ′ Ak(x ′)

eβx ′ − 1

[
−iωp

ρ11
0 (p + k)

−
∑

i 	=1 Vi(p + k)

ρ11
0

2
(p + k)

− ρ11
1 (p + k)

ρ11
0

2
(p + k)

+ x ′

ρ11
0 (p + k)

−
∑
j 	=1

1

ρ11
0 (p + k)

[
Wj (p + k)∗fj (−p) + Wj (p + k)fj (−k)∗

]⎤⎦.

(25)

Comparing these expressions to the ones in the case of a pure
hard-core repulsion—see Eq. (A7) in Ref. [15]—we see that
two additional contributions to the real part of the self-energy
arise from the additional interactions.

B. Low-energy contribution

In the low-energy sector, we can take the limit U → ∞
directly without considering intricate limits. Then, the matrix
�0

−1 equals V −1. We use the Hilbert representation of N

to calculate the Hilbert representation of �(P ) − V (p), i.e.,
the ladder diagrams minus the simple Hartree-Fock diagrams,
which are constant in frequency:

�(P ) − V (p) =
∫ ∞

−∞
dx ′

ρ
�

(p,x ′)

iωp − x ′ , (26a)

ρ
�

(p,ω) =

⎛
⎜⎝

ρ11
� ρ12

� · · ·
ρ21

� ρ22
� · · ·

...
...

. . .

⎞
⎟⎠ (26b)

= −Im

π
lim

iωp→ω
(V −1 + N (P ))−1 − V .

(26c)

In general, these expressions cannot be simplified further
analytically. For a given interaction, however, the spectral
representation can be obtained numerically for fixed frequency
and momentum.

Next, we determine the low-energy (le) contributions to the
self-energy. Similar to the high-energy contributions, there are
Hartree- and Fock-like contributions, which result from the
two ways to close the scattering amplitude; see Fig. 5.

They appear in the two terms in

�le(P ) =
∑
K

G(K)[�(P + K,−P,−P )

+�(P + K,−K,−P )] (27a)

= −1

Nβ

∑
k,iωk

∫ ∞

−∞

∫ ∞

−∞
dx ′dx ′′ Ak(x ′)

iωk − x ′

× [f†(−p) + f†(−k)]
ρ

�
(p + k,x ′′)

iωp + iωk − x ′′ f(−p),

(27b)

The first term represents the Hartree contribution and the
second is the Fock contribution of the scattering amplitude. We
substitute k → k − p and sum over all Matsubara frequencies
in order to obtain

�le(P ) = 1

N

∑
k

∫ ∞

−∞
dx ′′[f†(−p) + f†( − (k − p))]

×Ak−p(x ′′ − ω)ρ
�

(k,x ′′)f(−p)

×
[

1

eβ(x ′′−ω) − 1
− 1

eβx ′′ − 1

]
. (28)

C. Hartree-Fock contributions for additional interactions

We stress that the simple Hartree and Fock contributions
without any frequency dependence cannot be expressed by
spectral representations. Hence, they must be dealt with
separately. For the additional interaction, the simple Hartree-
term reads

�Hart,V = −
∑

k

∫ ∞

−∞
dx ′ Ak(x ′)

eβx ′ − 1
V (p + k,−p,−p). (29)

The Fock term for the additional interaction is given by

�Fock,V = −
∑

k

∫ ∞

−∞
dx ′ Ak(x ′)

eβx ′ − 1
V (p + k,−k,−p). (30)

In the multiflavor case, the Hartree contribution is multiplied
by the number of flavors Nf .
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D. Self-energy and spectral function

Now we are in the position to sum all contributions to the
self-energy in leading order in exp(−β�)

� = �le + �Fock,V + �Hart,V + �Fock,he

+�Fock,U + �Hart,he + �Hart,U . (31)

We omitted the dependence on the total momentum and
frequency P for the sake of brevity. The only terms which
are not affected by the additional interaction are the simple
Hartree and Fock terms �Hart,U + �Fock,U of the pure hard-
core repulsion. All other contributions include terms which
are proportional to Vd1,d2,d3 .

