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Defining time crystals via representation theory
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Time crystals are proposed states of matter which spontaneously break time translation symmetry. There is
no settled definition of such states. We offer a new definition which follows the traditional recipe for Wigner
symmetries and order parameters. Supplementing our definition with a few plausible assumptions we find that
a) systems with time-independent Hamiltonians should not exhibit time translation symmetry breaking while
b) the recently studied π spin glass/Floquet time crystal can be viewed as breaking a global internal symmetry
and as breaking time translation symmetry, as befits its two names.
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I. INTRODUCTION

The identification of symmetries, and the categorization of
phases through the spontaneous breaking of symmetries, is a
central unifying theme in modern physics. This program has
traditionally focused on the spontaneous symmetry breaking
(SSB) of space-group and internal symmetries, and has
provided a framework for understanding phenomena ranging
from the formation of crystals to magnetism to superfluids.

More recently, there has been much interest in the idea
of time translation symmetry breaking (TTSB) starting with
Wilczek’s proposal [1] for the existence of time crystals—
states of matter that spontaneously break continuous time
translation symmetry down to a discrete subgroup, in direct
analogy with spatial crystals. Wilczek’s intuition was sharp-
ened by Watanabe and Oshikawa, who formulated a definition
of TTSB in terms of space-time correlation functions, and used
this definition to prove the absence of time crystals in thermal
equilibrium [2]. Interestingly, Ref. [2] left open the possibility
of observing time crystals in an out-of-equilibrium setting.

A parallel development [3] showed that it is, in fact, possible
to get nontrivial phase structure even in the intrinsically
nonequilibrium setting of a periodically driven (“Floquet”)
and disordered interacting system [4–8] via a generalization
of the notion of eigenstate order [9–14] first formulated in
the context of undriven many-body localized (MBL) systems
[15–20]. Strikingly, one of the phases found in Ref. [3]—the
so-called π spin-glass phase—was observed to display time-
dependent correlations which oscillate at integer multiples
n of the driving frequency, thereby breaking the discrete
time-translation symmetryZ of the drive to a subgroup nZ and
providing a realization of an out-of-equilibrium time crystal.
This phase (also variously known as the Floquet time crystal
[21]/discrete time crystal [22]) has been the subject of much
recent study [3,21–26], and signatures of discrete TTSB in this
setting have now been observed in very recent experiments
[27,28].

Three definitions of TTSB have been proffered. The first,
following Watanabe and Oshikawa, defines a time crystal
as a phase which shows time-dependence and long-range
order in unequal space-time correlation functions of local
operators [2]:

lim
|i−j |→∞

lim
L→∞

〈Oi(t)Oj 〉c = f (t), (1)

where 〈〉c denotes a connected correlation function, L is
the system size, Oi is a local operator with support near
position i, and f (t) is a nonconstant function of time. These
correlators are measured in the Gibbs state or the ground
state of an undriven Hamiltonian system. While one might
think that the restrictions to large system sizes and large
separations are not necessary to detect TTSB, in the absence
of these restrictions essentially any finite system (or a chain of
uncoupled finite systems) exhibits TTSB.1 Reference [2] also
considered the natural generalization to correlation functions
of superpositions of local operators O = 1

L

∑
i ciOi , in which

case TTSB requires limL→∞〈O†(t)O〉c = f (t). Generalized
to the periodically driven setting [24], the correlators are
measured in the eigenstates of the Floquet unitary U (T )
which is the time-translation operator over one period T ,
and the time-dependence is only probed “stroboscopically,”
t = nT for n ∈ Z. The second definition was proposed for
Floquet systems; it states that such systems exhibit TTSB if all
eigenstates of U (T ) show long range connected correlations
for local operators measured at equal times [21]. The third
definition requires the presence of persistent, nontrivial time-
dependence in expectation values of local operators measured
in late time states starting from generic short range correlated
initial states [21,24]:

lim
t→∞ lim

L→∞
〈ψ0|Oi(t)|ψ0〉 = f (t),

where f (t) is a nonconstant function of continu-
ous/stroboscopic time for Hamiltonian/Floquet systems. This
last definition is appealing from an experimental viewpoint
since neither the operator nor the initial state require fine-
tuning; indeed recent experiments [27,28] have detected
signatures of Floquet time-crystal states via an observation
of multiple period oscillations in generic observables at late
times.

