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Lattice realization of a bosonic integer quantum Hall state—trivial insulator transition
and relation to the self-dual line in the easy-plane NCCP1 model
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We provide an explicit lattice model of bosons with two separately conserved boson species [U(1) x U(1)
global symmetry] realizing a direct transition between an integer quantum Hall effect of bosons and a trivial
phase, where any intermediate phase is avoided by an additional symmetry interchanging the two species. If the
latter symmetry is absent, we find intermediate superfluid phases where one or the other boson species condenses.
We know the precise location of the transition since at this point our model has an exact nonlocal antiunitary
particle-hole-like symmetry that resembles particle-hole symmetry in the lowest Landau level of electrons. We
exactly map the direct transition to our earlier study of the self-dual line of the easy-plane NCCP1 model, in the
mathematically equivalent reformulation in terms of two (new) particles with 7 statistics and identical energetics.
While the transition in our model is first order, we hope that our mappings and recent renewed interest in such
self-dual models will stimulate more searches for models with a continuous transition.
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I. INTRODUCTION

For much of the history of condensed matter physics,
different phases of matter were understood as being related
to breaking different symmetries. In more recent times,
“topologically ordered” phases outside of this paradigm, such
as the fractional quantum Hall effect, have been discovered
[1-3]. Even more recently, the condensed matter community
has realized that there is another type, the “symmetry protected
topological phases” (SPT) which [4-6], though not topolog-
ically ordered in the sense of the fractional quantum Hall
effect, are distinct in the presence of some symmetry from the
“topologically trivial” phase with that symmetry.

Much is understood about the phase transitions between
different conventional phases (i.e., those related by symmetry
breaking), but phase transitions between SPT phases is still
largely uncharted territory. There are two types of such
transitions. In the simplest case, the symmetry protecting
the SPT phases is broken, and there is a transition to a
topologically trivial phase with less symmetry. The theory
of such a transition can be studied in a variety of models
[7-9] and seems to possess the same properties as a transition
between topologically trivial phases where the same symmetry
is broken. The more challenging case is the transition between
the SPT phase and the topologically trivial phase, where no
symmetry is broken.

One of the topological phases thought to exhibit such
a transition is the bosonic integer quantum Hall effect
(BIQHE) [10-12]. The BIQHE has been realized numerically
in both continuum [13-16] and lattice [12,17-20] models, but
generically these are not expected to realize a direct transition
between the BIQHE and the trivial insulator with the same
symmetry [21,22]. Recent theoretical and numerical studies
[23-25] of bilayer graphene as a platform for bosonic SPT
states suggested a second-order bosonic topological-trivial
transition, although the accessed sizes are perhaps too small
to determine critical properties. In other works, DMRG
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and coupled-wire studies of a hard-core boson model with
correlated hopping on a honeycomb lattice [19,26] found
a direct transition between BIQHE states with o, = 2 and
0yxy = —2, but more detailed studies are needed to establish
the nature of the transition.

In this paper we show how a model introduced in Ref. [12]
can realize a direct transition between the BIQHE and the
trivial insulator with the same symmetry. Our model has
two species of separately conserved bosons with short-range
interactions that break conventional time-reversal symmetry
but preserve an alternate antiunitary symmetry that allows
a sign-free reformulation and Monte Carlo studies already
employed in previous works [12,27-29]. Both species are at
integer filling due to an additional local unitary particle-hole
symmetry, which however is not an obstacle to producing
BIQHE or its fractionalized cousins, i.e., “symmetry-enriched
topological phases” (SET). We then show that requiring an
interchange symmetry between the two boson species is
crucial for realizing the direct transition between the BIQHE
and trivial phase. Furthermore, we can impose an interesting
nonlocal antiunitary particle-hole-like symmetry that puts our
model exactly at the transition. Such a model with the above
symmetries placed exactly at the transition is in fact equivalent
to so-called easy-plane NCCP1 model (EP-NCCP1) at exact
self-duality [30-32], and we use this mapping to connect our
model to a previous numerical study [27] of the self-dual line
in the EP-NCCP1 model. While this earlier study found that
the transition in the specific model is first order, the detailed
understanding in the present work allows us to propose more
general models that can be similarly placed exactly at the
transition and may realize continuous transitions.

It is useful to relate our work to recent advances in
the understanding of interplay of symmetries and dualities
[33-39], Thus, the nonlocal antiunitary particle-hole-like sym-
metry mentioned above is a bosonic analog of the electronic
particle-hole symmetry in the lowest Landau level, which
has recently attracted much interest [33-35,40]. The bosonic
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FIG. 1. The lattice on which the Hamiltonian in Eq. (4) is defined.
There are two interpenetrating cubic lattices with sites labeled by
the coordinates r and R. On the sites of each lattice there are
U(1) quantum rotors. On the intersection points of the links of the
two lattices there are harmonic oscillators, whose “position” and
“momentum” variables are conveniently thought of as fields residing
on the oriented links of the direct and dual lattices, respectively.

analog introduced in Ref. [41] interchanges the BIQHE and
trivial insulator phases, and from this perspective it is natural
that this symmetry places our model exactly at the transition
between the two phases. In the conventional fractional quan-
tum Hall setting for bosons, exact realization of the particle-
hole symmetry has been elusive, while it is quite natural in our
model. Next, in our model the species-interchange symmetry
of bosons corresponds to exact self-duality in the EP-NCCP1
model, i.e., a symmetry in one set of variables maps to a
duality transformation in another set. Explorations of such an
interplay is also a very active topic, and our model provides
an interesting exact example that can also be of practical
use for numerical studies of the transition in the EP-NCCP1
model (which we already employed in Ref. [27]). Finally, the
self-dual EP-NCCP1 model has been related to self-dual QED5
with two species of Dirac fermions [39,42,43], so finding a
continuous such transition would have direct implications for
possible critical field theory of such QED;.