Once the self-energy is calculated, we can determine the
spectral function using the Dyson equation:

A(p,ω)

= −1

π

Im�(ω,p)

[ω − ω(p) − Re�(ω,p)]2 + [Im�(ω,p)]2 . (32)

We point out that we sum the diagrams self-consistently, i.e.,
all propagators are dressed propagators. In practice, we start
from an initial guess for the propagators, compute the self-
energy, and insert it in the Dyson equation (32) to determine
the propagators. This cycle is iterated as long as the ensuing
propagators differ sizeably from the input propagators. As a
numerical criteria, we use the first and second moments of the
spectral function. Once they do not change anymore within
machine precision, the iteration is stopped and the result is
considered to be converged for practical purposes.

IV. RESULTS FOR HEISENBERG SPIN LADDERS

In this section, we apply the developed Brückner approach
including additional interactions to a generic system, namely
the dimerized Heisenberg spin S = 1/2 ladder. It is well
established that the elementary excitations in this system are
hard-core bosons with three flavors of triplet character [38]
called triplons [39]. At zero temperature, much is known
about the system [40] and the agreement between experiment
and theory is quantitative [41,42]. Hence, it is confirmed
that the effective Hamiltonian describing the motion and the
interaction of the elementary triplons is known, in particular
the additional NN and NNN interactions [43].

In order to illustrate the applicability and usefulness of
the extended Brückner approach, we analyze the influence of
these additional interactions on the spectral functions of the
spin ladder at finite temperatures. This offers the opportunity
to explore the feedback effect of strong correlations in the two-
particle sector on the single-particle mode at finite temperature.

A. Model of the Heisenberg spin ladder

The Hamiltonian of the Heisenberg spin ladder is illustrated
in Fig. 6. Its explicit form expressed in spin operators reads

H =
∑

r

JSL
r · SR

r + J‖
(
SR

r · SR
r+1 + SL

r · SL
r+1

)
, (33)

where J is the coupling on the strong bonds on the rungs
defining the dimers and x = J‖/J is the relative strength of
the interdimer coupling along the legs of the ladder. The index

FIG. 6. Exchange couplings in the dimerized Heisenberg ladder.

r denotes the dimer sites, and L and R refer to the left and right
legs of the ladder respectively.

It was shown in Ref. [43] that deepCUT provides an excellent
renormalization tool to compute the effective model in terms of
triplons for gapped dimerized spin systems which conserve the
triplon number. Thus, we use a deepCUT calculation to obtain
the hopping and interaction matrix elements of the triplons.
The resulting effective Hamiltonian in terms of triplon creation
and annihilation operators reads

Heff

J
= E0 + H1 + H2, (34)

where E0 is the ground-state energy, H1 is the one-triplon
Hamiltonian, and H2 is the two-triplon interaction. The
one-triplon Hamiltonian describes the motion of triplons via
hopping processes over distance d

H1 =
∑

r

h0t
†
r,αtr,α +

∑
r,|d|>0

∑
α

hd

2
t
†
r+d,αtr,α, (35)

where α ∈ {x,y,z} is the flavor index and t
†
r,α,tr,α are triplon

creation and annihilation operators, respectively. Note that
we let all triplons hop in the same way due to spin rotation
invariance and inversion symmetry fixes hd = h−d being real.
The ensuing dispersion ω(k) reads

ω(k) =
∑
d�0

hd cos(dk), (36)

where we set the lattice constant to unity. In this paper, we
restrict the hopping range to |d| � 6 for simplicity. This is
completely sufficient to describe the dispersion of spin ladders
to good accuracy up to x = 1.