1Any finite system has finitely many energy eigenvalues and,
hence, only finitely many frequencies (energy differences) that
contribute to equal space, unequal time correlation functions, leading
to recurrences in time in the behavior of such correlation functions.
Thus, without the requirement of large systems and large spatial
separations, all finite systems (such as simple Rabi oscillators) would
be trivially classified as time crystals.
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In this paper, we consider a fourth definition of TTSB,
which has the appeal of being a straightforward extension of
standard definitions of SSB. We begin in Sec. II with a formal
restatement of the definition of SSB in the more conventional
case of a system with a global internal symmetry, which acts
as a tensor product of onsite symmetries, wherein SSB is
defined in terms of long-range order in correlation functions
of local order parameters. We then discuss time translation
symmetry (TTS) much like any other symmetry in terms of
its unitary implementation on Hilbert space and its action on
the algebra of local observables. This leads us to generalize
the notion of an order parameter to TTS, where it becomes
an observable which is fixed-up to a nontrivial phase-under
the action of TTS (Sec. III). While the existence of local
order parameters is guaranteed for on-site global symmetries,
it is not at all guaranteed for TTS; the crucial difference is
that TTS is typically not on-site, and typically spreads local
operators (Sec. IV). Indeed, in ergodic/ETH systems, no such
order parameter exists because all local operators spread,
precluding the existence of time crystals in such systems
(Sec. IV A). Similarly, such order parameters do not exist
in undriven MBL systems in which all local operators that
transform nontrivially under TTS also spread—albeit only
logarithmically—in time (Sec. IV B). Barring the presence
of new dynamical phases, and some pathological unstable
cases which we discuss, the only remaining possibility is
Floquet-MBL phases (Sec. IV C) where indeed examples of
time crystals have recently been found in theory [3,21–24], and
possibly in experiments [27,28]. Finally, in Sec. VI, we show
how the previous three definitions of TTSB can be derived from
the present one. We emphasize that the conceptual advantage
of the present framework is that it treats time translation just
like any other symmetry, and thus enables the considerable
intellectual framework of SSB to be brought to bear on the
problem of time crystals. This allows for a natural definition of
TTSB without appealing to any seemingly ad hoc restrictions
or conditions. Further, the discussion of order parameters for
TTS is physically illuminating and allows us to consider both
the equilibrium and nonequilibrium settings within a single
unified framework.

II. STANDARD LORE ON SPONTANEOUS
SYMMETRY BREAKING

Consider a symmetry group G = {g} represented by unitary
operators W (g) in the Hilbert space of our system.2 For a
Hamiltonian system H invariant under G, [H,W (g)] = 0 ∀ g,
the eigenstates |n〉 of H transform according to irreducible
representations of G (for finite systems of any size). As we later
focus on situations where G implements time translations, we
limit our analysis to Abelian groups G. For such groups, all
irreducible representations (irreps) are one-dimensional, and
eigenstates simply pick up phases when acted upon by the
symmetry group elements: W (g)|n〉 = eiφg |n〉.

Traditionally, one considers two kinds of symmetry groups:
(i) global internal on-site symmetries and (ii) space group

2We restrict to unitary symmetries for this discussion.

symmetries like translation and rotation. The unitary represen-
tations of the former are local, i.e.,they are depth-one quantum
circuits, which act as products of on-site unitary transforma-
tions. On the other hand, the unitary representations of spatial
symmetries are nonlocal in that they cannot be represented
as finite-depth circuits of local unitaries [29]. Relatedly, order
parameters for detecting SSB (defined below) can always be
chosen to be strictly local for internal symmetries, while they
are forced to be extensive superpositions of local operators for
spatial symmetries like translation.

