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We study perturbative and global anomalies at the boundaries of bosonic analogs of integer quantum Hall
(BIQH) and topological insulator (BTI) phases using a description of the boundaries of these phases in terms
of a nonlinear sigma model (NLSM) with Wess-Zumino term. One of the main results of the paper is that these
anomalies are robust against arbitrary smooth deformations of the target space of the NLSM which describes
the phase, provided that the deformations also respect the symmetry of the phase. In the first part of the paper, we
discuss the perturbative U(1) anomaly at the boundary of BIQH states in all odd (space-time) dimensions. In the
second part, we study global anomalies at the boundary of BTI states in even dimensions. In a previous work [Lapa
et al., Phys. Rev. B 95, 035149 (2017)] we argued that the boundary of the BTI phase exhibits a global anomaly
which is an analog of the parity anomaly of Dirac fermions in three dimensions. Here, we elevate this argument
to a proof for the boundary of the two-dimensional BTI state by explicitly computing the partition function
of the gauged NLSM describing the boundary. We then use the powerful equivariant localization technique to
show that this global anomaly is robust against all smooth deformations of the target space of the NLSM which
preserve the U(1) � Z2 symmetry of the BTI state. We also comment on the difficulties of generalizing this
latter proof to higher dimensions. Finally, we discuss the expected low-energy behavior of the boundary theories
studied in this paper when the coupling constants are allowed to flow under the renormalization group.
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I. INTRODUCTION

In the past few years it was realized that a powerful way
to understand symmetry-protected topological (SPT) phases
with symmetry group G in d (space-time) dimensions is to
study ‘t Hooft anomalies of (d − 1)-dimensional theories with
global G symmetry [1–4]. A theory with global G symmetry
has a ‘t Hooft anomaly if it cannot be consistently coupled to
a background gauge field A for the symmetry group G [5].
It is often the case that an anomalous (d − 1)-dimensional
theory can be realized in a gauge-invariant manner at the
boundary of a d-dimensional SPT phase. In that case, the
anomaly of the boundary theory is canceled by the gauge
variation of the bulk effective action for the SPT phase. This
cancellation mechanism is known as anomaly inflow [6]. It is
likely that all bulk-boundary correspondences in SPT phases
can be understood through some version of the anomaly inflow
mechanism, but perhaps involving global anomalies instead of
the perturbative anomalies originally studied in Ref. [6].

It is clear from the discussion above that characterizing
boundary anomalies offers a precise way to understand the
bulk-boundary correspondence in SPT phases, topological
insulators, and related systems. For example, the presence of a
single chiral fermion at the edge of the ν = 1 integer quantum
Hall state in 2 + 1 dimensions (and also the single chiral
boson at the edge of the Laughlin states) can be understood
very simply using anomaly inflow arguments [7,8]. This chiral
fermion is needed to cancel the gauge variation of the bulk
Chern-Simons term1

SCS[A] = 1

4π

∫
X

A ∧ dA, (1.1)
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which describes the response of the integer quantum Hall
state to an external electromagnetic field A = Aμdxμ. We
also note that anomaly inflow has been discussed for analogs
of the integer quantum Hall state in all odd space-time
dimensions [9].

A related, but much more subtle, example of anomaly inflow
occurs in time-reversal-invariant, free-fermion topological
insulators in 3 + 1 dimensions [10,11]. In Ref. [12], Witten
has shown (among other results) that the bulk-boundary cor-
respondence in this system can be understood very precisely
in terms of the parity anomaly of a Dirac fermion with U(1)
and time-reversal symmetry in 2 + 1 dimensions [13–16]. The
parity anomaly is intimately related to the Atiyah-Potodi-
Singer index theorem [17–19] for the Dirac operator on an
even-dimensional manifold with boundary (see Ref. [15] for
the relation), and this connection was a central theme in
Ref. [12]. The connection between the parity anomaly and the
boundary theory of the topological insulator, and in particular
the fact that the bulk and boundary together are gauge invariant,
was also previously discussed in Ref. [20].

In a separate series of developments, bosonic analogs of
the integer quantum Hall and topological insulator states were
introduced and studied in detail in the SPT literature. The
bosonic integer quantum Hall (BIQH) state is an SPT phase
of bosons with U(1) symmetry in 2 + 1 dimensions [21–31].
It is characterized by a Hall conductance which is an even
integer (in units of e2

h
). On the other hand, the bosonic

topological insulator (BTI) state is an SPT phase of bosons
with U(1) symmetry and Z2 time-reversal symmetry in
3 + 1 dimensions [32–35]. It is characterized by a bulk

1We use differential form notation and work in a system of units
where h̄ = e = c = 1.
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electromagnetic response of the “Chern character” type

SCC[A] = �

8π2

∫
X

F ∧ F, (1.2)

with coefficient � = 2π . In a recent work, the present authors
computed the electromagnetic response of generalizations of
the BIQH and BTI states to all odd and even space-time
dimensions, respectively [36].

Given these separate developments, a natural next step
would be to give a precise characterization of the anomalies at
the boundaries of the BIQH and BTI states. In Ref. [36], we
initiated such a program. There, we used a nonlinear sigma
model (NLSM) description [37–47] of the boundary of the
BIQH state in odd dimensions to compute the perturbative
U(1) anomaly of the boundary theory. Our result implied that
the electromagnetic response of the bulk of a BIQH state
in 2m − 1 dimensions is characterized by a Chern-Simons
term2 with level N2m−1 = (m!)k, k ∈ Z, where the value k = 1
represents the fundamental BIQH state.

In Ref. [36], we also argued that the boundary theory of
the 2m-dimensional BTI state exhibits a bosonic analog of the
well-known parity3 anomaly of Dirac fermions in three di-
mensions. Our argument was based on a demonstration (again
using a NLSM description) that the boundary of the BTI state
can exhibit a Z2 symmetry-breaking electromagnetic response
described by a Chern-Simons term with level N2m−1 = m!

2
for the external field A. Since this boundary response is
half the response of the fundamental BIQH state in 2m − 1
dimensions, we argued, by analogy with the case of a massless
Dirac fermion (with Hall conductance = Chern-Simons level
= 1

2 ) on the surface of the (3 + 1)-dimensional topological
insulator [10,11], that the boundary theory of the BTI displays
a bosonic analog of the parity anomaly.

In this paper, we continue this program of characterizing
anomalies at the boundary of BIQH and BTI states. In the first
part of the paper we revisit the perturbative U(1) anomaly at the
boundary of (2m − 1)-dimensional BIQH states. In Ref. [36]
we computed this anomaly by gauging the Wess-Zumino (WZ)
term in an O(2m) NLSM description of the boundary of the
BIQH state. In any NLSM, the field is a map from space-time
to a manifold M, known as the target space of the NLSM.
In the O(2m) NLSM, the target space is just the (2m − 1)-
dimensional unit sphere S2m−1, and the NLSM field n is a
2m-component unit vector. This particular NLSM description
possesses a SO(2m) global symmetry, which is much larger
than the U(1) symmetry required to protect the BIQH state.
One might then wonder if (perhaps) more realistic models
of the BIQH boundary can be found which still possess the
correct perturbative U(1) anomaly, but have only the U(1)

2See Eq. (2.1) for our normalization of the Chern-Simons term in
2m − 1 dimensions.