The two-triplon Hamiltonian describes the additional inter-
actions which are the focus of our work. We restrict them to
the processes which can arise up to order 2 in x; see Table III
in Ref. [43]:

H2 = w1

∑
r

∑
α

t†r,αt
†
r+1,αtr+1,αtr,α (37a)

+w2

∑
r

∑
α

t
†
r+2,αt

†
r+1,αtr+1,αtr,α + H.c. (37b)

+w3

∑
r

∑
α 	=γ

t†r,αt
†
r+1,αtr+1,γ tr,γ (37c)

+w4

∑
r

∑
α 	=γ

t†r,αt
†
r+1,γ tr+1,αtr,γ (37d)

+w5

∑
r

∑
α 	=γ

t
†
r+2,γ t

†
r+1,αtr+1,αtr,γ + H.c. (37e)

+w6

∑
r

∑
α 	=γ

t†r,γ t
†
r+1,αtr+1,αtr,γ (37f)

+w7

∑
r

∑
α 	=γ

t
†
r+2,γ t

†
r+1,γ tr+1,αtr,α + H.c. (37g)
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TABLE I. Upper table: Numerical values of the hopping matrix elements hd [see Eq. (35)] for various coupling ratios x = J‖/J determined
by deepCUT. Lower table: Numerical values of the interaction matrix elements wj [see Eq. (37)] for various coupling ratios x = J‖/J determined
by deepCUT.

x h0 h1 h2 h3 h4 h5 h6

0.2 1.032449982 0.197447202 −0.011976902 0.001148659 −0.000146837 0.000021155 −0.000003167
0.6 1.279046995 0.508412978 −0.131238627 0.025917844 −0.009368954 0.003760173 −0.001417178
0.8 1.447703192 0.591395735 −0.235167175 0.048815082 −0.021795289 0.010694648 −0.004713291
1.0 1.627729418 0.643483774 −0.352625277 0.075238493 −0.037946270 0.021098310 −0.010197167

x w1 w2 w3 w4 w5 w6 w7

0.2 −0.010542152 0.011321380 −0.094559805 0.099997195 0.005991517 −0.015979524 0.005378499
0.6 −0.063956523 0.103995401 −0.249703472 0.299185869 0.066627091 −0.113405271 0.044179934
0.8 −0.071899966 0.168824957 −0.315550868 0.397077500 0.120736262 −-0.153387044 0.068217261
1.0 −0.066366893 0.235731322 −0.376683724 0.492295270 0.182036845 −0.182288001 0.092018083

We stress that the numerical prefactors wj are determined
by a deepCUT calculation of order 6. The precise numbers used
are listed in Table I for the values of x considered in this article.

To include the additional interactions among multiflavored
hard-core bosons, we must deal with two types of interaction
vertices: (i) ingoing triplons with flavor γ and outgoing triplons
with flavor α, which may or may not be equal to α. The value
of the interaction vertex depends on α 	= γ or α = γ . (ii)
Two triplons with flavor α 	= γ go in and come out, i.e., they
interact with each other. In the first case, Hartree- and Fock-like
diagrams contribute to the self-energy. In the second case, only
Hartree-like diagrams contribute. Their contribution acquires
a prefactor of 2 due to the fact that there are two possible
flavors for the Green’s function in the closed loop. Hence, we
need two types of interaction matrices: V ααγγ for the type (i)
interactions and V αγαγ for the type (ii) interactions.

In our approach, we include additional interaction of the
form occurring in second order in x. This determines the type
of quartic terms shown in (37); their prefactors are determined
by deepCUT so that higher order contributions are included as
well. The terms occurring in (37) have at maximum a spatial
range of 2; i.e., besides the rung r the farthest rung addressed
is r ± 2. This implies that the matrices �

0
(p) and �(P ) are

finite and can be treated numerically.
Among the ladder diagrams for the self-energy, we can

distinguish three different types: (a) Fock-like diagrams with
interaction matrix U + V ααγγ , (b) Hartree-like diagrams with
interaction matrix U + V ααγγ , and (c) Hartree-like diagrams
with the interaction matrix U + V αγαγ . In the latter case, α 	=
γ is implied. The diagrams (a) and (b) can be treated in the
same way in the Bethe-Salpter equation, but yield different
contributions on the level of the self-energy due to the different
final sum over the last propagator (arrow in Fig. 5).