The case of time-translation symmetry is intermediate
between these two cases. Time translations generated by local
bounded Hamiltonians acting for finite times are represented
by local finite-depth circuits, but these are typically not product
circuits of on-site operators.3 Correspondingly, as we will
show, one can get order parameters for TTS which are either
local operators (LOPs), or global superpositions of local
operators (SLOPs). Furthermore, there are systems where no
local (or SLOP) order parameter for TTS can be defined at all,
which in turn precludes the existence of TTSB in such systems.

For concreteness, let us start by defining SSB for the case
of global internal symmetries. We apologize in advance for
our pedantry in the interests of a self-contained discussion.
Consider a group G represented by a product of on-site unitary
operators W (g) ≡ ⊗iWi(g) ∀ g ∈ G. To define SSB from G to
a subgroup H = {h}, we construct a family of local operators
{�i,α} labeled by position i, which transform according to
irreps labeled α of G:

W †(g)�i,αW (g) = eiθg,α�i,α. (2)

It is always possible to construct a local on-site basis of
operators that transform in this way, due to the assumption
that the symmetry acts as a product of single-site terms.
For α nontrivial, the transformation of �i,α under G implies
that one-point functions such as 〈n|�i,α|n〉 must vanish in
all eigenstates |n〉. Given any α, there is a unique irrep α

(the complex conjugate irrep) such that products �i,α�j,α

transform trivially under G. For the symmetry G to be
spontaneously broken to a subgroup H in eigenstate |n〉, two
conditions need to hold. (i) We must have

lim
|i−j |→∞

lim
L→∞

|〈n|�i,α�j,α|n〉c| 
= 0 (3)

for all �α which transform trivially under H but nontrivially
under G, and (ii) the same quantity Eq. (3) disappears for any
�α which transforms nontrivially under H .

Ising symmetry: Let us consider a spin-1/2 system with a
global Ising symmetry G = Z2. The degrees of freedom on
each site i can be represented by Pauli matrices σ

x/y/z/0
i and

the Ising symmetry is represented by G = {1,Px} where Px =∏
i σ

x
i . The transverse field Ising model H = J

∑
〈ij〉 σ

z
i σ z

j +
h

∑
i σ

x
i is an example of such a system. The choice �i =

σ z
i satisfies Px�iPx = −�i , so there exist local operators

which transform under a nontrivial irrep of G. As before,
all eigenstates can be chosen to be eigenstates of Px . We say

3Thus, perhaps counterintuitively, time translation symmetry is
more similar to the case of a global symmetry rather than spatial
translation symmetry.
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that Ising symmetry is spontaneously broken to H = {1} in
eigenstate |n〉 if lim|i−j |→∞ limL→∞〈n|σ z

i σ z
j |n〉c 
= 0, where

〈〉c denotes a connected correlation function.
In the following, we will largely frame our discussion of

TTSB in terms of local order parameters. We will return to the
case of SLOP(py) order parameters in Sec. V, where we also
provide a comparison between the action of spatial and time
translation symmetries.

III. SPONTANEOUS TIME TRANSLATION SYMMETRY
BREAKING (TTSB)

A. States, operators, and TTS

Before defining SSB for time translation, let us set up
some notation for the two possible time translation groups
R,Z corresponding to continuous and discrete time translation
symmetry, respectively, and consider the action of TTS on
states and operators of Hamiltonian and Floquet systems.