3As we explained in Ref. [36], in space-time dimensions 2m with m

odd the Z2 symmetry of the BTI state is a unitary charge-conjugation
symmetry and not time-reversal symmetry. For these cases, the word
“parity” is not a very good description of the symmetry which is
anomalous. However, for ease of presentation we will continue to
refer to the global anomalies discussed here as “bosonic analogs of
the parity anomaly”.

global symmetry of the BIQH state. In this paper we show that
a large family of such models do indeed exist by proving the
following result.

Let M be any (2m − 1)-dimensional manifold which can be
reached from S2m−1 by smooth deformations which preserve
the U(1) symmetry of the BIQH phase [i.e., we have a
diffeomorphism f : M → S2m−1 which is equivariant with
respect to the U(1) symmetry]. Then, a description of the
boundary of the BIQH state using a NLSM with target spaceM
has the same perturbative U(1) anomaly as the O(2m) NLSM
description.

In the second part of the paper, we revisit the bosonic analog
of the parity anomaly at the boundary of the BTI states.
In the simplest case of the BTI state in two space-time
dimensions we are able to compute the partition function
of the gauged boundary theory exactly. The BTI state in
two dimensions has the symmetry group G = U(1) � Z2,
where Z2 represents a unitary charge-conjugation symmetry.
Our exact computation of the boundary partition function
shows that the boundary of the BTI does indeed exhibit
a bosonic analog of the global anomaly of Dirac fermions
in 0 + 1 dimensions which also have U(1) symmetry and
Z2 charge-conjugation symmetry [48]. We first compute this
anomaly within the O(3) NLSM description (with target space
S2) of the BTI boundary which we previously used in Ref. [36].
Based on this calculation, one might again wonder if a more
realistic model of the BTI boundary can be found which
has the same global anomaly, but which possesses only the
G = U(1) � Z2 symmetry of the BTI state and not the full
SO(3) symmetry of the O(3) NLSM. We again show that such
models do exist by proving the following result.

LetM be any two-dimensional manifold which can be reached
from S2 by smooth deformations which preserve the full
G = U(1) � Z2 symmetry of the BTI state (i.e., we have
a diffeomorphism f : M → S2 which is equivariant with
respect to the action of the group G). Then, a description of the
boundary of the BTI state using a NLSM with target space M
has the same global anomaly as the O(3) NLSM description.

To prove this result, we use the powerful equivariant localiza-
tion technique originally developed for the exact computation
of certain phase-space path integrals [49–53]. Whereas for the
perturbative anomaly we are able to extend our proof to any
space-time dimension, the calculation for global anomalies
becomes challenging in higher dimensions and is not easily
extendable. We comment on this difficulty later, and discuss
possible alternative approaches.
As in our previous work [36], gauged WZ actions play a central
role in the calculations in this paper. Gauging WZ actions, and
also obstructions to gauging these actions (i.e., anomalies),
have been discussed previously in Refs. [54–61]. Since we
consider two kinds of anomalies in this paper (perturbative
and global), it is important for us to explain at the outset how
exactly our anomalies are related to obstructions to gauging a
WZ action. For the perturbative U(1) anomalies that we study,
the anomaly that we find is a direct result of the existence of
an obstruction to gauging the WZ action. Therefore, these
anomalies are already present at the level of the classical
action for these theories. On the other hand, for the global
anomalies that we study there is no obstruction to gauging the
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U(1) symmetry of the WZ action. Instead, the anomaly is a
completely quantum effect which stems from an inability to
regulate the theory in such a way as to preserve both large U(1)
gauge invariance, and the additional discrete Z2 symmetry of
the theory.
This paper is organized as follows. In Sec. II we analyze
perturbative U(1) anomalies at the even-dimensional boundary
of BIQH states in generic odd space-time dimensions. In
Sec. III we analyze the global anomaly at the (0 + 1)-
dimensional boundary of the (1 + 1)-dimensional BTI state.
In Sec. IV we comment on the expected behavior of the
boundary theories studied in this paper under renormalization
group flows. In Sec. V we present our conclusions. In
Appendix A we review the form of the phase-space path
integral for Hamiltonian systems on a general phase space M
equipped with symplectic form ω. In Appendix B we give a
brief introduction to the equivariant localization technique for
phase-space path integrals. Finally, in Appendix C we present
the detailed calculations of the regularized determinants which
appear in the expression (obtained from the equivariant
localization technique) for the partition function of the BTI
boundary.

II. PERTURBATIVE ANOMALIES IN BOSONIC INTEGER
QUANTUM HALL STATES

In this section we study perturbative U(1) anomalies at
the boundary of a class of bosonic SPT phases in odd
space-time dimensions which are protected by the symmetry
of the group G = U (1). We refer to these phases as bosonic
integer quantum Hall (BIQH) states. They are all higher-
dimensional generalizations of the (2 + 1)-dimensional BIQH
state introduced in Ref. [21]. Upon coupling to a background
U(1) gauge field A = Aμdxμ, the boundary of these states
exhibits a perturbative U(1) anomaly. For the BIQH phase in
2m − 1 dimensions, the anomaly of the boundary is such that
it can be compensated by a bulk Chern-Simons (CS) term

SCS[A] = N2m−1

(2π )m−1m!

∫
X

A ∧ (dA)m−1 (2.1)

with the level N2m−1 of the CS term quantized in integer
multiples of m! (factorial). Here, X denotes the (2m − 1)-
dimensional bulk space-time. We computed this anomaly in
Ref. [36] using a NLSM description of the boundary theory
of the BIQH state. Specifically, we modeled the boundary
using an O(2m) NLSM with Wess-Zumino (WZ) term, with a
particular action of the group U(1) on the NLSM field. The field
in this model is a 2m-component unit vector n = (n1, . . . ,n2m),
and so the target space of the O(2m) NLSM is the (2m − 1)-
dimensional unit sphere S2m−1.

In this section we first recall the result of Ref. [36], and
we also show that the anomaly computed there is well defined
in the sense that it is independent of a certain freedom in
the specific form of the terms appearing in the gauged WZ
action for the boundary theory. We then consider alternative
descriptions of the BIQH state using NLSMs with a general
target space M, and we prove that if M can be obtained
from S2m−1 by smooth deformations which preserve the U(1)
symmetry of the BIQH state, then the anomaly of the NLSM
theory with target space M is identical to the anomaly of the

O(2m) NLSM theory. Later in the paper, in Sec. IV, we discuss
the expected low-energy behavior of the NLSMs discussed in
this section.