B. Results

The most striking effect of the additional interactions is the
occurrence of bound and antibound states in the low-energy
sector [38,44–47]. These states appear because the additional
interactions imply either an attractive or repulsive net effect
depending on the total spin Stot of the pair of triplons under
study. For Stot = 0, rather strong attraction is at work, for Stot =

1 it is weaker by about a factor 2 and for Stot = 2 the triplons
repel each other. Effects of this binding and antibinding can
be observed in the matrix elements of �. In Fig. 7, we show a
matrix element of the spectral function ρxyxy

�
.

The spectral function is dominated by a two-particle
continuum with a bound state below the continuum and an
antibound state above the continuum at p ≈ π . The bound and
antibound states coincide with Stot = 1 and Stot = 2 excitations
in the triplon language [47,48]. Note that the Stot = 0 bound
state does not show up because it has no overlap with the
interaction matrix V αγαγ for α 	= γ .

Next, we investigate the spectral function A(p,ω) propor-
tional to the scattering rate of inelastic neutron scattering for
finite temperatures and various values of the relative coupling
strength x. Our focus lies on an exemplary comparison of
three kinds of results. The first kind is the calculation for a pure
hard-core bosonic system, i.e., only the infinite onsite repulsion
is taken into account. Its curves are denoted by “hard-core”

0.4 0.6 0.8 1 1.2 1.4 1.6
p [π]

1.8

1.9

2

2.1

2.2

2.3

ω
[J

]

-5

-4

-3

-2

-1

0

1

2

3

FIG. 7. Diagonal (2,2) matrix element of the spectral function
ρxyxy

�
of the scattering matrix for x = 0.2 at T = 0.3J as function of

total momentum p and frequency ω. The color axis has a logarithmic
scale to depict both strong peaks and weak continua. The arcs below
and above the continua around p = π stem from the triplet bound
state and the quintuplet antibound state, respectively. The singlet
bound state does not appear in this spectral response because it does
not have overlap with the xy triplon pair.
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)

ω[J ]

p = π p = 0

FIG. 8. Spectral functions for x = 0.2 at momentum p = π (left
panels, gap mode) and p = 0 (right panels, maximum mode). The
temperature is T = 0.3J . The vertical dashed lines show where the
T = 0 δ-peaks of the hard-core bosons are located.

in the following figures. The second kind is a calculation
including the additional interactions on the level of a static
Hartree-Fock mean-field calculation, as done previously for
spin systems [19–21]. Its curves are denoted by “mean field”
in the following figures. The third kind is the full calculation
of the ladder diagrams considering all interaction vertices,
including those of the additional interactions. Its curves are
denoted by “full Brückner” in the following figures.

Figure 8 starts the analysis by displaying the spectral
functions for x = 0.2, i.e., the model for which Fig. 7 depicts
the signatures of (anti)bound states in the spectral functions
of the scattering matrix. Note that the spin ladder has its gap
mode, i.e., the mode with the lowest energy at momentum p =
π , while its maximum mode, i.e., the mode with maximum
energy, occurs at p = 0 except for large values of x � 0.8. The
left panels display the gap modes while the right panels display
the mode at p = 0. The differences between the three kinds of
calculations are still fairly small at x = 0.2 as one might have
expected due to the smallness of the corrections. In particular,
the broadening is clearly dominated by the scattering due
to the hard-core repulsion. It must be noted, however, that
the size of the interaction relative to the band width does
not vanish for x → 0, but stays finite. Interestingly, even the
qualitative position of the peak relative to the T = 0 dispersion
depends on the kind of calculation. The maximum mode
(right panel in Fig. 8) in the hard-core calculation lies below
the zero-temperature energy, but above it in the mean-field
calculation while the full Brückner calculation brings it back
to the hard-core calculation.