1. Time independent Hamiltonian systems

The group of time translations is the noncompact, Abelian,
Lie group R generated by the Hamiltonian itself. We note
that TTS is therefore a dynamical or Hamiltonian dependent
symmetry rather than a kinematical symmetry which would be
the same for the entire set of Hamiltonians at issue (see, e.g.,
Ref. [30]). The group elements are translations of the system
by time t with unitary representations U (t) = eiHt , and clearly
[H,U (t)] = 0 for all t . We set h̄ = 1 throughout. Because the
group is Abelian, all irreducible representations of TTS are
one-dimensional and eigenstates |n〉 of H transform in these
irreps:

U (t)|n〉 = e−iEnt |n〉.
We now turn to transformation of operators under conjugation
with the group elements with a view towards defining an order
parameter for TTSB. First, observe that it is certainly possible
to find operators that transform according to the irreps of TTS.
The operators Onm = |n〉〈m| where |n〉,|m〉 are eigenstates of
H with eigenvalues En,Em, respectively, transform as

U †(t)OnmU (t) = ei(En−Em)tOnm ≡ ei	mntOnm, (4)

and form a basis for the linear space of all operators. While
these operators certainly transform according to nontrivial
irreps for En 
= Em, they are highly nonlocal and cannot, in
general, serve as order parameters (which must be LOPs or
SLOPs). Specifically at issue is whether a subset of linear
combinations of operators Omn are sufficiently local to serve
as order parameters. Since we will require this order parameter
to transform under a nontrivial irrep, we are only allowed to
make linear combinations of basis-operators with the same
	mn. In a generic many-body system with no additional
symmetries, we do not expect degeneracies in the eigenvalue
spacings, so constructing such a local order parameter will, in
general, not be possible. Below we return to the issue of when
such local order parameters exist.

2. Periodic in time Floquet systems

For our purposes, Floquet systems are characterized by
local unitaries U (T ) which govern the evolution over a single

period T . For such systems, the group of time translations is the
infinite, Abelian, discrete group Z generated by U (T ) itself.
We note that this is again a dynamical rather than a kinematical
symmetry. All irreps of this discrete TTS are one-dimensional
and eigenstates of U (T ) transform in these irreps:

U (T )|n〉 = e−iεnT |n〉.
The εn are called “quasienergies” since they are only defined
modulo 2π/T . Again, the nonlocal operators Onm = |n〉〈m|
transform as

U (T )†OnmU (T ) = ei(εn−εm)T Onm ≡ ei	mnT Onm, (5)

and form a basis for the linear space of all operators. We
defer again the question of the existence of local operators that
transform via the irreps and note that we will not find cases
where all do.

B. Defining TTSB via local order parameters

Let us adapt the previously discussed diagnostic of SSB to
the case of TTSB. We require the existence of a family of local
order parameters �i,α that transform under nontrivial irreps of
the TTS (R orZ) such that U †(t)�i,αU (t) = ei	αt�i,α . Then, it
follows that 〈n|�i,α|n〉 = 0 in every eigenstate (where |n〉 is an
eigenstate of either H or U (T ), depending on the context, and
correspondingly t ∈ R,ZT , respectively). A system breaks
TTS to a discrete subgroup H (of R or Z), if the following
two conditions hold. (i) We have

lim
|i−j |→∞

lim
L→∞

|〈n|�i,α�j,α|n〉c| = c0 
= 0 (6)

for �α , which transform trivially under H and nontrivially
under G. (ii) The same correlator disappears for �α , which
transform nontrivially under H .

IV. WHEN DOES TTSB OCCUR?

Having defined TTSB, we consider the scenarios under
which TTSB could potentially occur in the infinite volume
limit. For the purpose of this discussion, we will only
consider generically interacting, nonintegrable systems, al-
though noninteracting and integrable systems can certainly
display a host of interesting dynamical phenomena [31–42],
including synchronization to a periodic generalized Gibbs
ensemble in the driven setting [43,44]. We will see that
thermalizing systems and undriven MBL phases are precluded
from showing TTSB because, on general grounds, they do
not possess a local TTS order parameter, as preempted in
the discussion below Eq. (4). Saving the possibility of exotic
phases which are neither localized nor thermalizing, the only
remaining known phases of matter are Floquet MBL phases;
hence if TTSB phases arise, they must do so in such systems.