The paper is presented as follows: In Sec. II we review
how the model is constructed, while in Sec. III we discuss the
model’s symmetries. In Sec. IV we discuss the phase diagram
of our model. We support this phase diagram by summarizing
a number of previous Monte Carlo studies [12,27-29]. Finally
in Sec. V we explicitly show how the model is connected to
the EP-NCCP1 model and also how it connects to the model
studied numerically in Ref. [27]; while in Sec. VI we conclude
with some discussion and outlook. In Appendix we illustrate
how we can argue for bosonic SPT and SET phases directly in
our Hamiltonian.

II. MODEL HAMILTONIAN

We now describe in detail the model used in this paper,
which was originally introduced in Ref. [12]. The model is
defined on two interpenetrating square lattices, as seen in
Fig. 1. On each site of one lattice we place a U(1) quantum
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rotor, which can be described by a compact phase variable
¢31 (r), where r indicates a site of one of the lattices (from now
on called the “direct lattice”). The rotors can also be described
by conjugate number variables 71 (r) which are integer valued
and satisfy [(ﬁl(r),ﬁl(r/)] = i6yv. On the other lattice we put
a different species of rotors, defined by the variables cﬁz(R),
71»(R), where R indicates a site on the other lattice (from now
on called the “dual lattice”). We can also think of these rotors
as representing two species of bosons, where 7 is the number
of bosons on each site and ¢ is the phase of those bosons.

As can be seen in Fig. 1, the links of the two lattices inter-
sect, and at each such intersection point we place a harmonic
oscillator, described by conjugate real-valued variables x,, 7,
where £ labels a link of either lattice, and

[Xe.7te]l = i8g 0. (D

A given link can be described by a combination of a position
and direction on either lattice, i.e., we can replace £ by r,j
(j is a direction, £ = (r,r + j)) or R,j’ (j’ is a direction
perpendicular to j; £ = (R,R+ j’)). We can then define
variables associated with oriented links on the direct and dual
lattices,

. S e i) =%
(r) = %o, (R) = A . 2
a1j(r) = Xe, G2j/(R) {—ﬁz i) =9 @)

The commutation relations for the &-s are therefore:
[@1;(r), Q2 (R)] = —i€;8 13 /p_Re 2 3)

where ¢ is the antisymmetric tensor.
With all our degrees of freedom defined, we can now write
the Hamiltonian:

FI = I:Ihl + I:IhZ + ﬁul + ﬁuz + ﬁ(x» (4)

A N 2
Hyy =~ hycos [vﬂm(r) - ,/7”&1,@)}, 5)
rj
A N 2
Hip == hycos |:Vj¢2(R) - ‘/7&2,(11)], 6)
R,j

A 1 ’
H, = 3 erull:ﬁl(l')'f',/ %(V /\&2)(r)i| ’ )

. 1 :

Ao = EXR:Mz[ﬁz(R)-h/%(V A&l)(R)} C®
g _ K s ooy K2 o2
A=Y [ Fa@ + Faw?]. ©)

14

Here V A& = V,&, — V,@, denotes the spatial curl, which
is naturally centered at dual or direct lattice sites for &; or
@, respectively. The parameter 1 in this model eventually
determines which topological phases will be realized. To
understand the physics of this Hamiltonian, we start with the
terms Hy;, Hyp. What these terms do is tie the curls V A & »
to the vorticities of the phase variables ¢A>1,2. Then, terms H,,,,
H,; force the number variables of the opposite species, 75 1,
to be proportional to these curls. The net result is that the
Hamiltonian tries to tie n bosons of one species to a vortex
of the other species. When n = 1 this therefore implements
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boson-vortex binding which gives rise to the bosonic integer
quantum Hall effect (BIQHE) [10—12]. When 7 is a rational
number, such a Hamiltonian produces bound states of multiple
bosons and vortices (e.g., ¢ bosons and d vortices for n =
c/d with mutually prime integers ¢ and d); this leads to
a wide variety of fractionalized topological phases, which
are the symmetry-enriched topological phase versions of the
BIQHE [12].

The Hamiltonian in Eq. (4) cannot be solved exactly (but
see Appendix for analysis in special limit). In Ref. [12]
we developed its imaginary-time path integral, which, for
judiciously chosen parameters, led to the following action in
(24+1) dimensions:

1 - -
Sip =5 ) vl =) - Jie)

1 N -
+3 D 0aR = RIFAR) - Fa(R)

R, R’
+i Y w(R = RV x TI(R) - J(R). (10)
R.R

The coordinates r in the above equation now represent a (2+1)-
dimensional space-time lattice made up of both the spatial
position r as well as imaginary time 7, and similarly for the
coordinates R. As discussed in Ref. [12], the imaginary time
position on the R lattice is naturally displaced by 1/2 relative
to the r lattice, so we obtain two (2+1)-dimensional lattices
which are dual to each other.

The variables J,, are conserved space-time currents,
V. j’g =0, and represent the world lines of the bosons
il in Eq. (4), and they interact with each other through
the potentials v, (for intraspecies interactions) and w (for
interspecies interactions). These potentials have the following
form in momentum space:

A2/1
vija(k) = ST (11)
AiAa + "o
-1 1
wk) = — ————— (12)
2 Ahy + 1 2| fil

@n)?

The parameters A/, can be expressed in terms of the parame-
ters in Eq. (4) as well as the imaginary time discretization 7.
For judiciously chosen parameters, we can make the system
isotropic in space and imaginary time:

1

n
A =0Tk|— = , 13
: ta 2 STuy 13

and similarly for A,. We also defined f , = 1 — e*, so ifk is
the lattice version of the momentum I_é; thus, | fk|2 => #(2 —
2cos k). The parameters iy, hy in Eq. (4) are assumed to be
very large.

In Ref. [12] we showed how actions such as Eq. (10) can
be studied in sign-free Monte Carlo. The numerical results of
the present paper came from carrying out such simulations.
For both the Monte Carlo simulations and analytical progress,
it is very useful to perform a duality transformation which
is an exact rewriting of the partition sum in terms of new
(“dual” or “vortex”) variables as defined in Appendix A of
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Ref. [12] (which also gives precise conditions on the currents
fgr the tfansformation to be exact). By dualizing one species,
J1 — Qj, while leaving the second species untouched, our
model Eq. (10) with potentials Egs. (11) and (12) leads to
action [12]

R S N2, I |5(R) — nQi(R)2
SQJ—; g 1@ +; T :

(14)

If n is a rational number, n = c¢/d, then for small X, this
action binds d vortices to ¢ bosons and proliferates the resulting
objects.