In order to make the effects more sizable, we pass to larger
values of x in Fig. 9, displaying the results for x = 0.6. Note the
changes of scale on the axes relative to Fig. 8. Still, in the panels
of Fig. 9 it is clear that the main broadening of the line shapes is
due to the hard-core repulsion. This is especially true for larger
temperatures where the broadening is rather large, growing
exponentially ∝ exp(−β�) [6–9,15,16] with temperature in
the low-temperature regime. Noticeable in Fig. 9 is the tiny
effects of the pure mean-field corrections to the hard-core
calculation. Simple frequency-independent Hartree and Fock
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p = π p = 0
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0.4 0.5 0.6 0.7 0.8 0.9 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

A
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,ω
)

ω[J ]

p = π p = 0

FIG. 9. Spectral functions of for x = 0.6 at momentum p = π

(left panels, gap mode) and p = 0 (right panels, maximum mode).
The temperature is T = 0.3J for the upper panels and T = 0.6J

for the lower ones. The vertical dashed lines show where the T =
0 δ-peaks of the hard-core bosons are located.

corrections only influence the dispersion a bit and shift the
positions of the line shapes. The resulting curves are very
close to the pure hard-core line shapes, especially at higher
temperatures where the lines are rather broad anyway.

The main observation is that the inclusion of the additional
interactions enhance the broadening. Thus the peaks become
lower because they become broader. This is rather striking at
the lower temperature (T = 0.3J ), where the peaks are still
very high and prominent. At the higher temperature (T =
0.6J ), the effect is less obvious because the peak width due to
hard-core repulsion is already large.

A second noticeable effect of the additional interactions
is a shift in the peaks. While the additional broadening was
plausibly expected because the additional interactions open
additional decay channels, the shifts come as a surprise. The
gap mode is shifted to lower energies while the maximum
mode is shifted to higher energies. Thus, these shifts
counteract the tendency induced by the hard-core repulsion
of band narrowing, i.e., the lower modes are shifted to higher
energies and vice versa. At low temperatures, the band
narrowing is even inverted because the gap mode stays at
its T = 0 while the maximum mode moves a bit upward.
At higher temperatures, however, the main effect remains an
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FIG. 10. Spectral functions of for x = 0.8 at momentum p = π

(left panels, gap mode) and p = 0 (right panels). The temperature is
T = 0.3J for the upper panels and T = 0.6J for the lower ones. The
vertical dashed lines show where the T = 0 δ-peaks of the hard-core
bosons are located.

upward shift of the gap mode, although it is slightly reduced
by the effects of the additional interactions.

These observations become more pronounced the stronger
the additional interactions are. This is corroborated by data for
increasing values of x as depicted in Figs. 10 and 11. Roughly,
the broadening and the shifts increase with increasing x, but the
effect is not proportional to x; the increase is less than linear.
We attribute this behavior to the fact that the dominating effect
in broadening and shift still is engendered by the hard-core
repulsion, which is the same in all three cases. Moreover, the
band width also increases with x, which limits the relative
strength of the additional interactions.

At higher temperatures, the strong broadening induced by
the hard-core repulsion smears out the line shapes so that the
effects of additional interactions become less important. This
is reasonable because in the limit of infinite temperature only
the size of the local Hilbert space matters for the dynamics
of the system. Although we are technically working with
bosons having infinite-size local Hilbert space, the hard-core
constraint implemented in the Brückner approach prevents
double and higher particle number occupation. Thus, the
difference between the pure hard-core calculation and the
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FIG. 11. Spectral functions of for x = 1.0 at momentum p = π

(left panels, gap mode) and p = 0 (right panels). The temperature is
T = 0.3J for the upper panels and T = 0.6J for the lower ones. The
vertical dashed lines show where the T = 0 δ-peaks of the hard-core
bosons are located.

calculation including additional interactions decreases for
higher temperatures.

