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Sensitive detection of level anticrossing spectra of nitrogen vacancy centers in diamond
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We report a study of the magnetic field dependence of photoluminescence of NV− centers (negatively charged
nitrogen vacancy centers) in diamond single crystals. In such a magnetic field dependence characteristic sharp
features are observed, which are coming from level anticrossings (LACs) in a coupled electron-nuclear spin
system. For studying such LAC lines we use sensitive lock-in detection to measure the photoluminescence
intensity. This experimental technique allows us to obtain new LAC lines. Additionally, a remarkably strong
dependence of the LAC lines on the modulation frequency is found. Specifically, upon decrease of the modulation
frequency from 12 kHz to 17 Hz the amplitude of the LAC lines increases by approximately two orders of
magnitude. To take a quantitative account for such effects, we present a theoretical model, which describes the
spin dynamics in a coupled electron-nuclear spin system under the action of an oscillating external magnetic field.
Good agreement between experiments and theory allows us to conclude that the observed effects are originating
from coherent spin polarization exchange in a coupled spin system comprising the spin-polarized NV− center.
Our results are of great practical importance allowing one to optimize the experimental conditions for probing
LAC-derived lines in diamond crystals comprising NV− centers and for indirect detection and identification of
other paramagnetic defect centers.
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I. INTRODUCTION

The negatively charged nitrogen vacancy defect center
(NV− center) in diamond is of great interest due to its
unique properties [1]. NV− centers are promising systems for
numerous applications, in particular, for quantum information
processing [2–15] and nanoscale magnetometry [16–21]. It is
well known that upon optical excitation the triplet ground state
of the NV− center acquires strong electron spin polarization
[22–28]. Due to magnetic dipole-dipole interactions between
NV− centers and other paramagnetic defects in the crystal spin
polarization exchange can occur. Such a polarization transfer is
of relevance for many applications [11,29–31]. An informative
method for studying polarization transfer processes is given by
the level anticrossing (LAC) spectroscopy. At LACs there is no
energy barrier for polarization transfer; consequently, coupled
spins can efficiently exchange polarization. As usual, by an
LAC we mean the following situation: at a particular magnetic
field strength a pair of levels, corresponding to quantum states
|K〉 and |L〉, tends to cross but a perturbation VKL �= 0 lifts
the degeneracy of the levels so that the crossing is avoided. It
is well known that at an LAC efficient coherent exchange of
populations of the |K〉 and |L〉 states occurs [32–35].

LACs give rise to sharp lines in the magnetic field
dependence of the photoluminescence intensity of the NV−

center. The most pronounced line [36] is observed at 1024 G,
which comes from an LAC of the triplet levels in the NV−

center in its ground state. Other lines are termed, perhaps,
misleadingly, cross-relaxation lines [37]. In reality, all these
lines are due to the coherent spin dynamics caused by spin
polarization exchange at LACs of the entire spin system of
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interacting defect centers. Thus it is reasonable to term the
observed magnetic field dependences “LAC spectra”.

In this work, we report a study of LAC lines in diamond
single crystals by using modulation of the external magnetic
field. Generally, LAC lines are observed by monitoring
photoluminescence as a function of the external magnetic
field; a prerequisite for such experiments [36–44] is precise
orientation of the diamond crystal (so that the magnetic field
is parallel to [111] crystal axis with a precision of better than
one-tenth of a degree). Typically, the LAC line at 1024 G
is relatively easy to detect; however, observation of weaker
satellite lines coming from interaction with other paramag-
netic centers is technically more demanding. Generally, the
experimental method using low-amplitude modulation of the
external magnetic field and lock-in detection provides strongly
improved sensitivity to weaker sharp lines. In such experiments
the external field strength is modulated at a frequency fm;
the output luminescence signal is multiplied by the reference
signal given by cos(2πfmt) or sin(2πfmt) and integrated over
time to provide an increased sensitivity to weak signals. In
experiments using lock-in detection [43,45] a new LAC line
at zero magnetic field has been found recently; additionally,
groups of LAC lines around 5–250 G, 490–540 G, 590 G,
and 1024 G have become visible. Some of these lines have
been observed [45] for the first time; they originate from
the interaction of the NV− center with other paramagnetic
defect centers in the crystal. Detailed analysis of these lines
by using a calculation method different from that used here
and explanation of their origin is presented in our previous
work [45].