III. SYMMETRIES

The above model has a number of symmetries which are
vital to understanding it. Since both species of bosons are
conserved, there are two U(1) symmetries. In the loop model
of Eq. (10), these symmetries force the  variables to form
closed loops (V j = 0), while in the Hamiltonian of Eq. (4)
they appear as the invariance under ¢1 (r) —> 4)1 (r) 4+ y1 (with
position-independent y;) and similarly for $,(R).

Our model also has a unitary particle-hole symmetry Cunitary »
defined as

Cunitary : j - _uis’ (15)
Ay = —As, G5 — —s, (16)
&, — —a;, (17)

for both species s = 1,2, where the first line refers to invariance
of the Euclidean action while the second line specifies the
symmetry in the Hamiltonian language.

Additionally, our model has an antiunitary symmetry 7_
which acts as particle hole on one species but does not change
the particle number of the other species:

T : T — -, (18)
J> — (19)

i — —i, (20)

Ay — =1, ¢ — i, @21
fiy >y, Gy — —d, (22)
o —> &, 0 —> —an. (23)

This symmetry is the reason we are able to simulate the model
in a sign-free way: It takes Ql — él , and since the symmetry
is antiunitary this implies that the action Sy, in terms of Q,
and jz variables is real-valued and therefore simulable in
Monte Carlo. We can see this explicitly for the action Eq. (14)
obtained for the model potentials in Eqs. (11) and (12), but
this holds more generally as long as we have 7_ .

The above symmetries are the only independent symmetries
enjoyed by all of our models. Note that we do not have
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“conventional time reversal” symmetry t that would act iden-
tically on both species (such as js — $,z — —i), which is
why our models can realize integer and fractional quantum
Hall phases with nonzero o,, (more precisely, nonzero
Cross-species transverse response oxl)z, see Ref. [12] for
details).

The loop model of Eq. (14) has another interesting property
in that the action remains unchanged under the following
transformation of variables and parameter 7:

Coontocal © Jo = Q1 — Ja, (24)
Q) — 0, (25)
n—>1—1n. (26)

Since n = 1/2 maps to itself, this transformation can be
viewed as a symmetry of the model with n = 1/2. Unlike the
symmetries discussed above, this transformation is nonlocal
in the jl and jz variables, and therefore it is difficult to
see how it is realized microscopically in the Hamiltonian
Eq. (4) (but see the next subsection). Here this property implies
that as we vary 5 in the loop model, we expect a transition
exactly at n = 1/2, which we will argue in the next section is
between a trivial insulator (o, = 0) and a BIQHE insulator
(0xy = 2).

Running somewhat ahead, we note that this property has
features expected of a bosonic analog of the particle-hole
transformation of electrons in the lowest Landau level [34]: As
we will show below, the above transformation interchanges the
trivial insulator and BIQHE insulator; more generally, it maps
a fractional quantum Hall state of bosons with oy, = 2¢/d to
a new state with o, =2 — 2¢/d. The change in sign on jz
in Eq. (24) signifies the particle-hole aspect of the symmetry
for the second species. Furthermore, we expect this property
to have identical manifestation when expressed in J; and @2
variables. That is, there is a change in sign for both boson
currents and no change in sign for both vortex currents, and
this implies that the transformation is antiunitary, which we
will see explicitly in the Hamiltonian language at n = 1/2.

Finally, our model has an additional “species interchange
symmetry” when the parameters satisfy A; = A, (or equiva-

lently hy = hy, u; = uz, k1 = k2):
R:T5 < D, 27)
I A ) (28)
@), < . (29)

Since the variables of different species live on different lattices,
this symmetry implicitly also involves a translation by half a
unit cell in all directions.

Hamiltonian formulation of the nonlocal particle-hole symmetry
atn =1/2

The BIQHE can be understood [12] through Eq. (14) as

a condensate of bound states of bosons jz andqvortices @1.

Thinking in this context, the difference Q; — J, is nonzero

when a vortex does not have a bound boson and is reminiscent
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of a “hole” in a boson IQHE state. The transformation Cyoniocal
therefore seems like a bosonic equivalent to the fermionic
particle-hole symmetry in a Landau level. The latter symmetry,
though nonlocal, can be understood by restricting to a single
Landau level, and it is natural to ask if the same phenomenon
is possible in our model.

Atn = 1/2, we can restrict to a Landau-level-like structure
by taking h,h; — oo. This limit is tractable since I-?hl and
Hj,, commute when 1y = 1/2. These terms lock respective o, to
V ¢, and therefore effectively lock V A a; to the vorticity of ¢.
Indeed, we have, e.g., /27 /nay;(r) = V¢ (r) — 2mp;(r)
with integer-valued p;;(r), and hence

V2r/nV A, =-2nVAp =-2r0, 30)

for O some integer. If we require a;(r) to be as small as
possible, which is what the energetics term H,, wants, then Q
coincides with the commonly used definition of vorticity of
¢1. Of course, the energetics requirement on the smallness of
«; is only “soft”, but the precise interpretation of the integers
0 (and similarly arising integers Q5 ) is not important in what
follows.

Thus, the large & limit allows us to consider a restricted
Hilbert space defined by exp(i~/27/nV A o) = 1 on each
direct or dual lattice placket corresponding to fluxes of & or
o, respectively. With this restriction made, we can rewrite the
I:Iul term in Eq. (4) as:

N 1
A, = Eerul[ﬁlm— nQ>(r)1%, 31

and similarly for H,, (simply interchanging species labels
1 and 2). When n = 1/2, our model now hag a symmetry
ng — Qs — ny, similar to the symmetry js — Q; — J, of the
loop model, where § means the other species relative to s. This
symmetry needs to be antiunitary since we do not want it to
transform o5 and hence ¢;. This is then a precise realization
of antiunitary particle-hole transformation in our Hamiltonian,
and the fact that we can define it only upon some restriction on
the Hilbert space is reminiscent of the status of the electronic
particle-hole symmetry in a Landau level.