These observations explain why already the hard-core
repulsion describes experimental data very well [19,20].
Interestingly, the shifts stemming from the additional inter-
actions will improve the agreement between the diagrammatic
approach and the peak positions computed numerically by
density-matrix renormalization; see Supplemental Material of
Ref. [19]. We note that the band narrowing [5–9,18,49–51]
is reduced at high temperatures and even inverted at lower
temperatures. This calls for comprehensive further studies in
theory and experiment.

V. CONCLUSIONS

The goal of this article was to study how additional
interactions (besides the hard-core repulsion) in generic
hard-core bosonic systems affect the dynamical correlations
at finite temperature. To this end, we had to make method-
ical progress because the diagrammatic Brückner approach
formulated so far in solid-state physics did not include all
interactions, but only the infinite onsite repulsion.

We extended the diagrammatic Brückner approach by
including the complete interaction in the summation of all
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ladder diagrams. The solution of the extended Bethe-Salpeter
equation was possible by introducing a scattering matrix
which took over the role of the scattering amplitude in
the previous case of the pure onsite repulsion. The result
describes all possible iterated scattering processes between
two given elementary excitations. This allowed us to carry out
the intricate limiting procedure U → ∞ analytically. In this
way, it was possible to calculate the single-particle self-energy
correctly in first order in the expansion parameter exp(−β�).
Thus, we perform a systematic expansion valid for low
temperatures. The contributions to the self-energy stemming
from the virtual antibound state as well as from the low-energy
sector due to the additional interactions were derived explicitly.

In order to demonstrate how the method works and to
illustrate the importance of the additional interactions we ap-
plied the method to a well-understood system with established
hard-core bosonic excitations, namely the Heisenberg spin
ladder. Here, the elementary excitation are excited spin dimers
on the rungs of the ladder including their dressing on the rungs
in the vicinity. Because of their total spin S = 1, they are
called triplons and realize hard-core bosons with three flavors
corresponding to the three states of a triplet. The effective
model at zero temperature expressed in triplon creation and
annihilation operators is available, for instance, by continuous
unitary transformations.

At finite temperatures, we compared the line shapes result-
ing from pure hard-core scattering, from hard-core scattering
complemented by mean-field corrections, and from the full
Brückner approach. We showed that the dominating effect is
the broadening of the T = 0 δ peak by the hard-core scattering
at finite temperature. The mean-field corrections provide only
small modifications. They induce small, almost negligible
shifts in the peak positions. The additional interactions, how-
ever, have noticeable effects. They induce signatures of bound
and antibound states in the spectral functions of the scattering
matrix. These are not directly detectable, but the effects on
the spectral functions are clear. The additional interactions
broaden the lines further since they provide additional decay
channels. Concomitantly, they induce certain shifts in the peak
positions. Interestingly, these counteract the shifts induced by
the hard-core repulsion. The latter imply a certain band narrow-
ing, pushing low-lying modes upward in energy and high-lying
ones downward. The inclusion of the additional interactions
reduces this effect of band narrowing and may even invert it for
low temperatures. These additional shifts are likely to improve
the agreement with experimental observations further.

We point out that besides the single-particle response,
multiparticle response can play a significant role in real exper-
iments. The leading effect is given by the broadening induced
in the single-particle propagators which carries over to the
multiparticle response. Villain pointed out [52] that for thermal
excitations intraband transitions with arbitrary small energy
differences are possible, leading to a low-energy response
at ω ≈ 0. This mechanism was discussed and analyzed by
Essler and coworkers for the alternating spin chain and the spin
ladder in the limit of strong coupling on the dimers and rungs,
respectively [7,9]. At zero temperature, the intraband response
completely vanishes because no triplons are thermally excited.
Once the temperature is finite, the quasiparticle band is
populated and intraband transitions become possible, inducing

a finite spectral weight of the low-energy response. In terms of
the effective model, such intraband transitions can appear if the
corresponding observable includes terms proportional to t†t ,
which is generically the case. Thus the intraband transitions
can be interpreted as the propagation of a quasiparticle and an
annihilated thermal quasiparticle. Therefore, in first order in
exp(−β�), the response at low energies can be calculated by
the convolution of single-particle propagators obtained within
the Brückner approach. A quantitative discussion is beyond the
scope of the present paper, but is a subject of future research.