A. Absence of TTSB for thermalizing systems

For generic, thermalizing interacting systems, it is generally
believed that any local operator spreads ballistically under
time evolution at a characteristic Lieb-Robinson velocity vLR

[45]. This spreading can also generically be sub-ballistic, such
as in thermalizing disordered systems with Griffiths effects
[46]. Hence, thermalizing systems lack any candidates for
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TTS order parameters which are local (or SLOPs) and thus
they cannot exhibit TTSB. As a consequence of this operator
spreading, we expect all time-dependent correlations of the
form 〈n|Oi(t)Oj |n〉 for generic local operators Oi to asymp-
tote to constants at long times. This is true of both Hamiltonian
systems and Floquet systems. In the latter, the ergodic phase
is the infinite temperature phase since it is believed that a
generic, interacting driven system absorbs energy indefinitely
from the drive in the absence of localization, and thus all
late-time correlations are trivial in the Floquet-ergodic setting
[5,7,8,47].

B. Absence of TTSB for Hamiltonian MBL systems

Hamiltonian systems which are localized (either MBL
or Anderson localized) have an extensive set of mutually
commuting local operators—called “l-bits” [48–52]—which
commute with each other and with H . These local l-bit
operators certainly transform according to an irrep of TTS, but
it is the trivial irrep because of their commuting with H. As
a result, they cannot serve as order parameters for diagnosing
TTS. On the other hand, local operators which do not commute
with H grow logarithmically in time [48–50,53–56] and again
cannot serve as order parameters for TTS. Hence TTSB is not
possible for such systems either.

C. Presence of TTSB for Floquet MBL systems

Having excluded the possibility of TTSB in thermalizing
and undriven MBL systems, we now turn to the category of
systems that do exhibit TTSB. We will show that one can define
local order parameters for TTSB in Floquet MBL systems
and, in such systems, TTSB is accompanied by the breaking
of a global (kinematical or dynamical) internal symmetry.
Our primary example is the one-dimensional perturbed π

spin-glass phase described by the family of model unitaries
[3,21,23,24]

U (T ) = Px exp

⎡
⎣i

∑
j

Jjσ
z
j σ z

j+1 + hx
j σ

x
j + h

y

j σ
y

j + hz
jσ

z
j

⎤
⎦,

(7)

where Px = ∏
j σ x

j is the Ising parity operator. For sufficiently
disordered fields hα

j and couplings Jj , the system is MBL. We
direct the reader to Ref. [24] for more technical details on this
model. We consider several cases below.

1. hx
i = h y

i = hz
i = 0

Let us start with the special choice hx
i = h

y

i = hz
i = 0.

For this case, U0(T ) = Pxe
i
∑

j Jj σ
z
j σ z

j+1 has a global Z2 Ising
symmetry, [U0(T ),Px] = 0. Note that

U
†
0 (T )σ z

i U0(T ) = −σ z
i ,

(8)
U

†
0 (2T )σ z

i U0(2T ) = σ z
i ,

whence σ z
i is a local operator which transforms under a

nontrivial irrep of TTS and can serve as an order parameter
for diagnosing discrete TTSB from G = Z to the subgroup
H = 2Z [Eq. (2)]. It is, of course, also an order parameter for
the Z2 Ising symmetry generated by Px .

The eigenstates of U0(T ) look like Ising
symmetric/antisymmetric global superposition states
(cat states) of frozen σ z spins [3,23,24], |±〉 =

1√
2
(| ↑↓↓ · · · ↑〉 ± | ↓↑↑ · · · ↓〉). Two point functions of the

order parameter show long-range order, 〈±|σ z
i σ z

j |±〉c = ±1
in all eigenstates. Thus, all eigenstates spontaneously break
both the discrete TTS Z down to 2Z and the global Ising Z2

symmetry; both of these breakings are diagnosed by the same
order parameter—whence the original designation of this
spatiotemporally ordered [24] phase as a “π spin-glass” [3].