We remark that in terms of the loop variables, the nonlocal
particle-hole transformation applies for any »n, but in the
Hamiltonian model the symmetry only holds for n = 1/2. This
is because the above projection obtained by taking /1{,h; — 00
is a different projection for different n. Hence, the restricted
Hilbert spaces are different for different n (including also cases
n =noandn = 1 — 7o), and we do not have a unique restricted
Hilbert space (same for all 1) in which we could define a
particle-hole transformation as above. In this way, our model is
different from the traditional quantum Hall problem. However,
if we confine ourselves to n = 1/2 where we do have exact
nonlocal particle-hole symmetry, conceptually, this difference
is not an issue.

Appendix contains an additional example working in
the Hamiltonian language, where we analyze fractionalized
insulator at n = 1/d. In the remainder of the main text, we
will use the loop models to explore the transition between the
trivial and integer quantum Hall effect and its relation to other
interesting theories.
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FIG. 2. Phase diagrams for the model in Egs. (10)—(12) [27-29], as a function of A, A, and for a variety of different n. A description of
each of the phases is given in the main text. The phases labeled with numbers are either the trivial insulator with Hall conductivity O or the

BIQHE with Hall conductivity 2.

IV. PHASE DIAGRAM

We now review the phase diagram of the loop model in
Eq. (10) as a function of the parameters X, A,, and n. Figure 2
shows a number of cuts through this parameter space, each of
which has fixed n and varies A; and X,.

A. Features common to all values of »

There are some phases which are the same in all of the
panels of Fig. 2. In particular, when A;,A, are comparable
and very large, we can see from Egs. (11) and (12) that the
intezactionsﬁall become very small. This leads to a proliferation
of J and J, worldlines, and therefore in this case the system
is a superfluid breaking both U(1) symmetries, regardless
of n.

On the other hand, when, say, A; is very large but A is not,
then the jl variables see a very small interaction while the jz
variables see a large interaction. Therefore the first species is
superfluid while the second is a trivial insulator, i.e., only one
U(1) symmetry is broken.

B. =0

In Fig. 2 we can see that for n = 0 there are four phases.
Three of them are the superfluids described above, so the
only case left to explain is when A; and X, are both small.
From Eqgs. (11) and (12) we can see that when this happens
and n = 0, both species of bosons see a large interaction
potential, and there will be no worldlines of either species.
Therefore this phase is a trivial insulator of both species,
and no symmetries are bfoken. Equivalently, in this phase the
worldlines of vortices, Q; 2, have proliferated [which can be
also established from Eq. (14) where él see small potential
while 7, see large potential].

C.p=1

The property Chonlocal forces the phase diagram at n = 1
to have transitions in exactly the same places as that at
n = 0. However, the nature of the phases can be different.
In particular, when A, X, are both small we can see from
Eq. (14) that objects with Q1 jz will have only a small
energy cost, leading to a proliferation of bound states of bosons
and vortices. This leads to the boson integer quantum Hall
effect (BIQHE) with o,, = 2, see Ref. [12] for details.

D.0<y<1/2

When 1 takes a fractional value—for concreteness, let n =
c/d with ¢ and d mutually prime integers,—we can again
understand the phase at small 1| and A, using Eq. (14), but this
time there is a binding of d vortices to ¢ bosons. This leads to a
topologically ordered generalization of the BIQHE phase. The
phase has o,, = 2n, gapless counterpropagating edge modes,
and hosts quasiparticles which have fractional charge 1/d and
fractional mutual statistics 2rb/d between different species
(where integers a,b are defined from the mutual primeness of
c and d viaad — bc = 1), see Ref. [12] for details.

When 7 has the form 1/d, such as n = 1/3 in Fig. 2, in
addition to the topologically ordered phase mentioned above
(and the various superfluids at large 1), there is another phase
at intermediate A, ),. This phase exists because for such 7 to
get the topological phase we need to proliferate composites
containing d vortices Q;. However, the first term of Eq. (14)
tries to prevent this condensation. If A, is the value of A; at
which the trivial phase appears at n = 0, then condensing a
d-fold composite of Q; will require A; < A./d*>. However,
above this value and below A. (i.e., in the regime A./d> <
AL~ A2 S X)), single Ql variables can condense, while jz
variables can stay gapped. The resulting phase is therefore the
same trivial insulator that occurred at small A; , and n = 0.

For other rational n = ¢/d, such as n =2/5 shown in
Fig. 2, the phase diagram has a more complicated struc-
ture. We still have the topologically ordered phase at small
A2 S Ae /d2 with oy, = 2n described above. However, near
the line A; = A,, and between A, (above which we have
the superfluid of both species) and A./d* (below which we
have the topologically ordered phase), we now have additional
phases. These phases can be understood as condensing more
and more complicated bound statesqof @ 1 and jz variables.
Just below A, only single-strength Q; vortices can condense,
leading to the trivial insulator. At smaller A we can condense
composites with multiple Q;; e.g., for n = 2/5 in the region
between (approximately) A./25 and A./4 we can condense
objects with él = Z,jz = 1, leading to a topological phase
with o,, =2 x 1/2. Essentially, the system is trying to
approximate the rational number ¢/d with a rational number
with a smaller denominator, to find composites which are not
penalized strongly by the second and the first terms in Eq. (14)
and which can condense at higher A. For fractions with large
c and d, a hierarchy of many topological phases will therefore
be reached. When 7 is an irrational number, there will be an
infinite hierarchy of topological phases, as the system tries to
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find a better and better rational approximation of 7. Crucially
for us, the trivial insulator remains present near the A; = A,
line in the window between approximately A./4 and A for any
n, since any topological phase requires composites containing
at least two vortices.

Our Cyonlocal property relates the phase diagram for 1/2 <
n < 1 to that for 0 < n < 1/2. The phase transitions are all in
the same places, but topological phases with Hall conductivity
o,y are mapped to phases with Hall conductivity 2 — o,.
The trivial insulator is mapped to the BIQHE. The exhibited
phase diagrams at n =0,1/3,2/5 and 1 were obtained in
Refs. [12,29] (panels n = 0,1 and n = 1/3 are Figs. 6 and 7
in the first reference, while n = 2/5 is obtained by appropriate
rescaling of Fig. 9 from the second reference [44]).