In this work we focus on the spin dynamics behind the
detection method using field modulation. It is common that the
shape of the lines (“dispersive” line shape) obtained with field
modulation is different from that found without modulation:
each line has a positive and a negative component; at the center
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of each line the signal intensity is zero. At first glance, such
an appearance of the LAC lines (“derivative” spectrum) is
standard for experiments using lock-in detection. However,
here we demonstrate an unexpected behavior of the LAC
lines, namely, a substantial increase of the line amplitude
upon decrease of the modulation frequency. Such increases
are crucial for the detection of weak LAC lines coming from
the interaction of the NV− center with other defect centers
present only in very small concentration.

The Hamiltonian of the NV− in the electronic ground state
interacting with another paramagnetic center can be written as
follows (in h̄ units):

Ĥ = β B0ĝ1 Ŝ1 + D1
[
Ŝ2

1z − 1
3S1(S1 + 1)

] + E1
(
Ŝ2

1x − Ŝ2
1y

)
+ Ŝ1Â1 Î1 + P1

[
Î 2

1z − 1
3I1(I1 + 1)

] + β B0ĝ2 Ŝ2

+D2
[
Ŝ2

2z − 1
3S2(S2 + 1)

] + E2
(
Ŝ2

2x − Ŝ2
2y

)
+ Ŝ2Â2 Î2 + P2

[
Î 2

2z − 1
3I2(I2 + 1)

]
+Ddd [3(Ŝ1 · n12)(Ŝ2 · n12) − Ŝ1 · Ŝ2], (1)

where Si and I i are the electron and nuclear spin operators;
index 1 corresponds to the NV− center and index 2 corresponds
to the other defect center; β is the Bohr magneton and
ĝi is the g tensor. Other parameters have the following
meaning: Di and Ei are the zero-field splitting parameters,
Âi is the hyperfine coupling (HFC) tensor, Pi is the nuclear
quadrupolar interaction,Ddd is the dipolar interaction between
the two centers, which depends on the distance between them:
Ddd ∝ r−3

12 , where r12 is the vector connecting the two defect
centers and n12 = r12/r12 is unity length vector parallel to r12.
Here, for simplicity, we assume that each paramagnetic center
has only a single nuclear spin; nuclear Zeeman interaction
is neglected as we are working at relatively low magnetic
fields.

In Fig. 1 we present the calculated energy levels, i.e.,
the eigenvalues of the Hamiltonian (1), as functions of the
external magnetic field B0. In the calculation we consider
interaction of the NV− center with a P1 center (neutral nitrogen
atom, replacing carbon in the diamond lattice) and use the
following parameters: g1|| = 2.0029, g1⊥ = 2.0031, g2|| =
g2⊥ = 2.0023, D1 = 2872 MHz, E1 = D2 = E2 = P2 = 0,
A1|| = −2.2 MHz, A1⊥ = −2.7 MHz, P1 = −4.8 MHz,
A2|| = 114 MHz, A2⊥ = 81 MHz, and Ddd = 0.1 MHz; both
nuclei are spin-1 nuclei, i.e., 14N nuclei. In this calculation
we consider axially symmetric HFC interaction tensors,
having the parallel and perpendicular components, denoted by
subscripts “||” and “⊥”, respectively. The HFC parameters Â1

and quadrupolar interaction for the NV− center are taken from
the work of Yavkin et al. [46]. The calculation is performed for
a specific orientation of the defect centers, namely, we assume
that the field B0 is parallel to the symmetry axes of the NV−

and P1 centers and that r12 ⊥ B0. Insets show enlarged two
regions where there are several level crossings and LACs.

In this work, we aim to investigate how LAC spectra of
the NV− center are generated when field modulation and
lock-in detection are used. As one can see from Fig. 1, in a
realistic case we obtain a multilevel spin system, as described
by the Hamiltonian (1) and, consequently, far too many level

FIG. 1. Energy levels of the coupled NV− center and P1 center.
Insets show energy levels at LACs. The electron spin energy levels are
denoted as ket states with MS = −1,0,+1 standing for the state of the
NV− center and arrows standing for the “spin-up” and “spin-down”
states of the P1 center. The “bright” MS = 0 states of the NV− center
are highlighted; they do not have the fixed energy due to the Zeeman
effect on the P1 center.

crossings and LACs. In this example, the spin system is a
2 × 33 = 54 level system. Consequently, theoretical analysis
of the spin evolution upon field modulation becomes a virtually
impossible task. For this reason, we reduce the spin system
and analyze the behavior coming from a single LAC. Hence
the minimal system is given by a two-level system, i.e.,
a multilevel system can be reduced to a two-level system.
Formally, such a system can be described by a fictitious spin
1/2 [47,48]. In such a two-level system one of the states is a
“bright” state and the other one is a “dark” state. This situation
models the system under study. Indeed, in the NV− center the
MS = 0 state gives rise to bright fluorescence, in contrast to the
MS = ±1 states (here MS is the spin projection of the NV−

center on its symmetry axis) [1]. Furthermore, the MS = 0
state is strongly overpopulated after a few excitation cycles
due to spin-selective intersystem crossing (light induced spin
polarization of the NV− center) [22,23,27].