Furthermore, it is easy to check that the |+〉,|−〉 eigenstate
pairs for a fixed configuration of spins differ in quasienergy by
π/T . This π/T quasienergy splitting between the constituents
of each feline doublet [3,24] is essential for defining a local
order parameter for TTS. Referring back to our general
arguments around Eq. (4), we see that this system has 2L−1

independent (nonlocal) basis operators O± = |+〉〈−| labeled
by the domain wall configurations which all transform in the
same nontrivial way as O±(T ) = −O± with 	+− = π/T [c.f.
Eq. (5)]. This degeneracy allows us to construct local operators
σ z

i which themselves transform in the same way by taking
superpositions of these basis operators.

2. hx
i �= 0, h y

i �= 0, hz
i �= 0

Consider the general case where all three fields h
x/y/z

i are
small but nonzero. Note that this model does not have a global
Ising symmetry Px . Moreoever, the σ z

i no longer transform
according to irreps of U (T ) so they cannot serve as order
parameters for diagnosing TTSB. However, if the couplings are
sufficiently random so that the system remains MBL, there is
a finite depth unitary circuit V which relates the eigenstates of
the perturbed unitary to those of the unperturbed model U0(T ),
and which can be used to define dressed, drive-dependent, local
l-bit operators [24] τα

i = V σα
i V †. For sufficiently large system

sizes, the unitary can be rewritten in a canonical form [24],

U (T ) = P̃xe
iDeven(τ z

i ), (9)

where P̃x = ∏
i τ

x
i and Deven is an even function of the τ z

i

operators. Notice that this unitary has an emergent, dynamical
global Z2 symmetry generated by P̃x . Evidently the τ z

i are
local order parameters for both TTSB and the global Z2

generated by P̃x , which is now also a dynamical symmetry.
The eigenstates of the unitary are still π/T -paired cat states
of the dressed τ z spins which are now labeled by their
eigenvalues under the dressed parity operator. Thus, in this
range of parameters, the system spontaneously breaks both
the dynamical TTS and the dynamical Ising symmetry P̃x and
both phenomena are detected by the same order parameters.
Upon exiting the phase in a general direction, order parameters
for both symmetries can cease to exist.4 This discussion
emphasizes that the spatial long-range order and TTSB in
this model go hand in and hand and should be viewed on an
equal footing [24].

4We note that for perturbed drives which preserve Ising symmetry
(hy = hz = 0,hx 
= 0), the Z2 symmetry breaking is still diagnosed
by the σ z

i operators. On the other hand, order parameters for TTSB
are defined in terms of dressed l-bit operators τ z

i .
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This analysis can be generalized mutatis mutandis to
drives with Zn kinematical/dynamical symmetries described
in Refs. [23,24,57].

V. TTSB VS. SPATIAL TRANSLATION
SYMMETRY BREAKING

We now briefly discuss the existence of order parameters
for TTSB which are global superpositions of local operators,
and offer a comparison between TTSB and the spontaneous
breaking of spatial translation symmetry. Let us consider dis-
crete spatial translation symmetry G = Z in a one-dimensional
system with L sites. This symmetry cannot be represented
by a finite-depth circuit of local unitary operators. For an
operator O(r) centered at site r , translation by x sites acts as
T̂ †(x)O(r)T̂ (x) = O(r + x). This implies that no nontrivial
local operator is left fixed by spatial translations. Thus, the
closest analog to a local order parameter [as defined in Eq. (2)]
involves a global superposition of local operators

Ok = 1

L

∑
r

eikrO(r),

T̂ †(x)OkT̂ (x) = e−ikOk,

where the wave number is restricted so that eikL = 1. Lattice
translation symmetry can be broken down to a discrete
subgroup nZ (as in an antiferromagnet). Through a di-
rect generalization of (3), this order can be diagnosed by
nontrivial connected correlations in 〈O−GOG〉c where G ∈
2π
n

{1,2, . . . ,n − 1}.
By contrast, time translation acts rather differently. Gener-

ically, there is no basis of operator eigenvectors for time
translation which look like SLOPs. In generic ergodic phases,
for example, operators which are eigenvectors under time
translation involve highly nonlocal superpositions of large
strings of operators. Even in MBL systems, most local
operators grow logarithmically [48–50,53–56] in time and do
not transform as eigenoperators under time translation. Most
eigenoperators of time-translation in MBL systems (all except
the l-bits) again involve nonlocal superpositions of large strings
of operators.