The results of this section prove that the anomaly computed
in Ref. [36] is robust against arbitrary smooth, symmetry-
preserving deformations of the NLSM used to describe the
boundary of the BIQH state. This is exactly what one hopes
for in a model of an SPT phase: smooth, symmetry-preserving
deformations of a model of an SPT phase should not affect
the ability of that model to capture the universal properties of
the SPT phase, provided that the deformations do not take one
across a phase boundary. We also note here that in Ref. [36]
we gave a more general gauge-invariance argument for the
quantization of the level N2m−1 of the CS term describing the
bulk response of the BIQH state. That argument also implies
that the boundary anomaly is robust and independent of the
specific details of any particular model of the boundary of
the BIQH state. Therefore, the results of this section could
have been anticipated from the gauge-invariance argument in
Ref. [36]. However, it is also instructive to have an explicit
proof of this invariance for the class of NLSM descriptions of
the boundary considered here.

A. Review of O(2m) NLSM calculation of the anomaly

We start by reviewing the calculation of the boundary
anomaly of the BIQH state using the O(2m) NLSM descrip-
tion. The boundary of the (2m − 1)-dimensional BIQH state
can be described by an O(2m) NLSM with WZ term. Let Xbdy

denote the (2m − 2)-dimensional boundary space-time. As we
discussed above, the NLSM field n = (n1, . . . ,n2m) should be
understood as a map n : Xbdy → S2m−1 from the boundary
space-time Xbdy to the target space of the NLSM, which is just
the unit sphere S2m−1 in this case.

The WZ term for the NLSM requires the following
ingredients for its construction. First, we need the volume form
ω2m−1 on S2m−1. In terms of the coordinates na , a = 1, . . . ,2m,
it takes the form

ω2m−1 =
2m∑
a=1

(−1)a−1nadn1 ∧ · · · ∧ dna ∧ · · · dn2m, (2.2)

where the overline means to omit that term from the wedge
product. Next, we need an extension B of the boundary
space-time Xbdy such that ∂B = Xbdy , where ∂B denotes the
boundary of B. Finally, we need an extension ñ of the NLSM
field n into the bulk of B such that ñ|∂B = n. The extended
field ñ should be viewed as a map ñ : B → S2m−1. Then, the
WZ term for the O(2m) NLSM on the (2m − 2)-dimensional
boundary space-time Xbdy takes the form

SWZ[n] = 2πk

A2m−1

∫
B

ñ∗ω2m−1, (2.3)

where k ∈ Z is the level of the WZ term and A2m−1 =
Area[S2m−1] = 2πm

(m−1)! . Here, the notation ñ∗ω2m−1 denotes the

pullback of the volume form ω2m−1 on S2m−1 to the extended
boundary space-time B via the map ñ : B → S2m−1.

The WZ term can be written in a more familiar form if
we introduce a system of local coordinates (s,x0, . . . ,x2m−3)
on B, where (x0, . . . ,x2m−3) are a system of local coordinates
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on Xbdy , and where s ∈ [0,1] is a coordinate for the extra
direction inB. We choose boundary conditions on the extended
field configuration such that ñ is equal to a trivial constant

configuration at s = 0, and ñ = n at s = 1. Hence, the
physical boundary space-time Xbdy is located at s = 1. In
these coordinates, the WZ term takes the more explicit form

SWZ[n] = 2πk

A2m−1

∫ 1

0
ds

∫
d2m−2x εa1...a2m

ña1∂sñ
a2∂x0 ña3 . . . ∂x2m−3 ña2m, (2.4)

where we sum over all indices which appear once as a subscript
and once as a superscript (the standard summation notation).
In addition to the WZ term, the action for the O(2m) NLSM
also includes a conventional kinetic term

Skin[n] = 1

2f

∫
d2m−2x (∂μn) · (∂μn), (2.5)

where f is a coupling constant with dimensions of (mass)4−2m

(the power is equal to two minus the boundary space-time
dimension).

The action of the U(1) symmetry that protects the BIQH
state on the NLSM field is best described by first pairing
the components of n into m “bosons” b� = n2�−1 + in2�,
� = 1, . . . ,m. Then, for the NLSM model of the BIQH phase,
the U(1) symmetry can be defined to act on these bosons
as [21,36]

U(1) : b� → eiξ b�, ∀ �. (2.6)

Let us briefly explain the rationale for this choice of the U(1)
action. In the NLSM description of bosonic SPT phases from
Ref. [37], the information about the symmetry group G is
encoded in a homomorphism σ : G → SO(2m) (in the case of
unitary symmetries which have trivial action on space-time).
The NLSM equipped with the homomorphism σ will describe
a trivial phase if there exists a vector v such that σ (g)v = v,
∀ g ∈ G. This is because in this case it is possible to add a
“Zeeman” term n · v to the NLSM action to drive the NLSM
into a trivial direct product state in which n is parallel or
antiparallel to v at all points in space. Therefore, we must
choose a homomorphism σ where no such vector v exists if we
want our NLSM to describe a nontrivial SPT phase with U(1)
symmetry. Mathematically, the problem is to embed U(1) ∼=
SO(2) inside the maximal torus of SO(2m) in such a way that
no vector v is fixed under the action of σ (g) ∀ g ∈ U(1). The
unique solution to this problem,4 modulo trivial permutations
of the components na in the definition of the bosons b�, is the
one in Eq. (2.6).

Next, we couple the NLSM describing the boundary of the
BIQH state to a background U(1) gauge field A = Aμdxμ,
and attempt to construct an action which is invariant under the
gauge transformation

b� → eiξ b�, ∀ �

A → A + dξ, (2.7)

where ξ is now a function of the boundary space-time
coordinates. This gauge transformation can be recast in a more

4More precisely, this is the unique solution if we demand that the
fundamental particles in the model carry unit electric charge.

geometric form using the vector field v = va ∂
∂na which gen-

erates the action of the U(1) symmetry on S2m−1. Concretely,
this means that under an infinitesimal U(1) transformation, the
coordinates on S2m−1 transform as

na → na + ξva. (2.8)

For the U(1) symmetry action defined in Eq. (2.6), the vector
field v takes the form

v =
m∑

�=1

(
−n2� ∂

∂n2�−1
+ n2�−1 ∂

∂n2�

)
. (2.9)

This transformation of the coordinates also induces a transfor-
mation for general p-forms β on S2m−1,

β → β + Lξvβ, (2.10)

where Lv = div + ivd is the Lie derivative (acting on differ-
ential forms) along v, and iv is the interior multiplication by v

(d is the ordinary exterior derivative).
To simplify the presentation of the gauged WZ action, it is

best to work with a more compact notation. Let us define the
normalized volume form α(2m−1) = ω2m−1

A2m−1
so that the WZ term

can be written as

SWZ[n] = 2πk

∫
B

ñ∗α(2m−1). (2.11)

The derivation of the gauged WZ action is somewhat technical,
and so we refer the reader to Ref. [36] for details. In Ref. [36]
we showed that the gauged WZ action for the O(2m) NLSM
takes the form

SWZ,gauged[n,A]

= SWZ[n] + 2πk

m−1∑
r=1

∫
Xbdy

A ∧ F r−1 ∧ n∗α(2m−1−2r),

(2.12)

where the α(2m−1−2r) are a set of differential forms on S2m−1

of degree 2m − 1 − 2r , r = 1, . . . ,m − 1, which have a form
that we now discuss.