In the theoretical treatment we also take into account spin
relaxation and pumping, which gives rise to polarization of
the NV− center. In addition to the simple spin-1/2 system
we consider a system of two spins-1/2, electron spin and
nuclear spin: in this case there is a larger number of LACs.
Additionally, nuclear spins have much longer relaxation times;
this effect becomes important at low modulation frequencies.
Hereafter, we consider the defect centers in their ground state
thus neglecting the spin dynamics during the short excitation
cycle of the NV− center except intersystem crossing, which is
treated in a simplified way as a process pumping polarization
in the spin system.
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FIG. 2. Scheme of the experimental setup used for measuring
LAC spectra. A precisely oriented diamond crystal is placed at
the external magnetic field of the electromagnet; additionally a
periodically modulated field is applied. The sample is excited
by a linearly polarized laser beam. Fluorescence is directed to a
photomultiplier through a light guide and an optical filter. By using a
lock-in amplifier the signal from the photomultiplier is compared to
the reference signal modulated at the fm frequency and analyzed.

II. METHODS

A. Experiment

The experimental method is described in detail in a previous
publication [43].

Experiments were carried out using single crystals of a
synthetic diamond grown at high temperature and high pres-
sure in a Fe-Ni-C system. As-grown crystals were irradiated
by fast electrons of an energy of 3 MeV; the irradiation dose
was 1018 el/cm2. After that the samples were annealed for
two hours in vacuum at a temperature of 800 oC. The average
concentration of NV− centers was 9.3 × 1017 cm−3.

Figure 2 shows a diagram of the experimental setup.
The samples were placed in a magnetic field, which is a
superposition of the constant field, B0, and a weak field
modulated at the frequency fm:

B = B0 + Bm cos(2πfmt), (2)

and irradiated by the laser light at a wavelength of 532 nm
(irradiation power was 400 mW). The beam direction was
perpendicular to the magnetic field vector B0. The laser light
was linearly polarized and the electric field vector E was
perpendicular to B0. The luminescence intensity was measured
by a photomultiplier. The resulting signal was sent to the input
of the lock-in detector. The modulation frequency fm was
varied from 17 Hz to 12.5 kHz. All experiments were carried
out at room temperature.

From previous experiments [43] we know that the ampli-
tude of some LAC lines, e.g., of the zero-field line, has a
quadratic dependence on the intensity of incident light. For
this reason, in order to detect all LAC lines we used relatively
high laser power for excitation. Consequently, the fluorescence
intensity was too high for detection by using a photomultiplier:
we reduced it by using optical filters. In the situation where the
luminescence intensity is insufficient, for increasing detection
sensitivity one can perform light excitation at a longer
wavelength, e.g., 575 nm instead of 532 nm [49].

B. Theory

Generally, field modulation is a method providing better
sensitivity to weak and sharp lines; by using modulation one
typically obtains “derivative” spectra. Indeed, when the field
dependence of the measured signal is given by a function S(B)
for the field given by expression (2) we obtain the following
signal:

S(B) ≈ S(B0) + Bm cos(2πfmt)
dS

dB
. (3)

This expression is valid for Bm � B0. Hence the time-
dependent contribution to the signal oscillates at the fm fre-
quency and its amplitude is given by the dS/dB. Furthermore,
there is no phase shift between the field modulation and
the signal. However, this simple consideration contradicts
our experimental data, necessitating development of a more
consistent approach to the problem under study. Specifically,
we need to treat the spin dynamics induced by the modulated
magnetic field.

In order to understand the spin dynamics behind our
experiments we perform numerical simulations. To model
polarization transfer in the electron-nuclear spin system we
make the following simplifications. First, we do not treat the
entire three-level electron spin system but restrict ourselves
to only two levels. Such a simplification is reasonable
owing to the sizable zero-field splitting in the NV− center.
Consequently, only two triplet sublevels can closely approach
each other (at particular field strengths, see LACs in the energy
level diagram shown in Fig. 1), whereas the third level stays
far apart from them. In such a situation the electronic spin
subsystem can be modeled by a fictitious spin [47,48] S = 1/2.
We also assume that the luminescence intensity is proportional
to the population of the Sz = 1/2 state, hereafter, the α state:
i.e., the system has a bright state, which provides fluorescence,
and the dark Sz = −1/2 state, hereafter, the β state. The bright
state corresponds to the MS = 0 state while the dark state is
the MS = −1 state of the NV− center. This is a reasonable
assumption because only one of the three triplet states of the
NV− center gives rise to intense luminescence. Hereafter, we
assume that the z axis is parallel to the external magnetic field.
The S spin interacts with the constant external B0 field and
with the oscillating Bm field. In this situation, the Hamiltonian
of the spin system is of the form (in h̄ units)