There are, however, examples of fine-tuned local Clifford
circuits called “gliders’ ’[58] for which one can construct order
parameters which are global SLOPs, in direct analogy with
spatial crystals. This is striking since these circuits, unlike
spatial translation, are local and can be viewed as the time
evolution operator generated by a local Hamiltonian. We defer
the existence of TTSB in such glider circuits with SLOP
order parameters, and the stability of these circuits to generic
perturbations, as interesting questions for future work.

VI. RELATION WITH PRIOR DEFINITIONS

We now briefly discuss how our definition of TTSB makes
contact with the prior three definitions mentioned in the
Introduction. We will stick to the case of local order pa-
rameters for simplicity, although the generalization to SLOPs
is straightforward. Definition 1 requires long-range order in
unequal space-time correlation functions of local operators [2]
[Eq. (1)]. Indeed, if a system exhibits TTSB per our definition

in Sec. III, then there exist local order parameter operators
�i,α such that �i,α(t) = ei	αt�i,α . Using Eq. (6), we find the
existence of oscillating spatiotemporal order as desired:

〈n|�i,α(t)�j,α|n〉c = ±ei	αt |c0| for large |i − j | (10)

for either t ∈ R or t ∈ ZT 5. Moreover, replacing the order
parameters in Eq. (10) with generic local operators Oi will
also lead to persistent oscillations at long times, although more
than one frequency can be present—this occurs because the Oi

will generically have some overlap with �i,α . We note that our
formalism for TTSB looks for long-range order in correlations
of order parameters, so the limit |i − j | → ∞ is natural. In the
absence of this limit, unequal space-time correlation functions
of generic operators exhibit “glassy” temporal dynamics
and oscillate with multiple incommensurate frequencies [24].
Moreover, as mentioned earlier, in the absence of this limit
even “trivial” systems like uncoupled chains of Rabi oscil-
lators appear to break TTSB. However, while Watanabe and
Oshikawa had to put this limit in “by hand” to exclude such
trivial systems [2], the limit is natural in our formalism.

Of course, our definition requires the existence of long-
range order in connected correlators of local order parameters
in Floquet eigenstates Eq. (6). Thus, such eigenstates fail to
cluster and must be long-range correlated in agreement with
the second definition of Floquet time crystals [21].

Finally, our definition is almost equivalent to the third
definition in terms of quenches and late time states, which
is the most experimentally useful one [24]. The nontrivial
transformation of the order parameter under TTS means that
the order parameter is also an exact spectrum generating
operator. Thus, its existence implies the existence of spectral
multiplets separated in quasienergy by 	α as discussed for
the π -spin glass. This, in turn, implies [24] that at late
times starting from generic short-range correlated initial state,
generic local observables exhibit oscillations with a definite
period 2π/	α—provided the system is MBL. The contribu-
tions from other frequencies dephase away as power laws of
time as can be deduced from the l-bit formalism of localized
systems [24]. However, if the system lacks interactions and
is Anderson localized, the late time state can also continue to
exhibit multiple—indeed infinitely many—periods which are
a consequence of the existence of an infinite number of exact
local raising operators in the noninteracting problem.