First, for each � = 1, . . . ,m, we define one-forms J� and
two-forms K� on S2m−1 by

J� = n2�−1dn2� − n2�dn2�−1, (2.13a)

K� = dn2�−1 ∧ dn2�. (2.13b)

Then, for each r = 0, . . . ,m − 1, we define the forms (r)

by

(r) =
m∑

�1,...,�m−r=1

J�1 ∧ K�2 ∧ · · · ∧ K�m−r
. (2.14)
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In particular, (r) is a form of degree 2m − 1 − 2r and the
volume form can be expressed in terms of (0) as ω2m−1 =

1
(m−1)!

(0). One can show that these forms obey the relation

iv
(r) = 1

2d(r+1), (2.15)

and this relation allows for the construction of the gauged WZ
action. In terms of these forms, the forms α(2m−1−2r) appearing
in the gauged WZ action are given by

α(2m−1−2r) = 1

A2m−1

1

(m − 1)!

1

2r
(r). (2.16)

This collection of forms obeys the set of equations

ivα
(2m−1−2r) = dα(2m−1−2r−2), r = 0, . . . ,m − 2, (2.17)

and

ivα
(1) = 1

A2m−1

1

(m − 1)!

1

2m−1
. (2.18)

Since A2m−1 = 2πm

(m−1)! , we can rewrite the equations satisfied

by the α2m−1−2r as

ivα
(2m−1−2r) = dα(2m−1−2r−2), r = 0, . . . ,m − 2, (2.19a)

ivα
(1) = 1

(2π )m
. (2.19b)

Under a U(1) gauge transformation b� → eiξ b�, A → A +
dξ , the gauged WZ action for the O(2m) NLSM transforms as

δξSWZ,gauged[n,A] = k

∫
Xbdy

ξ

(
F

2π

)m−1

. (2.20)

In the O(2m) NLSM description of the boundary of the BIQH
state, this anomaly of the gauged WZ term implies that the
topological electromagnetic response of the bulk of the BIQH
state is described by a CS term with level N2m−1 = −(m!)k,
i.e., the level must be an integer multiple of m!. By inspecting
the individual terms in the gauged WZ action, one can see
that the anomaly in Eq. (2.20) is completely determined by
the value of ivα

(1) as shown in Eqs. (2.19). This is because
Eq. (2.19a) guarantees that the transformation of the form
α(2m−1−2r) in the rth term in Eq. (2.12) is canceled by the
transformation of the gauge field A in the (r + 1)th term.
This means that the final anomaly only depends on the
transformation of α(1) in the (m − 1)th term (i.e., the last term).
It turns out that the equations which define the form α(1) do not
have a unique solution, and in the computation above we have
chosen a particular solution. We now show that although there
is an ambiguity in the choice of solution for α(1), the anomaly
of the gauged action is not affected by this ambiguity.

B. Uniqueness of the anomaly

In the previous subsection, we showed that the anomaly of
the O(2m) NLSM with WZ term is completely determined by
the one-form α(1) which appears in the final term of the gauged
WZ action, and we also mentioned that α(1) is not unique. If we
are to ascribe any physical meaning to the anomaly computed
in the last subsection, then we need to make sure that the
anomaly is not affected by the ambiguity in the choice of the

form α(1). In this section, we prove that the anomaly is well
defined even though the choice of α(1) is not unique.

We start by precisely characterizing the ambiguity in the
choice of the one-form α(1). According to Eqs. (2.19), this
form should satisfy the equation

ivα
(3) = dα(1). (2.21)

However, for a given three-form α(3), the solutions to this
equation for α(1) are not unique. To see this, let us fix a choice
of α(3) (and also α(5), . . . ,α(2m−3)) and suppose that we have
two solutions α(1) and α̃(1) to Eq. (2.21). If we subtract the
equation for α(1) from the equation for α̃(1), then we find that
these two forms are related by the equation

d(α̃(1) − α(1)) = 0, (2.22)

i.e., the difference α̃(1) − α(1) is a closed form on S2m−1.
However, on the sphere S2m−1 all closed one-forms are also
exact,5 which means that we have

α̃(1) − α(1) = dγ (0) (2.23)

for some function γ (0) on S2m−1.
We now want to understand the possible dependence of the

anomaly on the function γ (0) which parametrizes the ambiguity
in the solution for α(1). Therefore, we should compare the
gauged WZ action constructed using α(1) with the gauged WZ
action constructed using α̃(1) (but keeping all other terms in
the action the same). Let SWZ,gauged[n,A] be the gauged WZ
action constructed using the form α(1), and let S̃WZ,gauged[n,A]
be the gauged WZ action constructed from the form α̃(1). These
actions differ by a single term

S̃WZ,gauged[n,A] − SWZ,gauged[n,A]

= 2πk

∫
Xbdy

A ∧ Fm−2 ∧ n∗dγ (0)

= 2πk

∫
Xbdy

n∗γ (0) Fm−1, (2.24)

where we rearranged the forms and performed an integration
by parts to derive the second equality. Under a gauge
transformation, this difference transforms as

δξ S̃WZ,gauged[n,A] − δξSWZ,gauged[n,A]

= 2πk

∫
Xbdy

n∗(Lξvγ
(0)) Fm−1. (2.25)

However, since γ (0) is a function, we have

Lξvγ
(0) = d(ξ ivγ

(0)) + ξ ivdγ (0)

= ξ ivdγ (0) = ξLvγ
(0), (2.26)

where we used the fact that ivγ
(0) = 0. Then, the difference of

gauge transformations reduces to

δξ S̃WZ,gauged[n,A] − δξSWZ,gauged[n,A]

= 2πk

∫
Xbdy

ξ n∗(Lvγ
(0)) Fm−1. (2.27)

5On S2m−1 the de Rham cohomology groups Hr
dR(S2m−1) are trivial

for r = 1, . . . ,2m − 2.
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We can now make the following observation. The gauged
action SWZ,gauged[n,A] constructed using α(1) from Eq. (2.16)
still possesses global U(1) symmetry and, in particular, is
invariant under the transformation b� → eiξ b� for an infinites-
imal constant parameter ξ . However, the above considerations
show that under the same infinitesimal U(1) transformation,
the gauged action S̃WZ,gauged[n,A] constructed from α̃(1) will
transform as

δξ S̃WZ,gauged[n,A] = 2πkξ

∫
Xbdy

n∗(Lvγ
(0)) Fm−1. (2.28)

Now, even if the gauged WZ action cannot be made to be
invariant under U(1) gauge transformations, we should still
require it to be invariant under global U(1) transformations.
Therefore, we must demand that for any alternative solution
α̃(1) to Eq. (2.21), the function γ (0) relating this form to α(1)

from Eq. (2.16) should satisfy

Lvγ
(0) = 0, (2.29)

i.e., this function should be invariant under the action of the
U(1) symmetry on S2m−1. Then, since we have the relation
Lξvγ

(0) = ξLvγ
(0) for any function γ (0) and any space-time-

dependent ξ , we immediately find that the anomaly of the
gauged WZ action is not sensitive to the ambiguity in the
choice of α(1). In other words, the requirement that the gauged
WZ action should still possess global U(1) symmetry is enough
to ensure that the anomaly of the gauged action is well defined
and independent of the ambiguity in the choice of α(1).