Ĥ (t) = γB0Ŝz + V Ŝx + γBm cos(2πfmt)Ŝz, (4)

where Ŝ is the spin operator of the electron, γ is the electronic
gyromagnetic ratio, and V is an external perturbation (coming,
e.g., from a small misalignment of the crystal). Hereafter we
use notations γB0 = ω0 and γBm = �1. Considering only
the main part of the Hamiltonian, Ĥ0 = ω0Ŝz, we obtain that
there is a level crossing at B0 = 0; however, the perturbation
given by V mixes the crossing levels and turns this crossing
into an LAC [see Fig. 3(a)]. By turning on the modulation
we introduce repeated passages through the LAC; upon
these passages spin evolution is taking place resulting in
redistribution of polarization.

Here we also extend the treatment to electron-nuclear spin
systems, i.e., we consider interaction of the electron spin with
surrounding nuclear spins by HFC. For the sake of simplicity,
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FIG. 3. Energy levels of a single-spin (a) and two-spin (b)–(d)
model systems. (a) Energy levels of the spin in the magnetic field
directed along the z axis in the absence of an external perturbation
(V = 0) and in its presence (V = 0.1). (b) Energy levels of an
electron-nuclear spin system coupled by isotropic HFC with A = 0.2
assuming V = 0 and V = 0.1. Energy levels of an electron-nuclear
spin system coupled by dipolar HFC assuming (c) n||z (θdd = 0) and
(d) n ⊥ z (θdd = 90◦). In subplots (c), (d) we have taken A = V = 0.

we reduce the nuclear spin subsystem to only one spin I = 1/2.
Then the Hamiltonian of the spin system under consideration
takes the form (in h̄ units)

Ĥ (t) = ω0Ŝz + V Ŝx + A(Ŝ · Î) + �1 cos(2πfmt)Ŝz, (5)

where Î is the spin operator of the nucleus and A is the isotropic
HFC constant. The energy levels of a two-spin system are
shown in Fig. 3(b) taking account for the isotropic HFC and
the V term. Additionally, we consider a model where dipolar
HFC is used instead of isotropic HFC:

Ĥ (t) = ω0Ŝz + Ddd [3(Ŝ · n)( Î · n) − (Ŝ · Î)]

+�1 cos(2πfmt)Ŝz, (6)
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FIG. 4. Spin dynamics resulting from passage through the LAC
in a two-level system described by the Hamiltonian Ĥ (t) given by
Eq. (4). Top: population of the α state for adiabatic (curve 1) and
nonadiabatic (curve 2) variation of the Hamiltonian. Bottom: mag-
netic field γB(t) = �1 cos(2πfmt). Calculation parameters: ω0 = 0,
�1 = 4, fm = 0.01, and V = 1 (curve 1) and 0.1 (curve 2); at t = 0
the system is in the “bright” state; relaxation effects are neglected.

where Ddd is the dipolar interaction strength depending on the
distance between the spins and n is the unity length vector
pointing from one spin to the other, |n| = 1. In Figs. 3(c) and
3(d) we show the energy levels of such a system for different
directions of n given by θdd , which is the angle between n
and the z axis that is parallel to the external magnetic field.
Hereafter, for the sake of simplicity, all parameters of the spin
Hamiltonian as well as spin relaxation parameters are given in
dimensionless units.

In our model, the observable signal is given by the
population of one of the states of the S spin, for clarity, of the
bright α state. To make comparison with the experiments we
multiply the population of the α state, ραα , by the cos(2πfmt)
function and integrate it over the modulation period; see below.

Qualitatively, we expect different regimes for the spin
dynamics at fm � V and fm 	 V as demonstrated in Fig. 4
for a two-level system. At fm � V each passage through the
LAC results in adiabatic inversion of populations of the S-spin
states. Consequently, the luminescence signal is expected to
be modulated at the fm frequency having the maximal possible
amplitude and the same phase as the modulated external field.
During a fast passage through the LAC, i.e., at fm 	 V ,
the populations are mixed only slightly in each passage and
the amplitude and frequency of modulation of the lumines-
cence signal is expected to drop down. In addition, modulation
of the signal is no longer in-phase with the reference signal
of the lock-in amplifier, resulting in both considerable phase
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shifts and reduction of the signal. As we show below, the cal-
culation results are consistent with this simple consideration.