As we approach n = 1/2, the width of the trivial insulator
in the direction perpendicular to the A; = A, line shrinks,
and exactly at n = 1/2 we do not have a trivial insulator but
instead find a direct transition between the flanking superfluids
where only one or the other species condenses. The numerical
phase diagram is from Ref. [27], where we studied a model
formulated as two species of particles with mutual 7 statistics.
In the next section (following Ref. [12]) we will show how
such a model is an exact reformulation of Eq. (32), and also an
exact reformulation of the easy-plane NCCP1 model, where
a symmetry under the interchange of the two species with
mutual 7 statistics corresponds to the exact self-duality of the
EP-NCCP1 model [27,28]. Here we simply state the numerical
results of Ref. [27], which are that there is a phase transition
along the A; = X, line and that the phase transition is weakly
first order. Note that to see the first-order nature of the transition
we needed to access quite large system sizes, up to L > 24.

F. Cut through the phase diagram along the self-dual line
A1 = X, and varying »

In Fig. 3 we present a schematic phase diagram on the
“self-dual line” A; = A, = A, for all values of n (the reason
for the name “self-dual” will become clear in Sec. V). The
phase boundaries in this figure were determined analytically
for a model with a somewhat different interaction than the one
in this work [45]. Obtaining a phase diagram such as Fig. 3
for the model in this work cannot be done analytically, and
therefore we would need to perform numerics for each value of
n. However, we expect that the topology of the phase diagrams
for both models should be similar. Indeed, if we look at the
values of n where we have performed the numerics (marked
by dashed lines in Fig. 2) we see the expected structure.

An important feature of this phase diagram (and one we
expect to be independent of the details of the interactions) is
that when A./4 < A < A.and n < 1/2, the only variables that
can condense are single él and Qz variables, and the phase
is therefore a trivial insulator. The Cponiocar property tells us
that in the same region of A but when 1 > 1/2, the system
will be a BIQHE. From this it follows that the existence of the
Chonlocal Symmetry implies a direct transition from the trivial
insulator to the BIQHE phase when 1 = 1/2. To conclude
our discussion of the phase diagram, the upshot is that by
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FIG. 3. A schematic of the phase diagram obtained by fixing
A1 = Ay = A, and varying 5. The numbers inside the phases label
their Hall conductivity, with oy, = 0 the trivial phase and o,, =2
the BIQHE. Fractional values o,, = 2c¢/d correspond to symmetry-
enriched topological phases with d vortices bound to ¢ bosons.

requiring the species interchange symmetry (i.e., A; = A;), and
the nonlocal particle-hole symmetry Cyoniocar (i-€., n = 1/2),
we can place the model exactly at the transition between the
trivial and BIQHE phases.

V. RELATION OF THE TRIVIAL-BIQHE TRANSITION
TO EXACTLY SELF-DUAL EP-NCCP1 MODEL
AND = -STATISTICS MODEL

Having summarized numerical study in the specific model,
we now discuss the relation of the trivial-BIQHE transition to
exactly self-dual (tuned to the transition) EP-NCCP1 model
and to the m-statistics model (where both species are trying
to condense simultaneously). This will allow us to see the
interplay between duality and symmetry more explicitly (a
topic of much recent interest), as well as come up with new
models for future Monte Carlo studies.

To show that the model in Eq. (10) is connected to
the EP-NCCP1 model we start by writing it in momentum
space:

- o 1 - -
WIVIVAEESY CICIMIGERCINClY
k

+i Y 0Ti(—k) - pak). (32)
k

where jz =V x p2. Here (k) = w(k)lfk|2, and the 6(k)
term encodes a ‘“statistical interaction” between the two
loop species. We are specifically interested in systems with
short-range v (r — ), v2(R — R"),w(R — R’), i.e., nonsingu-
lar v 2(k),w(k) at small k, and hence 6(k) ~ k? so the
statistical interaction vanishes at long distances.
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It is instructive to consider a version of Eq. (14) for general
potentials [12,28]:

L o 1 (27m)? 0(k) =
S . = = — S = - k
019,701 = 5 ; [v1<k>|fk|2 Qi) + == |
+ vz(k)ljz(k)|2]~ (33)

Here the Q1 currents have long range 1nteract10ns (~1/k* in
momentum space), while Q1 JQ and J2 jz interactions are
short range. [It is straightforward to check that specializing to
potentials in Egs. (11) and (12) returns precisely Eq. (14)].

A simple but important reformulation of Eq. (33) is obtained
by changing variables in the partition sum as @1 = El + 52,
jz = Zz, which is a valid change of variables since indepen-
dent summation over integer-valued Ql and jz corresponds to
independent summation over integer-valued c 1 and 52:

SiilLi. Lol = So Ly + L. L] (34)
1 Qr)R |2 ( 0(k ))
= — — Lk + |1+ —= 35
2 ;[vl(kmv o 27 4
+vz<k)|iz<k>|2}. (36)

Note that it is only the specific combination /31 + /32 that
has long-range interactions, and we can interpret these as
arising from £; and Eg being coupled to the same dynamical
gauge field with a generic Maxwell term. This structure with
only such a combination of loops experiencing the long-
range interaction is the structure of generalized easy-plane
NCCPI1 model introduced in Ref. [30] (unlike that reference,
here we are allowing the two species to have different
energetics).

Applying duality transformation (e.g., as defined in
Appendi} A of Iief. [1 %]) to thisﬁmodel, denoting the variables
dual to £, and £, as M and M, respectively, we get

- o 1 -
Sl M1 Mol = 53 [w(k)wl(k)ﬁ

k

Qr)? 2}
Y . (37
" v (k)| fi? o7

Here it is the combination /\;ll - /\;lz that has long-range
interactions, and the structure of the dual theory is similar
to that of the original theory up to changing sign of one of the
currents [30].

So far everything is completely general, except that from
the outset our model S;; has the symmetries Eq. (15) and
Eq. (18). These basic symmetnes translate to symmetrles of the
Srr model as Cypiary : E — E and 7_ £ — Es,z —
—i, which are symmetries of the NCCP1 model as it was
defined in Ref. [30].