In summary, the main effect results from the hard-core
repulsion as was to be expected from the size of the matrix
elements (here U → ∞). But for quantitative analyses, the
effect of additional interactions is indeed very important and
cannot be neglected. The attempt to take them into account
on the mean-field level does not capture the relevant size
of the shifts and fails to capture the additional broadening.
These insights have only become possible due to the
methodical extension of the Brückner approach from pure
onsite interaction to general interactions of finite range. The
scalar geometric series at the basis of the solution of the
Bethe-Salpeter equation had to be promoted to a matrix-valued
geometric series. Clearly, the application to a wide range of
gapped systems is possible. In particular, we emphasize that
the Brückner approach can be applied in any dimension.

APPENDIX A: BOSONS WITH MULTIPLE FLAVORS

In case of multiflavored bosons, the most general two-
particle interaction is parameterized by

V =
∑

j

∑
d1,d2,d3

∑
α,β,γ,δ

V
αβγ δ

d1,d2,d3
b
†
j,αb

†
j+d1,β

bj+d2,γ
bj+d2+d3,δ

,

(A1)

where d1,d2,d3 ∈ Z, and d1 	= 0, and d3 	= 0 holds due to the
hard-core constraint. The flavor indices are given by α,β,γ,δ.
In momentum space, the interaction reads

V = 1

N

∑
p,k,q

∑
d1,d2,d3

∑
α,β,γ,δ

V
αβγ δ

d1,d2,d3
b
†
p+k,αb

†
−k,βbp+q,γ b−q,δ

× e−id2pe−id1keid3q . (A2)

The interaction vertex in case of flavored bosons reads

V αβγ δ(p,k,q) = U

N
+ 1

N

∑
d1,d2,d3

V
αβγ δ

d1,d2,d3
e−id2pe−id1keid3q .

(A3)

The corresponding diagram is represented in Fig. 12.
In the Heisenberg ladder, two kinds of interactions of the

hard-core triplons are present: V ααγγ for interactions with the

FIG. 12. Diagrammatic representation of Eq. (A3) for multifla-
vored bosons.
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same flavor for the ingoing triplons and the same flavor for
the outgoing triplons and V αγαγ for the interaction of bosons
with different flavors. Hence, we will focus our analysis on
this special case.

The main change in comparison to the single-flavor case is
that the scattering matrix also acquires flavor indices, which
represent superindices. As a result, the matrix dimension for �

scales with the squared number of flavors N2
f . First, we solve

the Bethe-Salpeter equation for the case V ααγγ

�ααγ γ (P ) = [�ααββ

0

−1
(p) + N (P )

]−1
. (A4)

Second, for V αγαγ

�αγαγ (P ) = [�αγαγ

0
−1(p) + N(P )

]−1
. (A5)

Here, we assumed that the dispersion of the different flavors
is the same, i.e., Gα(P ) = G(P ) independent of α. This is the
case if the SU(2) invariance is not broken in the Hamiltonian.

From the matrix �ααγγ (P ) we only need the flavor-diagonal
parts α = γ due to the structure of the diagrams in Fig. 2. But
the nondiagonal parts of V ααγγ mix with the diagonal elements
in the diagonalization of the scattering matrix.

Finally, we can calculate the Hartree- and Fock-like
diagrams for the self-energy. Note that for �

αγαγ
(P ) only

the Hartree-like diagrams contribute while for the �αααα(P )
both the Hartree- and Fock-like diagrams contribute. Besides
the distinction between the two different � matrices, the
calculation of the self-energy remains unchanged.