C. Deforming the target space

Now that we know that the anomaly in Eq. (2.20) is well
defined, we can move on and study how deformations of the
target space of the NLSM might affect the anomaly. Recall
that we previously derived this anomaly using the O(2m)
NLSM with target space S2m−1. In this section, we show that
this anomaly is not affected by arbitrary smooth, symmetry-
preserving deformations of the target space of the NLSM.
The notion of a smooth, symmetry-preserving deformation
of the target space can be formulated precisely in terms of
diffeomorphisms which are equivariant with respect to the
symmetry action, as we discuss below.

In the NLSM description of the BIQH state, the target space
S2m−1 of the O(2m) NLSM is equipped with an action of the
group U(1). For any g ∈ U(1) let us write g · n to denote the
image of the point n ∈ S2m−1 under the action of the group
element g. As we discussed above, the U(1) action on S2m−1

is generated by the vector field v in the sense that na → na +
ξva under an infinitesimal U(1) transformation parametrized
by ξ . Now, suppose that M is another (2m − 1)-dimensional
manifold with the following properties.

(1) There is a U(1) action on M generated by a vector
field w.

(2) There exists a Riemannian metric on M for which w

is a Killing vector.
(3) There exists a diffeomorphism f : M → S2m−1 which

is equivariant with respect to the U(1) action, i.e.,

g · f (m) = f (g · m) , ∀ m ∈ M , ∀ g ∈ U (1). (2.30)

Intuitively, these properties imply that the manifold M also
has a U(1) symmetry, and that it can be reached from S2m−1

(or vice versa) by smooth deformations which respect the U(1)
symmetry. We now show that for any such manifold M the
NLSM with target space M, WZ term at level k, and U(1)
action generated by w possesses the exact same perturbative
U(1) anomaly as the O(2m) NLSM with WZ term at level k.

Before presenting the proof, we first discuss some conse-
quences of the three properties of the map f . First, properties
(1) and (2) together imply that we can construct a WZ term
for the NLSM with target space M with the property that the
WZ term is invariant under the U(1) transformation generated
by w [we construct the WZ term using the volume form on
M determined by its U(1)-symmetric Riemannian metric].
Next, the first part of property (3), namely, the fact that
f : M → S2m−1 is a diffeomorphism, implies that the de
Rham cohomology groups of M and S2m−1 are identical. In
addition, the fact that f is a diffeomorphism implies that the
degree of f , defined via the equation

1

A2m−1

∫
M

f ∗ω2m−1 = deg[f ]
1

A2m−1

∫
S2m−1

ω2m−1

= deg[f ], (2.31)

is equal to plus or minus one, deg[f ] = ±1 (see Chap. VI
of Ref. [62] for the definition of the degree of a smooth
map). Intuitively, this means that the map f “wraps” M
around S2m−1 only once. This has to be the case since f is
injective (f is invertible so it is both injective and surjective).
In what follows, we assume deg[f ] = 1 so that f is orientation
preserving. This then implies that

f ∗
(

ω2m−1

A2m−1

)
= ωM

AM
, (2.32)

where ωM is the volume form on M determined by its
Riemannian metric, and AM = ∫

M ωM is the area of M.
Next, properties (1) and (3) together imply that

v = f∗w, (2.33)

i.e., the vector field v which generates the U(1) action on
S2m−1 is equal to the push forward, via the map f , of the
vector field w that generates the U(1) action on M. This can
be verified by expanding out both sides of Eq. (2.30) for an
element g ∈ U(1) which is close to the identity. This property
implies the following relation, which is central to the proof in
this section. If α is a differential form on S2m−1, then we have

iw(f ∗α) = f ∗(ivα). (2.34)

This relation implies that the action of interior multiplication
commutes with the action of taking the pullback, provided that
we use iw when acting on forms on M and iv when acting on
forms on S2m−1. Again, this relation holds because under our
assumptions the vector field v is equal to the push forward of
w by the map f .

Now, let us consider an alternative description of the
boundary of a BIQH state in terms of a NLSM with target
space M, where M satisfies the three properties stated above.
The field in this NLSM theory, which we denote by m, is
a map from the boundary space-time to the manifold M,
m : Xbdy → M. We also assume that the transformation of
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the NLSM field m under the U(1) symmetry of the BIQH
state is determined by the U(1) action on M generated by
the vector field w. For example, under an infinitesimal U(1)
transformation parametrized by ξ we have ma → ma + ξwa ,
∀ a. The WZ term for this NLSM is constructed in the same
way as for the NLSM with target space S2m−1. We start with a
volume form ωM on M which we assume is obtained from a
U(1)-symmetric Riemannian metric on M6 [which exists by
our assumption (2) above]. We denote the normalized volume
form on M by β(2m−1) = ωM

AM
, where AM = ∫

M ωM. We also
need an extension m̃ of the NLSM field m into the extended
boundary space-time B such that m̃|∂B = m. In terms of these
quantities, the WZ term for the NLSM with target space M
can be written in the compact form

SWZ[m] = 2πk

∫
B

m̃∗β(2m−1). (2.35)

We can now attempt to couple SWZ[m] to the gauge field A

and study the perturbative anomaly of the gauged action. We
find that the gauged WZ term for the NLSM with target space
M takes the form

SWZ,gauged[m,A]

= SWZ[m] + 2πk

m−1∑
r=1

∫
Xbdy

A ∧ F r−1 ∧ m∗β(2m−1−2r),

(2.36)

where the forms β(2m−1−2r) onM are obtained by pulling back
the forms α(2m−1−2r) on S2m−1 which appear in the gauged WZ
action for the O(2m) NLSM,

β(2m−1−2r) = f ∗α(2m−1−2r). (2.37)

The explicit form of α(2m−1−2r) was given above in Eq. (2.16).
Using Eq. (2.34) and the fact that the pullback operation
commutes with the exterior derivative, we find that the forms
β(2m−1−2r) for r = 0,1, . . . ,m − 1, obey the set of equations

iwβ(2m−1−2r) = dβ(2m−1−2r−2), r = 0, . . . , m − 2 (2.38a)

iwβ(1) = 1

(2π )m
. (2.38b)

These equations are identical to Eqs. (2.19) but with v replaced
by w and α(2m−1−2r) replaced by β(2m−1−2r). The form of these
equations implies that the NLSM theory with target space M
has the exact same perturbative U(1) anomaly as the O(2m)
NLSM with target space S2m−1. In addition, our argument for
the uniqueness of the anomaly from the previous subsection
also applies to the theory with target space M. This follows
from the fact that the de Rham cohomology groups of M are
identical to those of S2m−1 as a consequence of our assumption

6Although we did not discuss it explicitly, our earlier construction
of the WZ term for the O(2m) NLSM also required a U(1)-symmetric
Riemannian metric for S2m−1. In particular, the volume form ω2m−1

is the volume form on S2m−1 which is obtained from the natural
Riemannian metric on S2m−1 induced by the embedding of S2m−1 in
R2m. The U(1) symmetry of this metric then implied that the O(2m)
NLSM with WZ term possessed a global U(1) symmetry.