For systematic analysis we also take spin relaxation into
account. To do so, we treat the spin evolution as described by
the Liouville–von Neumann equation:

dρij

dt
=

∑
k,l

Lij ;kl(t)ρkl, (7)

where ρ is the density matrix of the two-spin electron-nuclear
system in the Liouville representation (column vector with 16

elements), while the elements of the ˆ̂L superoperator are as
follows:

Lij ;kl = i(δikHlj − δjlHik) + Rij ;kl, (8)

where Rij ;kl is the relaxation matrix. To specify the R su-
peroperator we make the following simplifying assumptions.
We treat two contributions to the electron spin relaxation,
given by longitudinal relaxation (relaxation of populations
having the rate R1) and transverse relaxation (relaxation of
coherences having the rate R2). We consider two different
cases: R1 = R2 and R1 � R2; see below. In addition, we
take into account photoexcitation of the NV− center, which
produces the electron spin polarization, i.e., the population
difference for the states of the S spin. This process is
considered in a hasty manner as a transition from the β state
to the α state at a rate J (pumping rate for the electron
spin polarization). Thus, for the sake of simplicity, we do
not consider the complete excitation cycle in the NV− center,
which gives rise to the electron spin polarization. Relaxation of
the nuclear spin is completely neglected because it is usually
much slower than that for the electron spin. Leakage of the
population to states outside the subsystem is neglected here.
Such leakage can be also taken into account by extending the
quantum system, i.e., by adding additional energy levels to it.
In the simplest case, this can be done by treating a three-level
system. We anticipate that the role of leakage is then similar to
relaxation. Therefore, in order to reduce the calculation time,
here we do not consider population leakage.

To perform numerical calculations we split the modulation
period T = 1/fm into N equal intervals of a duration �t =
T/N . In each step, the density matrix ρ was propagated by
using a matrix exponent:

ρ(t + �t) = exp[ ˆ̂L(t)�t]ρ(t). (9)

Generally, the solution depends on the initial conditions. How-
ever, in the present case we are interested in the “steady-state”
solution, which is reached after many modulation periods.
Indeed, in experiments transient effects are not important
because signal averaging is performed over many T periods
(only the steady state of the system is probed). To obtain such
a solution of Eq. (7) we assume that the density matrix before a
period of modulation, ρ(0), is the same as that after the period:

ρ(0) = ρ(T ) = exp[ ˆ̂L(t = T − �t)�t] × · · ·
× exp[ ˆ̂L(t = 0)�t]ρ(0) = ˆ̂Uρ(0). (10)

Here ˆ̂U is the supermatrix, which describes the evolution over
a single modulation period. This equation is a linear equation
for the ρ(0) vector. To find a nontrivial solution of such a matrix

equation, we need to exclude one equation from the system (the
one which linearly depends on other equations) and to replace
it by the expression

∑
i ρii(0) = 1, which describes nothing

else but conservation of the trace of the density matrix. This
new system can be solved by using linear algebra methods.

The ˆ̂U matrix is computed numerically; in order to do so, we
set the value of N such that further increase of N changed
the final result by less than 1%. Of course, it is necessary to
increase N substantially at small fm. At the lowest modulation
frequency we typically use N = 2 × 106.

To compare theoretical results to the experimental data we
numerically compute the sine and cosine Fourier components
of the element of interest of the density matrix, namely, the
population of the α state, ραα . This element can be computed
when ρ(t) is known:

X = 1

T

∫ T

0
ραα cos(2πfmt)dt, (11)

Y = 1

T

∫ T

0
ραα sin(2πfmt)dt. (12)

Knowing X and Y we can completely characterize the signal.
An analog of the lock-in detector phase variation by an angle
φ is the rotation of axes in the functional space:

X′ = X cos φ + Y sin φ. (13)

Typical calculated LAC spectra are presented in Fig. 5 for
three different fm frequencies; both components of the signal,
X and Y , are shown. Calculation of the two signal components
is performed using Eqs. (11) and (12). When the modulation
frequency is low and relaxation of populations is relatively
fast the X component of the signal is strong, whereas the Y

component is negligible, i.e., the signal is cosine modulated
and there is virtually no phase shift with respect to the
modulated input signal �1 cos(2πfmt). At higher modulation
frequency both components of the signal are significant, i.e.,
there is a strong phase shift with respect to the input signal.
The appearance of the spectra changes upon variation of the
R1 rate. Upon decrease of the fm frequency not only the Y

component is reduced but also the signal intensity grows. As
we demonstrate below, such a behavior of the LAC line is
consistent with experimental findings.