VII. CONCLUDING REMARKS

In this paper, we have presented a definition of TTSB by
treating time translation much like any other Wigner symmetry
in terms of its unitary implementation on Hilbert space, its
action on the algebra of local observables, and the consequent
identification of order parameters, and the correlations of the
order parameter in eigenstates. We note that some related ideas
stemming from the characterization of equilibrium infinite
volume states via C∗ algebras have been presented in Ref. [25],
but this paper does not include our central object—an order

5Note that the fluctuating sign is a result of glassy spatial long-range
order, and we refrain from taking the formal limit lim|i−j |→∞ limL→∞
because of this glassiness.
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parameter for TTSB. Local order parameters for TTS do not
generally exist. When they do, eigenstates show long-range
connected correlations with respect to the order parameter.
We further argue, with some minor assumptions, that the
only setting for the existence of a TTS order parameter and,
hence, TTSB, is in Floquet MBL systems. This recovers,
albeit heuristically, the result of Oshikawa and Watanabe
for the absence of TTSB in equilibrium systems using their
definition in terms of space-time correlators. It also provides
an extension to the case of localized systems which are out of
equilibrium and which cannot be obtained via their methods.
In Floquet MBL systems, the breaking of the dynamical time
translation symmetry is always accompanied by breaking of a
(kinematical or dynamical) global internal symmetry, befitting
the varying descriptions of this spatiotemporally ordered phase
[24] as a π spin-glass [3,23]/Floquet time-crystal [21]. Finally,
we note that the extension of these ideas to the case of clean,
prethermal time crystals [25], which take a time that is expo-
nentially long in the driving frequency to heat up to infinite
temperature and are governed by an effective unitary Ueff in
the interim [59–61], is an interesting direction for future work.
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APPENDIX A: NONLOCAL ORDER PARAMETERS

While this paper was entirely about the experimentally
relevant case of a local order parameter for TTSB, we note that
it may be interesting to theoretically explore the existence of
drives which do not admit local order parameters but for which
nonlocal operators transform as nontrivial irreps of TTS. One
example noted en passant in Ref. [24] is that of the following
drive:

U (T ) = eiHTC
∏
e∈C∗

1

σ z
e (A1)

HTC = −
∑

p

εp

∏
e∈∂p

σ x
e −

∑
v

εv

∏
e∈s(v)

σ z
e . (A2)

Here, HTC is the standard toric code Hamiltonian [62],
involving a sum over plaquette p and vertex v terms. C∗

1,2
are collections of edges corresponding to closed paths on the
dual lattice; the two paths are noncontractible loops winding
around the two directions of the torus. Consider the Wilson
loop WC2 ≡ ∏

e∈C2
σx

e corresponding to a noncontractible
loop on the lattice around the y direction on the torus. This
operator transforms nontrivially under TTS, i.e., WC2 (nT ) =
(−1)nWC2 . Now the order parameter is nonlocal, but formally
we can examine the expectation value of the product of two
such Wilson loops at large separation. This does not vanish and
signals both the presence of Z2 topological order and TTSB.
It would be interesting to see if there are other more naturally
symmetric examples of TTSB, once the constraint of locality is
lifted.

APPENDIX B: YET ANOTHER CHARACTERIZATION
OF TTSB

In the ground state (GS) of the transverse field Ising model,
we usually diagnose SSB through the presence of long-range
order 〈σ z

r σ z
s 〉GS,c = O(1). But there is a dual diagnosis of this

phenomenon using the disorder operator. In this language,
long range order is signaled by the fact that the action of Ising
symmetry on a subregion R obeys a volume law,〈∏

r∈R

σ x
r

〉
GS

∼ Ce−αvol(R).

In contrast, in the paramagnetic phase, this correlator exhibits a
boundary law, ∼e−α|∂R|. Motivated by this, and using the form
Eq. (9), suggests an alternative dual characterization of TTSB
in Floquet systems with local Hamiltonians H (t). Define the
local action of time translation in region R as

Uf,R(T ) = T e−i
∫ T

0 dtHR (t),

where HR(t) are those terms in H (t) which have support solely
in R. With the notation setup, we conjecture the following
for Floquet systems with TTSB: If a Floquet system exhibits
TTSB Z → mZ then, for arbitrarily large regions R, the
system eigenstates | n〉 obey

〈
U

p

f,R

〉
n

∼
{
e−αvol(R) p 
= 0 mod m

e−α|∂R| p = 0 mod m
,

where p ∈ Z.
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