APPENDIX B: MATRIX PERTURBATION
THEORY FOR X1 AND X2

In order to be able to compute the proper limit U → ∞ for
the self-energy we need the first-order corrections in 1/U of
the eigenvalue �(1)λ1 and the eigenstate �(1)e1 as well as the
second-order correction of the eigenvalue �(2)λ1; see Eq. (20).
From standard perturbation theory, we obtain

�(1)λ1 = e†1X1e1 = ρ11
0 (p)

ω̄
+ 1, (B1a)

�(1)e1 =
∑
i 	=1

e†i X1e1

λi︸ ︷︷ ︸
e†
i
ρ

0
(p)e1

λi ω̄

ei , (B1b)

�(2)λ1 =
∑
i 	=1

|e†i X1e1|2
λi︸ ︷︷ ︸

|e†
i
ρ

0
(p)e1 |2

λi ω̄
2

+ e†1X2e1︸ ︷︷ ︸
ρ11

1 (p)

ω̄2

. (B1c)

Note that one does not need the second-order corrections
of the eigenvector in the following, since it does not contribute
in the limit U → ∞.

We introduce the abbreviations

Wi(p) :=
e†i ρ

0
(p)e1

λi

, Vi(p) :=
|e†i ρ

0
(p)e1|2
λi

. (B2)

To find the pole of the antibound state, the matrix �(P ) must
be singular for high frequencies of the order of U ; i.e., the first

eigenvalue must vanish as function of ω̄:

0
!= λ1 + 1

U
�(1)λ1 + 1

U 2
�(2)λ2, (B3a)

0 = ρ11
0 (p)

ω̄
+ 1 + 1

U

∑
i 	=1

Vi(p)
1

ω̄2
+ 1

U

ρ11
1 (p)

ω̄2
(B3b)

⇒ ω̄ = −ρ11
0 + 1

U

⎛
⎝∑

i 	=1

Vi(p)

ρ11
0 (p)

+ ρ11
1 (p)

ρ11
0 (p)

⎞
⎠+ O

(
1

U 2

)
.

(B3c)

Hence, the pole occurs at the frequency

ωU (p) = Uω̄ = −Uρ11
0 (p) +

⎛
⎝∑

i 	=1

Vi(p)

ρ11
0 (p)

+ ρ11
1 (p)

ρ11
0 (p)

⎞
⎠

+O

(
1

U 1

)
. (B4)

Expanding λ1(ω) around ω = ωU , the eigenvalue is approxi-
mated by

λ1(ω) ≈ [ω − ωU (p)]
−1

U 2ρ11
0 (p)

+ O

(
1

U 2

)
. (B5)

To obtain the scattering matrix at high energies, the
correction to the eigenvector must also be considered:

e′
1 = e1 + 1

Uw̄
�(1)e1 = e1 − 1

U

∑
i 	=1

Wi(p)

ρ11
0 (p)

ei . (B6)

Thus, we can approximate the scattering matrix for large
energies according to

[
�−1

0
+ N (P )

]−1 ≈ −U 2ρ11
0 (p)

[ω − ωU (p)]
e′

1(p)e′†
1 (p) (B7a)

= −U 2ρ11
0 (p)

[ω − ωU (p)]

[
e1e†1−

1

U

(
e1

∑
i 	=1

W ∗
i (p)

ρ11
0 (p)

e†i

+
∑
i 	=1

ei

Wi(p)

ρ11
0 (p)

e†1

)
+ O

(
1

U 2

)]
.

(B7b)

To obtain the correct scalar contribution to the self-energy,
we need to calculate the bilinear form in Eq. (10). To shorten
the notation, we first introduce

fi(q) := e†i f(q). (B8)

Next, we compute the imaginary part of the
scattering amplitude for large energy including
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order 1/U

−Im

πN
lim

iωp→ω+i0+
f†(k)�(P )f(q) = −U 2ρ11

0 (p)

Nβ
δ[ω − ωU (p)]

⎧⎨
⎩1 − 1

U

∑
j 	=1

1

ρ11
0 (p)

[W ∗
j (p)fj (q) + Wj (p)fj (k)∗]

⎫⎬
⎭. (B9)

Finally, this expression for the scattering amplitude is used to compute the self-energy contributions given in the main text.
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