Let us now consider the case when the S;; model has
the nonlocal antiunitary particle-hole symmetry of the type
discussed earlier, Eq. (24). Since we already know that Sg,
is real valued, we can formulate the Chonioca Symmetry as

Mo(k) — (1 + %)Ml(k)
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invariance of Sy, under change of variables jz — él — jz
while leaving Q; untouched, i.e.,

Cronlocal € SQJ[él,@l - Dl = SQJ[@l,jz]- (38)

& Spilla,Li] = SpLlL1. Lol (39)

Thus, Cponlocal (together with implicitly used 7_ ) is equivalent
to the condition that Sy ;, is invariant under interchange of E 1
and 52. It was such a model with the interchange symmetry
that was called the easy-plane NCCP1 model in Ref. [30]. It is
straightforward to show that necessary and sufficient condition
for this symmetry (in this class of models) is

vl(k)vz(k)lfkl2 + 0(k)* + 470(k) = 0. (40)

Any model of the form Eq. (10) whose interaction potentials
satisfy the above condition is therefore equivalent to the EP-
NCCPI1 model. [It is easy to check that the specific choices
made in Egs. (11) and (12) at n = 1/2 satisfy this condition.]

Next, by comparing S ; and its dual theory Sy, we notice
that the interchange symmetry R in the boson model, Eq. (27)
[i.e., vi(k) = v2(k)], implies “exact self-duality” of the Sz,
model in the sense that:

R & SymlMy M) = Sp My, =M. (41)

This is why we referred to the A; = X, lines in Fig. 2 (and in
Refs. [27,28]) as “self-dual”.

Requiring both the nonlocal particle-hole symmetry and
the species interchange symmetry in the original model S,
thus makes the S;; reformulation to be the exactly-self-dual
EP-NCCPI mode] In the parameter reglme where we expect a
transition from El ,Ez both gapped to El ,Ez both condensed,
we expect that the exactly-self-dual model lies at the transition
between the two phases.

When Eq. (40) is satisfied (i.e., in the presence of Cponiocal
symmetry), we can write

- o 1 - -
Stelli, Lol = 5 Y [0 (L + L)k
k

Fo_(OI(Ly — LK), (42)

with long-range wvi(k) = —vo(k)m/6(k) and short-range
v_(k) = —mO(k)/[ vl(k)lfk|2] [note that Eq. (40) implies
0(k) < 0 and that vy 5(k) and G(k) are not independent]. If
in addition we have v;(k) = vy(k) (i.e., R symmetry), the
potentials in Eq. (42) satisfy

o) = 2= 43
v v_ = =
-0 = = (43)
which is indeed a previously established condition for the exact
self-duality in the EP-NCCP1 model (see, e.g., footnote 46 in
Ref. [28]). The model we study numerically which uses the
potentials in Eqs. (11) and (12) with n = 1/2 and A} = A,
satisfies these conditions, but we wish to emphasize that any
model satisfying Eq. (40) and v;(k) = vy(k) will be at the
phase boundary between the trivial insulator and the BIQHE.
Let us consider one more reformulation of the S;; model,
which will allow us to make direct contact with Ref. [27]. In
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that work we studied a model of the form Eq. (32) with

1
vga(k) = — Og(k) =, (44)

vGi(k) = l,

3 2
i.e., model with mutual 7 statistics (the subscript “G” will
become clear below). Using a sign-free reformulation in
Ref. [27] which is ultimately related to the same 7_, symmetry
of underlying short-range-interacting bosons, this model could
be efficiently simulated at large sizes. Here we use the
techniques of Ref. [12] to show that this model is exactly
related to the model described by Eqs. (11) and (12), i.e., the
model which is the path integral of the local Hamiltonian given
in Eq. (4).

This reformulation uses the fact that there are two opera-
tions we can formally perform on Eq. (32) [12,46,47]. One is
the boson-vortex duality defined earlier, and the other is a shift
of 6(k) by 27} (a£1 operation which does not change the partition
sum since J;, J; are integer valued). These two operations do
not commute, and in fact generate the modular group SL(2,Z).
Following Ref. [12] we can apply a modular transformation
with parameters (a,b,c,d) = (0,—1,1,2) to reformulate the
model Eq. (32) in terms of new variables g., gz These new
variables see new potentials, obtained by using Eq. (9) from
Ref. [12]:

(27)*vy ja(k)

[47 + 6(k)12 4 vi(k)va (k)| fel?

_ 2
by — Q)[4 + 6(k)] . “6)
[47 + 0(K)1? + vi(k)va (k)| fi|?

Note that 65(k) — —nx for k — O for any short-range v; »(k)

(45)

VG1/G2 =

and @(k) ~ k?, which is a property of the specific modular
transformation used. This formulation is particularly useful
when vg1,62 potentials are very large and hence G; and 52
particles are gapped. [Substituting Eqgs. (11) and (12) with
n = 1/2 into Egs. (45) and (46) we get precisely Eq. (44) with
t) = 4A1, t = 4X,, so this regime corresponds to small A; and
X>.] As shown in Ref. [12], in this case the original bosons
are in a fractlonahzed phase with fractlonal Hall conductivity
oxy =2 X 5, while gapped excitations g, ,gz carry fractional
1/2 charges and have mutual 7 statistics (at long distances).
We can yerify that if the original boson model S, is symmetric
under J; and J» interghangel then the Sgg reformulation is
also symmetric under G; and G, interchange: v|(k) = vy(k) =
vG1(k) = vga(k).