(3). Therefore, we have shown that the perturbative U(1)
anomaly at the boundary of the BIQH state is robust against
arbitrary smooth, symmetry-preserving deformations of the
target space of the NLSM used to describe the BIQH state.

III. GLOBAL ANOMALIES IN BOSONIC TOPOLOGICAL
INSULATOR STATES

In this section, we study global anomalies at the boundary
of a class of bosonic SPT phases which exist in even space-
time dimensions and are protected by the symmetry of the
group G = U(1) � Z2. We refer to these phases as bosonic
topological insulator (BTI) phases. They are generalizations to
all even-dimensional space-times of the BTI phase introduced
in Ref. [32]. Note also that the system of bosons studied in
Ref. [63] can be considered to be an example of a (1 + 1)-
dimensional BTI state according to our definition. In all cases,
the U(1) symmetry represents a physical charge conservation
symmetry, however, the character of theZ2 symmetry depends
on the specific dimension of space-time. Let the bulk space-
time dimension be 2m for a positive integer m. Then, for m odd
the Z2 symmetry is a unitary charge-conjugation symmetry,
while for m even the Z2 symmetry is an antiunitary time-
reversal symmetry.

In Ref. [36] we argued that the boundary theory of the
2m-dimensional BTI state exhibits a bosonic analog of the
parity anomaly of a Dirac fermion in odd dimensions. Our
argument was based on the form of the gauged WZ action
in an O(2m + 1) NLSM description of the boundary of these
phases. Specifically, we showed that if the NLSM field on the
boundary of the BTI condensed in such a way as to break
the Z2 symmetry but preserve the U(1) symmetry of the BTI
phase, then the boundary would exhibit a BIQH response with
half-quantized CS coefficient N2m−1 = m!

2 . We then argued by
analogy with the free-fermion topological insulator [10,11]
that this half-quantized BIQH response indicated that the
boundary of the BTI phase displays a bosonic analog of the
parity anomaly.

In this section, we make this reasoning precise in the special
case of the BTI state in 1 + 1 space-time dimensions. In this
case, we are able to compute the boundary partition function
exactly, and the global anomaly can be seen clearly from our
exact result. We start by reviewing the form of the O(3) NLSM
action which describes the (0 + 1)-dimensional boundary of
this BTI state, including the form of the gauged WZ action
which describes the boundary theory coupled to the external
gauge field A [36]. We then explicitly compute the boundary
partition function and show that it cannot retain both the
Z2 symmetry of the BTI and large U(1) gauge invariance,
i.e., the boundary theory possesses a global anomaly in the
Z2 symmetry of the BTI state. We then consider arbitrary
smooth, symmetry-preserving deformations of the target space
of the NLSM used to describe the BTI, and we use the
powerful equivariant localization (EL) technique to show that
the boundary partition function and the global anomaly are
robust against such deformations of the model. We also note
here that the global anomaly computed in this section is very
similar to the global anomaly computed in Ref. [48] for a single
Dirac fermion in (0 + 1) dimensions with U(1) symmetry and
unitary Z2 charge-conjugation symmetry.
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A. BTI state in 1 + 1 dimensions and its O(3) NLSM description

The BTI state in 1 + 1 dimensions is an SPT phase of
bosons with symmetry group G = U(1) � Z2, where U(1)
represents charge conservation and Z2 is a unitary charge-
conjugation (or particle-hole) symmetry. The semidirect prod-
uct “�” indicates that the U(1) and Z2 symmetries do not
commute with each other. The physical signature of the BTI
state is that a fractional charge of ± 1

2 (in units of the boson
charge) is bound at an interface between the BTI state and
the vacuum (or a trivial state). One possible model for the
bulk of the BTI state is an O(3) NLSM with theta term and
coefficient θ = 2πk, k ∈ Z [37]. The boundary of the BTI
state is then described by the same NLSM but with a WZ term
at level k. In 1 + 1 dimensions, SPT phases with the symmetry
group G = U(1) � Z2 have a Z2 classification, meaning that
there is only a single nontrivial phase [37,64]. This single
nontrivial phase is the BTI state. Within the NLSM description,
the NLSM for any odd k represents the nontrivial BTI state,
while the model for any even k represents the trivial state.

In the O(3) NLSM description, the field is a unit vector
field n with components na , a = 1,2,3. The target space of
the O(3) NLSM is the unit two-sphere S2. As in Sec. II, the
action of the symmetry group G = U(1) � Z2 of the BTI on
the NLSM field is best expressed by first combining n1 and n2

into the “boson” field b = n1 + in2. Then, for the BTI state,
the action of G on the NLSM field is given by (see Sec. IV.D
of Ref. [37])

U(1) : b → eiξ b (3.1)

and

Z2 : b → b∗, (3.2a)

n3 → −n3. (3.2b)

Since the Z2 symmetry is unitary, the transformation b → b∗
is equivalent to n1 → n1, n2 → −n2. We can interpret b as
the field which annihilates a boson of charge 1, and n3 can
be interpreted as the deviation of the boson density from a
nonzero constant value.

The theta term and the WZ term for the O(3) NLSM are
both expressed in terms of the volume form ω2 on S2,

ω2 = n1dn2 ∧ dn3 − n2dn1 ∧ dn3 + n3dn1 ∧ dn2. (3.3)

In what follows, we use A2 = 4π to denote the surface area of
S2 (and

∫
S2 ω2 = A2). In this paper, we are only interested

in the boundary theory of the BTI, and so we focus our
attention on the WZ term. The boundary theory lives in one
space-time dimension. To make our discussion as precise as
possible, we take the time coordinate (the only coordinate
here) to lie in the interval t ∈ [0,T ), and we impose periodic
boundary conditions in the time direction. This makes our
one-dimensional space-time into a circle of circumference
T . Let us denote the one-dimensional space-time by S1

T (the
circle of circumference T ). Constructing the WZ term requires
extending the space-time into a two-dimensional space-time
B such that ∂B = S1

T . We use ñ to denote the extension of the
NLSM field n into the bulk of B, and we require that ñ|∂B = n.

Using B and the extension ñ of n, the WZ term takes the form

SWZ[n] = 2πk

A2

∫
B

ñ∗ω2, (3.4)

where ñ∗ω2 denotes the pullback of ω2 to B via the map
ñ : B → S2, and k is the level of the WZ term (the same
integer k determines the coefficient θ = 2πk of the theta term
describing the bulk of the SPT phase).