III. RESULTS AND DISCUSSION

A. Experimental LAC spectra

In Fig. 6 we show the transformation of the LAC spectra
upon variation of the modulation frequency. In subplot (a) we
show the results for two different frequencies, 12.5 kHz and
17 Hz. One can readily see that the amplitude of all lines is
much higher at the low fm value. For better presentation we
compare the original spectra with an integrated LAC spectrum:
in the integrated spectrum all LAC lines show up as dips in
the B0 dependence. One can readily see that LAC lines are
much better visible in the nonintegrated spectra. LAC lines that
show up only at low modulation frequency are analyzed in our
previous work [45] and originate from polarization transfer
between paramagnetic defect centers. Here we only briefly
mention the main peculiarities of the detected LAC lines; see
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Figs. 6(c), 6(d) and 6(e). Polarization transfer between defect
centers occurs when the level splittings in the two centers
become equal to each other (causing a level crossing): under
such conditions electronic dipole-dipole interaction turns a
level crossing into an LAC and enables coherent polarization
exchange. Such a polarization transfer is usually termed
(perhaps erroneously since polarization transfer is due to a
coherent mechanism) cross-relaxation [37].

The line at zero field [43] comes from polarization
transfer between two NV− centers; for symmetry reasons
at zero field energy matching for two NV− centers always
occurs; consequently, the zero-field line has been found in all
samples we studied so far. Other lines emerging in the field
range 50–400 G, which are visible only at low modulation
frequencies, are due to interaction of the NV− center with
other paramagnetic defect centers in the crystal; quantitative
analysis of the positions and amplitudes of these lines thus
provides valuable information about the electron paramagnetic
resonance (EPR) parameters (spin value, zero-field splitting,
hyperfine couplings) of these centers. The LAC lines found
around 500 G and at 590 G become considerably stronger at
fm = 17 Hz; the former are coming from interaction of the
NV− center with the P1 center, while the latter comes from
interaction of two NV− centers having different orientations
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FIG. 6. Experimental LAC spectra of NV− centers in a diamond
single crystal. (a) LAC spectra in the range −50−1200 G obtained
using the modulation frequency fm of 12.5 kHz and 17 Hz; the upper
trace was multiplied by 5 and shifted upwards. (b) Integrated LAC
spectrum obtained with fm = 17 Hz. Subplots (c), (d), and (e) show
enlarged different regions of the LAC spectrum. In all cases the
modulation amplitude was Bm = 0.5 G. Except for the upper trace in
(a) the modulation frequency was 17 Hz. The lock-in detector phase
was chosen such that the LAC line at 1024 G had maximal amplitude.

with respect to the external magnetic field. Additionally, the
line at 1024 G corresponds to the LAC in the NV− in its
ground state. Finally, the satellite lines at 1007 G and 1037 G
are seen in the LAC spectrum. These lines are originating from
polarization exchange between the spin-polarized NV− center
and the P1 center [42]. The low amplitude of the satellite lines
is due to the weak interaction between different defect centers.

Hence one can see that the amplitude of all LAC lines is
very sensitive to the fm value, so that some lines can be found
only using very low modulation frequency. For this reason, we
find it important to analyze the fm dependence of LAC lines
and elucidate the parameters that determine this dependence.

Figure 7(a) presents the LAC spectra of the NV− center
in the field range 970–1075 G. The spectra shown for two
different modulation frequencies, 12.5 kHz and 17 Hz, are
remarkably different. As it is seen from the figure, when fm =
12.5 kHz and the lock-in detector phase is set such that the
central line at 1024 G has the maximal amplitude, the satellite
lines at 1007 G and 1037 G are barely visible. When the
modulation frequency is reduced to 17 Hz the amplitude of
the central line increases by a factor of 7, whereas the satellite
lines become 50 times stronger. Additionally, at low frequency
the phase shift for all lines is negligible in contrast to that at
the high modulation frequency. As it is seen from the LAC

115142-6



SENSITIVE DETECTION OF LEVEL ANTICROSSING . . . PHYSICAL REVIEW B 96, 115142 (2017)

980 1000 1020 1040 1060

-5

0

5

10

15

0 2 4 6 8 10 12
101

102

103

Lo
ck

-in
 a

m
pl

ifi
er

 s
ig

na
l (

ar
b.

 u
ni

ts
)