Irrespective of the interchange symmetry, if the original
boson model S;; has the nonlocal particle-hole symmetry
Chonlocal, then the Sgg model has

(k) = —m forall k. 47)

The statlstlcal interaction term can then be ertten in real space

as—im Y, Gi(r) - sz(r)[wheregz(R) (V X p2)(R)].On
the lattice and with integer-valued gl and gz (and hence pg»),
such —sr statistics is not distinguishable from 4 statistics.
The Sg¢ model in this case has an additional structure in that

Chonlocal € (e_SGG[g"gﬂ)* — ¢ 566191621 (48)

Note that this is not really a local symmetry but a statement
about the “Boltzmann weight” calculated for the total action
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Sc6, and this reflects the nonlocality of the Cponjocal Symmetry
under consideration in the S;; model. Interestingly, the
condition for this nonlocal symmetry has apparently a con(:1se
statement in the gl,gz variables, unlike the original jl,jz
variables where we could not find a 51mp1e statement without
invoking first dualizing from ._71 to Q1

When we have both the species interchange and the
nonlocal particle-hole symmetry in the original boson model,
the Sgg reformulation presents a model of particles with
identical interactions and with mutual 7 statistics. The regime
of interest here is where both particles want to condense
simultaneously. If they form a critical soup, this would
correspond to a continuous transition in the EP-NCCP1 model
(at the exact self-duality). On the other hand, if they phase
separate, this corresponds to a first-order transition in the
EP-NCCP1 model. In Ref. [27] we studied the above question
about the simultaneous condensation of both species in the
specific model Eq. (44) and found phase separation (i.e.,
first-order transition for the corresponding EP-NCCP1 model).
It would be very interesting to revisit this question in the more
general family of such models that are located precisely at the
potential criticality, looking for realizations where there is a
criticality rather than phase separation.

We would also like to note that just having the species
interchange symmetry is sufficient to produce a direct BIQHE-
trivial transition. In more general models without explicit
non-local particle-hole property, we would not know the
location of the transition exactly but would need to find it
by tuning some parameter. Interestingly, in the EP-NCCP1
model, Eq. (36), this setting corresponds to requiring exact
self-duality, Eq. (41), without requiring interchange symmetry
between its two species. The exact self-duality guarantees that
if one of the species is condensed, then the other is gapped, and
vice versa; hence, if one is at a condensation transition, then so
is the other. We can then conjecture that at the transition there
will be an emergent symmetry between the two species at long
distances (i.e., as far as their criticality is concerned), which
would then correspond to an emergent non-local particle-hole
symmetry at the BIQHE-trivial transition in the original boson
language. It would be interesting to test this scenario in
numerical simulations.

VI. DISCUSSION

The nature of the transition between SPT phases and trivial
insulators is an open question. The discovery of a model with a
second-order transition between these phases, especially if the
model were numerically tractable such that critical exponents
could be extracted, would provide data which would aid in
developing a theoretical understanding of such transitions. In
this work we have constructed an explicit model realizing
direct BIQHE-trivial insulator transition and have mapped the
transition to the self-dual line of the easy-plane NCCP1 model.
By connecting to earlier numerical studies of the latter [27],
we have shown that the transition is weakly first order [48-51].
Though the specific model we have studied does not have a
second-order transition, we hope that our work will stimulate
new searches for similar models which do. It is encouraging
that the first-order transition observed in Ref. [27] is quite
weak, only becoming apparent for system sizes L > 24. This

115137-8



LATTICE REALIZATION OF A BOSONIC INTEGER ...

leads us to hope that small modifications to our model might
lead to the observation of a second-order transition. However,
the weakness of the first-order transition means that one needs
to be able to access large sizes in order to accurately determine
the nature of the transition.

The models described by Eq. (4) and studied numerically
in Refs. [12,27-29] represent a special case of Eq. (32)
where the interactions are given by Eqgs. (11) and (12). Using
instead interactions of the form wv(k) o 1/|k|, in Ref. [47]
we found a potential second-order such transition, though
our study was limited to smaller sizes L < 16; also, these
models with marginally-long-range interactions do not map
to a local Hamiltonian. In the present paper, we have shown
that any model of the form Eq. (32) that satisfies Eq. (40)
and v; (k) = v, (k) represents a transition between the BIQHE
and trivial insulator. Exploring such models with short-range
interactions as well as finding new models which can be
represented by local Hamiltonians and studied numerically
are interesting directions for future work.

As mentioned in the introduction, recent works established
connection of the EP-NCCP1 model to QED; with two
Dirac species [39,42,43]. The loop models in the present
paper can be used to provide an exact realization of the
schematic bosonized version of the N = 2 QEDj in Ref. [43].
Specifically, we can take the S;; model and formally shift
0(k) by 27; the partition sum is unchanged but the new model
has bosons with mutual statistics 2 at long distances, which
is the bosonized starting point in Ref. [43]. Interestingly,
the nonlocal antiunitary particle-hole-like symmetry of S;;
corresponds to an exact self-duality condition of such bosons
with 27 statistics discussed in Ref. [43], and the latter
was ultimately related to the interchange symmetry of the
EP-NCCP1 reformulation; this is in agreement with Eq. (39) in
the present paper directly relating Cponiocal and the interchange
symmetry of S; ;. We remark that the more “mundane”
symmetries that are always present in our S;; model, namely
Crocal and 7, _, are both required to relate the model to the
EP-NCCPI1 as defined in Ref. [30], and the additional R
and Chonlocal Symmetries make the EP-NCCP1 reformulation
self-dual and interchange-symmetric. All these symmetries
have specific counterparts in the N = 2 QEDj, correspond-
ing to (combinations of) fermionic time-reversal symmetry,
particle-hole symmetry, fermion interchange symmetry, and
exact fermionic self-duality. Reference [43] used coupled-wire
approach to relate the fermionic and bosonic theories. It would
be interesting to construct such Dirac fermions directly in the
present bosonic model on the lattice and pursue simulations
exploring these nontrivial relations.