The complete O(3) NLSM action describing the boundary
of the BTI takes the form

Sbdy[n]=
∫ T

0
dt

1

2fbdy

[(∂tb)∗(∂tb) + (∂tn3)(∂tn
3)] + SWZ[n],

(3.5)

where fbdy is a boundary coupling constant and ∂t = ∂t for
our choice of the signature of the space-time metric (we use
a “mostly minus” Minkowski metric). We can now consider
coupling the boundary theory to an external U(1) gauge field
A = Atdt . In Ref. [36], we showed that the properly gauged
boundary action has the form

Sbdy,gauged[n,A] =
∫ T

0
dt

1

2fbdy

[(Dtb)∗(Dtb) + (∂tn3)(∂tn
3)]

+ SWZ,gauged[n,A], (3.6)

where

SWZ,gauged[n,A] = SWZ[n] + 2πk

A2

∫ T

0
dt n3At, (3.7)

and Dt = ∂t − iAt (∂t = ∂t , At = At , etc., for our choice of
signature). The action for the fully gauged boundary theory is
invariant under U(1) gauge transformations

b → eiξ b, (3.8a)

A → A + dξ, (3.8b)

and Z2 transformations

b → b∗, (3.9a)

n3 → −n3, (3.9b)

A → −A. (3.9c)

B. Boundary partition function and global anomaly

We now study the partition function for the gauged bound-
ary theory of the BTI in the topological limit fbdy → ∞. In
this limit, we keep only the low-energy information about the
boundary theory, including possible anomalies. The partition
function

Z[A] =
∫

[dn] eiSbdy,gauged[n,A] (3.10)

of the gauged boundary theory can be evaluated very simply
in this limit, as we now discuss. First, in the limit fbdy → ∞
the path integral we need to evaluate is

Z[A] =
∫

[dn] eiSWZ,gauged[n,A], (3.11)

where SWZ,gauged[n,A] is the gauged WZ action from Eq. (3.7).
The path-integral measure appearing here has the precise
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definition

[dn] =
∏

t∈[0,T )

ω2(t), (3.12)

where ω2(t) denotes the volume form for a copy of S2 located
at the point t in space-time, and we integrate over all field
configurations with periodic boundary conditions in time.

We can also use a gauge transformation to simplify the
form of the coupling to the gauge field A. In one space-time
dimension, the gauge field one-form A = Atdt has only
one component. Since our space-time is a circle, which has
first cohomology group H 1(S1,R) = R, we can decompose a
generic At as

At = At + ∂tλ, (3.13)

where

At := 1

T

∫ T

0
dt At (3.14)

represents the nontrivial part of A, and ∂tλ represents the
exact part of A (here, λ is some function of t). The exact
part of A can be removed from the action via a small U(1)
gauge transformation, which are those gauge transformations
A → A + ∂t ξ with the function ξ satisfying ξ (0) = ξ (T ).
Large U(1) gauge transformations are those transformations
which send At → At + 2πn

T
, for any n ∈ Z, and they will play

an important role in the discussion of the global anomaly in
this theory later in this section. The upshot of all of this is that
we can replace the coupling to At in the gauged WZ action
with a coupling to the constant gauge field At .

We now move on to the calculation of the partition function
Z[A]. We compute the partition function by observing that
it is identical to the phase-space path integral for a spin of
magnitude J = k

2 (or |k|
2 for negative k) in a constant magnetic

field B pointing in the 3-direction, with the magnitude of
the magnetic field given in terms of the gauge field A by
B = −At . To prove this, we now briefly review the form of the
phase-space path integral for spin. At this point we recommend
that the reader skim through Appendix A where we review the
phase-space path integral expression for the partition function
of a quantum mechanical system obtained by quantizing a
general classical system defined on a phase space M equipped
with a symplectic form ω and Hamiltonian function H .

The classical mechanics of a spin J = 1
2 ,1, 3

2 , . . . is
described by a phase space M = S2 equipped with the
symplectic form ω = Jω2, where ω2 is the volume form on S2

from Eq. (3.3). It is convenient to work in spherical coordinates
(φ,θ ) on S2. In this system of coordinates, the components of
the NLSM field n take the form

n1 = sin(θ ) cos(φ), (3.15a)

n2 = sin(θ ) sin(φ), (3.15b)

n3 = cos(θ ), (3.15c)

and we have

ω = J sin(θ )dθ ∧ dφ. (3.16)

Using the definition (A4) for the Poisson bracket one can check
that

{na,nb} = 1

J

∑
c

εabcnc, (3.17)

so that the spin components Sa are given in terms of na by

Sa = Jna. (3.18)

The spin components then obey the Poisson algebra

{Sa,Sb} =
∑

c

εabcSc. (3.19)

We can now see that replacing the Poisson bracket with a
commutator according to the rule {·,·} → −i[·,·] will give the
usual commutation relations for spin in quantum mechanics.

Now let us assume that the dynamics of the spin system
is specified by a Hamiltonian H . Then, the phase-space path
integral representing the partition function trJ [e−iHT ], where
the trace is taken in the spin J representation of SU(2), takes
the form

trJ [e−iHT ] =
∫

[dφ dθ ][
∏

t∈[0,T )

J sin(θ (t))]eiS[φ,θ], (3.20)

where

S[φ,θ ] =
∫ T

0
dt [ϑφ∂tφ + ϑθ∂tθ − H (θ,φ)]. (3.21)

Here, ϑφ and ϑθ are the components of the symplectic potential
ϑ , which is defined locally on the phase space by the relation
ω = dϑ [Eq. (A8) in Appendix A]. Then, since

(ϑφ∂tφ + ϑθ∂tθ )dt = n∗ϑ, (3.22)

we can rewrite the first term in this action using an extension
B of the space-time S1

T and an extension ñ of the field
configuration (satisfying ñ|∂B = n). We have∫

S1
T

n∗ϑ =
∫
B

ñ∗ω = J

∫
B

ñ∗ω2, (3.23)

where the first line follows from Stokes’ theorem. If we choose
the Hamiltonian to be

H = BS3 = BJn3, (3.24)

which is the Hamiltonian for a spin in a constant magnetic
field of magnitude B and pointing in the 3-direction, then the
action becomes

S[φ,θ ] = J

∫
B

ñ∗ω2 − J

∫
S1

T

n3B. (3.25)

We can now compare the path integral for a spin in a
magnetic field to our path integral in Eq. (3.11) for the partition
function of the boundary of the BTI state. Using the fact that
A2 = 4π , we find that these path integrals are identical if we
make the identifications

J = k

2
, (3.26a)

B = −At . (3.26b)
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More precisely, the path integrals are not identical but differ
by the infinite constant factor∏

t∈[0,T )

J, (3.27)

but we can give a more careful definition of the path-integral
measure for the partition function of the gauged boundary
theory for the BTI by including this factor. Using all of this
information we then find that

Z[A] = tr k
2
[eiS3AtT ] =

k
2∑

j=− k
2

eijAtT = sin
[

AtT

2 (k + 1)
]

sin
[

AtT

2

] .