17 Hz  

12.5 kHz 

B
0
 (G)

12.5 kHz × 5

× 50

φ=90o

(b)

(a)

LA
C

 li
ne

 a
m

pl
itu

de
 (

ar
b.

 u
ni

ts
)

f
m
 (kHz)

1024 G

1007 G

1037 G

FIG. 7. (a) Experimental LAC spectra of NV− centers in a
diamond single crystal in the magnetic field range 970–1075 G. For
each curve the fm value used in experiments is specified. For the
upper curve the phase of the lock-in detector was chosen such that
the signal for the central LAC line was maximal. For the middle
trace the phase was shifted by 90◦ with respect to that for the upper
curve. The amplitude of the upper curve is increased by a factor
of 5; for the middle curve it is increased by a factor of 50. Both
curves are shifted upwards. The LAC lines are indicated by circle,
square, and triangle. (b) fm dependence of the amplitude of the three
LAC lines (symbols correspond to the LAC lines in subplot (a)).
For each curve the magnetic field strength B0 corresponding to the
center of the corresponding line is specified. For each experimental
point the lock-in detector phase was set such that the amplitude of
the corresponding line was maximal. In all cases the modulation
amplitude was Bm = 0.5 G.

spectrum there are no new lines appearing in the spectrum
in this field range but the signal-to-noise ratio is substantially
increased.

In Fig. 7(b) we present the experimental dependence of
the line amplitudes, as determined for the three different LAC
lines, on the modulation frequency. Here the total peak-to-peak
amplitude is presented; the lock-in detector phase is set such
that for each experiment the amplitude of the corresponding
line is maximal. It is clearly seen that by varying the modula-
tion frequency we obtain a strong variation of the LAC-line am-

plitudes, by roughly two orders of magnitude. In the frequency
range under study the dependence is concave, i.e., the slope of
the curve increases at lower modulation frequencies. Hence,
by using modulation we not only obtain the “derivative”
spectrum: modulation also strongly affects the line amplitudes
and shapes. We attribute this dependence to the spin dynamics
caused by modulation. The most unexpected effect is that
the increase of the line amplitude is occurring at modulation
frequencies, which are much smaller than the electron spin
phase relaxation rates of the NV− center (when measured in the
same units). In samples like the one we use the phase relaxation
times are typically about several microseconds [50,51]. Our
estimates for the phase relaxation times (as determined from
the widths of the EPR and optically detected magnetic reso-
nance spectra) in our samples agree with these values. Such
relaxation times correspond to the frequencies of the order of
several 100 kHz to several MHz. For this reason the growth of
the LAC-line amplitude upon the decrease of fm from some
10 kHz to several Hz (in particular, the sharp increase of the
line amplitude at very low frequencies) is perplexing.

In Fig. 8 we show the experimental dependence of the LAC-
line amplitudes on the luminescence intensity of the studied
sample (the current of the photomultiplier is proportional to
this intensity). Since the luminescence intensity is, in turn,
directly proportional to the intensity of excitation light these
data present the dependence of the LAC-line amplitudes on
the intensity of incident light. One can clearly see that the
dependence is almost perfectly linear (in contrast to the
quadratic dependence reported for the zero-field LAC line
[43]). Hence the increase of the LAC-line amplitude at low fm

frequencies cannot be attributed to any two-photon processes.

B. Calculations

To rationalize the behavior of the LAC lines upon variation
of fm we perform simulations of the spin dynamics of
single-spin and two-spin systems at LACs. Simulations for the
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peak-to-peak amplitudes on the luminescence intensity of the sample,
which is proportional to the current, IPMT , in the photomultiplier. The
modulation frequency fm was 17 Hz; the modulation amplitude was
Bm = 0.5 G.
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model of single S spin properly reproduce the fm dependence
at high frequencies: the signal decays roughly as 1/f 2

m.
(See Fig. 9.) Assuming R1 = R2 we are not able to reproduce
the experimental dependence: at low fm the theoretical curve
flattens and the line amplitude does not increase further.

The experimentally observed growth at low frequency
is clearly an indication of a slow dynamic process in the
system. We attribute this process to T1 relaxation (longitudinal
relaxation): in solids T1 relaxation is usually much slower
than T2 relaxation, i.e., R1 � R2 (here R1 and R2 are the
reciprocals of the T1- and T2-relaxation times). This is correct
for the NV− centers in diamond as well [29,52]. Under the
assumption R1 � R2 we obtain an fm dependence, which is
much closer to the experimental one: while the behavior at
high fm remains the same, the LAC-line amplitude continues
to grow at low frequency. It is worth noting that in the
logarithmic-linear coordinates at small R1 the fm dependence
has the same shape (concave shape, i.e., the second derivative
of the curve is positive; there is an inflexion point at low
fm) as the experimentally observed dependence. However,
such a model predicts a smaller effect of fm than that found
experimentally. Specifically, at small fm the calculated curve
levels off when fm ≈ R1 (the slope of the curve tends to zero
at fm → 0).
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FIG. 9. Calculated amplitude of the LAC line (peak-to-peak) for
the model of single S-spin as a function of fm. The calculation
parameters are given in the graph.