An interesting future direction is to study effects of disorder
on the BIQHE-trivial insulator transition in this paper. Thus,
we can take the reformulation in terms of particles with
mutual 7 statistics, Eq. (44), and make #; and # random
identically-distributed variables in real space (for the study
of the quantum phase transition, the couplings need to be
perfectly correlated in the temporal direction). This will
maintain all the symmetries Cupitarys 7—+» Cronlocal, and R (in
probabilistic sense), and we conjecture that this would also
place the model at the transition. Another future direction
is to explore bosonic models allowing noninteger particle
density and nonzero external fields, which can be handled
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by the formalism in the present work and which may have
interesting symmetry-duality interplay as well. For example,
we can construct such models realizing BIQHE at finite boson
density/field, and it would be interesting to explore transitions
out of this phase.
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APPENDIX: MICROSCOPIC REALIZATION
OF THE TOPOLOGICALLY ORDERED PHASES

In the main text (and also in Ref. [12]) we argued from the
path integral developed for the Hamiltonian of Eq. (4) that the
system can realize various topologically-ordered phases. On
the other hand, the Hamiltonian language was very helpful for
understanding the symmetries of the model. In this Appendix
we show how we can argue for topological phases directly
from the Hamiltonian language of Eq. (4). While this material
is tangential to the subject of the main text, we hope to provide
more examples of Hamiltonian thinking while at the same
time making our original model realization of the BIQHE
and the fractionalized SET cousins more useful to a much
broader readership familiar with exactly solvable models for
topological phases [52].

We will only consider the simplest case = 1/d, which can
represent the BIQHE phase at d = 1 or fractionalized phases
ford > 1. Let us also consider the limit x; » = 0, which in the
path integral language corresponds to A;, = 0 and therefore
puts the model deep in the topological phase with o, =2 x
1/d discussed in Sec. IV D. [Strictly speaking, the loop model
in Eq. (10) corresponds to the i} » — oo limit, but we will
not require this in the direct analysis below.] In this case,
we observe that the remaining terms in the Hamiltonian Hj,,
Hy,, H,, and H,; all commute. We can then define ground
state manifold by requirement of simultaneously minimizing
all these terms:

VS O—V2md a1 (0] _ LilV;aR)—V21d b (R)] _ 1, (A
mo+ P20 s my BB o g
1 =n g
wd V2md

These equalities are understood as specifying operator eigen-
values in the ground state manifold. The first line is for each
direct lattice link r, j and each dual lattice link R, j, while the
second line is for each direct lattice site r and each dual lattice
site R. In the second line, we defined “flux” variables

BI(R) = (V A&)R), By(r)=(VA&)T). (A3
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It is easy to see that these requirements on the ground
state manifold are consistent. Indeed, Eq. (Al) implies
v2md By = —2mq,» with integer-valued ¢g;, (the sign is
chosen just for convenience). The combinations in Eq. (A2)
become n;, —¢q»,1/d and can be made zero by requiring
@»>.1 = dnj . The physicsis that g, , are vorticities of the boson
fields, and the Hamiltonian binds d vortices of one species to
a single charge of the other species.

A more detailed construction of ground states that indeed
satisfy Egs. (A1) and (A2) will be given below. However,
we can already demonstrate ground state degeneracy (for d >
1) when the system is placed on a two-dimensional torus.
Assuming L, x L, torus with direct lattice sites labeled by
integer coordinates, 0 <x < L, —1,0<y< L, —1, and
dual lattice sites labeled by half-integer coordinates, we define
operators

L,—1 L—1 11
Ci = Z Q1:(x,0), Cor = Z Gox <x + z’ 5)’

x=0 x=0

L,—1 L1 | |
ély = CAt’ly(O,)/), Czy = Z 6[2},(5’)] + 5)

y=0 y=0

A

C,;j is a “circulation” of the field é&;; along a fixed line around
the torus in the j direction. It is easy to check that operators

Wy = eV G (Ad)
commute with the Hamiltonian Eq. (4) when «;, =0 and
hence preserve the ground state manifold defined by Eqgs. (A1)
and (A2). However, these operators do not commute with each
other; specifically,

Wlx WZy = WZy Wlxei%7 WZ.}C le = le Weri%T~ (AS)
Such commutators immediately imply d2-fold degeneracy and
therefore topological order, similar to Z  toric code [52].

To produce explicit ground state wave functions, we
first note that L,L, — 1 operators B{(R) [e.g., requiring
R #(1/2,1/2)] are linearly independent combinations of
@1;(r) and are linearly independent with Cj,. Similarly,
L,Ly,— 1 operators By(r) [e.g, requiring r # (0,0)] and
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operator C,, are linearly independent combinations of &» i(R).
Furthermore, all these operators commute with each other.
This allows us to write a complete basis of the Hilbert
space of the 2L, L, oscillators as eigenbasis of the above
operators with independent eigenvalues. Using this basis
for the oscillators and the number basis for the bosons,
we can construct ground state wave functions as superposi-
tions of states specified by n;(r),n2(R), Bi[R # (1/2,1/2)] =
—2md ny(R),By[r # (0,0)] = —+2nd ni(x), Ci =
2 /dmiy,Co = /27 /d m,,. Here m, and m», areintegers
independent of the other variables, and the conditions on C,
and C,, follow by multiplying constraints Eq. (Al) along
the corresponding loops around the torus. Now we can show
that the boson hopping operators in Hj j» [i.e., operators in
Eq. (Al)] can connect all of the above states specified by
independent n,(r),n,(R),m,,m,, with each other, except that
only m, differing by a multiple of d are connected, and
similarly for m,,. [Here we also assumed fixed total rotor
numbers ) . ni(r) = Y g n2(R) = 0 appropriate for bosons
at integer density.] We can hence construct d> independent
ground state wave functions which are superpositions (with
in general complex but uniquely fixed amplitudes with equal
absolute values) of the connected states, in agreement with
the operator argument for the topological degeneracy given
earlier.

Just like in the Z, toric code, we can consider open-string
counterparts of W, and W, operators; schematically,

. T [T & . 7 (R 4
eV T [Tavdl g q i E S &o-dl

where we focus on just one end of the string. It is easy to see
that these operators create excitations residing on the direct
and dual lattices, respectively, with energies %dlz and ”72[%,
and that these excitations have mutual statistics of 27 /d.
Furthermore, these excitations carry fractional charges 1/d
of the first and second U (1) symmetries, respectively. Indeed,
the first operator raised to power d when applied to a ground
state is, by Eq. (A1), identical to acting with ¢/%'® on the same
state, which adds charge 1 of the first boson species; hence the
first operator acting once must add fractional charge 1/d. The
obtained description of the excitations of the topological phase
is in agreement with our conclusions in Ref. [12] using path

integral approach.
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