The observed strong fm dependence at low frequencies
can be explained by polarization transfer from the electronic
spin system to nuclear spins having even longer relaxation
times than T1. The calculation performed for the electron-
nuclear spin system confirms this expectation: while at high
fm frequencies the calculation result is almost the same for
the single-spin system and two-spin system, at low fm values
a sharper increase of the LAC-line amplitude is found for the
electron-nuclear spin system. We attribute this sharper increase
to the effect of the long nuclear T1-relaxation time.

In Fig. 10 we present the calculated fm dependence of
the LAC-line amplitude for the electron-nuclear spin system
assuming dipolar (upper graph) and isotropic (upper graph)
HFC and compare it to the same dependence for the two-level
system. One can see that in the two-spin system the LAC line
continues to grow even at lower fm; this is due to polarization
transfer between the electron and nucleus. However, at very
low fm values the signal intensity is expected to reach a plateau.
Such a plateau is reached at lower fm frequencies as compared
to the model of single S spin; hence, due to electron-nuclear
polarization transfer, the signal grows to a higher value at
fm → 0. The only difference between the two cases, dipolar vs
isotropic HFC, is that the curve is monotonous for the dipolar
HFC (similar to the experimental observation), whereas for
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FIG. 10. Calculated amplitude of the LAC line (peak-to-peak) for
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graph we present the calculation result for dipolar HFC and in the
lower graph for isotropic HFC. The calculation parameters are given
in the graph.
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the isotropic HFC there is a feature seen at fm close to the
A value. It is also worth noting that assuming isotropic HFC
we can obtain the LAC line only when V �= 0, while for the
dipolar HFC the LAC-line amplitude is nonzero even when
V = 0 (except for the case n||z).

IV. CONCLUSIONS

We report a study of LAC lines in the NV− defect centers
in diamond crystals by using lock-in detection of the signal.
Such a method allows one to obtain sharp LAC lines with
excellent signal-to-noise ratio. A strong and unexpected effect
of the modulation frequency on the LAC-line amplitude is
demonstrated. Importantly, the LAC lines are the strongest
at low modulation frequencies. Thus measurements at low fm

are advantageous, even despite the technical issues concerning
experiments at low frequencies (namely, the instrumental
noise). Moreover, LAC spectra obtained at low modulation fre-
quencies are free from distortions and phase shifts of the signal
with respect to the reference signal of the lock-in amplifier.

To rationalize the observed effect of the modulation
frequency we performed a theoretical study and computed
numerically the evolution of the spin system under the action
of the modulation field. In the theoretical model, we introduced
a single electron spin 1/2 (modeling the electron spin degrees
of freedom of the NV− center) coupled to a nuclear spin 1/2.
Such a model is capable of reproducing the main features
found in experiments suggesting that field modulation strongly
modifies the dynamics of the spin system at LACs. Specifically,
at low modulation frequency we obtain adiabatic exchange of

populations of the states having an LAC, whereas nonadiabatic
population exchange at high fm values leads to decrease of the
LAC-line amplitude accompanied by the phase shift. In order
to reproduce the further increase of the LAC-line amplitude
at low fm frequencies we considered slow dynamic processes,
such as electronic T1 relaxation (which is, in solids, commonly
much slower than T2 relaxation) and nuclear spin relaxation.
Account of these relaxation processes allowed us to reproduce
qualitatively the experimentally observed fm dependences.

Our work provides useful practical recommendations on
how to conduct experimental studies of LAC lines. As we show
in a subsequent publication, the experimental method used here
indeed enables sensitive detection of LAC lines. Furthermore,
we demonstrate that modulation (used in lock-in detection) is
not only a prerequisite for sensitive detection of weak signals
but also a method to affect spin dynamics of the NV− centers in
diamonds. Last but not least, our experimental method allows
one to detect new LAC lines. Such LAC lines can be used
for indirect detection of otherwise “invisible” paramagnetic
defect centers in diamond crystals; their analysis has been in
part performed in Ref. [45]. A more detailed analysis will be
given elsewhere.
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