(3.28)

Note that in deriving this formula we assumed that k > 0. For
k < 0, one just needs to replace k with |k|. For the discussion
below, it is useful to decompose the gauge field as At = 2π�

T
+

at for some � ∈ Z and at ∈ (0, 2π
T

), and to then rewrite Z[A]
in terms of � and at :

Z[A] = (−1)k�
sin

[
at T

2 (k + 1)
]

sin
[

at T

2

] . (3.29)

It is important to observe that the factor (−1)k� is nontrivial
for odd k. This minus sign is related to the global anomaly in
this theory for odd k, as we now discuss.

For any level k, the partition function Z[A] respects the Z2

symmetry of the BTI state, i.e., we have

Z[−A] = Z[A]. (3.30)

However, for odd k the partition function is not invariant under
a large U(1) gauge transformation

At → At + 2π

T
, (3.31)

which is equivalent to the transformation � → � + 1 if we
decompose the gauge field as At = 2π�

T
+ at . Instead, for

odd k the partition function Z[A] changes sign under this
transformation. We can try to fix this large gauge invariance
issue by modifying the partition function to

Z̃[A] = Z[A]e± i
2 AtT . (3.32)

This is equivalent to adding the local counterterm ± 1
2

∫ T

0 dt At

to the original boundary action, which is a (0 + 1)-dimensional
Chern-Simons term with fractional level ± 1

2 . Note, however,
that adding this counterterm spoils the invariance of the parti-
tion function under the action of the Z2 symmetry. Therefore,
we find that although the gauged action SWZ,gauged[n,A] for
the BTI boundary has large U(1) gauge invariance and Z2

symmetry, the partition function Z[A] for the boundary theory
only has both of these symmetries when k is even.

This is a classic sign of a global anomaly in the Z2

symmetry: for odd k we can quantize the theory in such a
way as to keep either the Z2 symmetry or large U(1) gauge
invariance, but not both. Physically, this anomaly is related
to the fact that for odd k the boundary of the BTI has states
with half-integer (i.e., fractional) charge. In addition, the fact
that the presence or absence of the anomaly depends only on
the parity of k (even or odd) is due to the aforementioned

Z2 classification of bosonic SPT phases with G = U(1) � Z2

symmetry in 1 + 1 dimensions (the theories with odd k all
represent the nontrivial BTI state, while the theories with even
k all represent the trivial phase). As we discussed above, the
anomaly here is very similar to the global anomaly computed
in Ref. [48] for a Dirac fermion in 0 + 1 dimensions with U(1)
and Z2 symmetry. In addition, a similar anomaly in the (purely
bosonic) (0 + 1)-dimensional theory of a particle on a ring was
discussed recently in Appendix D of Ref. [65].

C. Deforming the target space

In the previous subsection we showed that, at least within
the O(3) NLSM description, the boundary of the (1 + 1)-
dimensional BTI phase exhibits a global anomaly in the Z2

symmetry of the BTI phase. However, our derivation of the
anomaly seemed to rely on the specific geometry of the target
space S2 of the O(3) NLSM. Specifically, our derivation used
the fact that the partition function for the BTI boundary
was equivalent to a phase-space path integral for a spin in
a magnetic field. In addition, since U(1) � Z2 is a subgroup
of SO(3), the anomaly we derived is closely related to the
global SO(3) anomaly of the O(3) NLSM with WZ term in
0 + 1 dimensions (see, for example, the discussion in Sec. 1.2
of Ref. [66]). Our calculation then shows that the U(1) � Z2

subgroup of SO(3) is also anomalous in this theory.
In the rest of this section, we show that the boundary

anomaly of the BTI state is not affected by any smooth
deformation of the target space S2 of the O(3) NLSM which
also preserves the U(1) � Z2 symmetry of the BTI phase. In
other words, we break the SO(3) symmetry of the model down
to U(1) � Z2, and we show that the anomaly still exists in
these less symmetric theories.

In this section, we describe the geometry of such deformed
target spaces, and then we construct models of the BTI
boundary using WZ terms for NLSMs with these deformed
target spaces. We also show how to properly gauge these
WZ actions. In the next subsection we use the equivariant
localization (EL) technique to compute the partition function
for these models, and we show that all such models have a
partition function which is identical to Eq. (3.28). Thus, we
find that the boundary anomaly is completely unaffected by
smooth, symmetry-preserving deformations of the target space
of the NLSM.

As stated above, we consider descriptions of the BTI using
NLSMs with a target space M that can be obtained from the
target space S2 of the O(3) NLSM by smooth deformations
which preserve the G = U(1) � Z2 symmetry of the BTI
phase. As in Sec. II, we can characterize such spaces M
precisely through the notion of a diffeomorphism which is
equivariant with respect to the symmetry of the BTI phase.
The target space of the O(3) NLSM is S2, and the NLSM
description of the BTI phase includes an action of the group
G = U(1) � Z2 on S2. This action was shown explicitly in
Eqs. (3.1) and (3.2). Let us assume that the manifold M
is also equipped with an action of the group G. Then, a
diffeomorphism f : M → S2 is equivariant with respect to
G if

f (g · m) = g · f (m), ∀ g ∈ G, ∀ m ∈ M. (3.33)
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This is the correct mathematical notion corresponding to the
intuitive idea of a manifold which can be obtained from S2 by
smooth, symmetry-preserving deformations.

The spaces M which are related to S2 in this way
can be realized as surfaces of revolution in R3 which are
symmetric under rotation about the z axis [this guarantees U(1)
symmetry], and which are also invariant under reflection z →
−z through the x-y plane.7 The latter condition guarantees that
M possesses the Z2 symmetry of the BTI phase. These spaces
M are completely specified by a parametric curve (r(σ ),z(σ )),
where r(σ ) is the distance of the surface from the z axis in R3

at the height z(σ ), and σ ∈ [a,b] is a parameter used to specify
the curve. If we think of (r(σ ),z(σ )) as, say, a curve in the x-z
plane (replace r with x), then we can imagine constructing the
full surface M by rotating the curve about the z axis in R3. We
can then choose coordinates on M to be (σ,φ), where φ is the
usual azimuthal angle in spherical or cylindrical coordinates in
R3. Finally, in order for this construction to produce a smooth
manifold (with no conical singularities at the top and bottom),
we require that dz

dr
= 0 at the top and bottom of the curve. This

is equivalent to the condition

∂σ z(σ )|σ=a,b

∂σ r(σ )|σ=a,b

= 0 (3.34)

or just

∂σ z(σ )|σ=a,b = 0, (3.35)

assuming that ∂σ r(σ ) does not vanish at σ = a,b.
In principle, we can use any parametrization of the surface,

but the most convenient choice is a parametrization (r(s),z(s))
in terms of the arc length s along the curve, where

s(σ ) =
∫ σ

a

dσ ′√[∂σ ′r(σ ′)]2 + [∂σ ′z(σ ′)]2. (3.36)

We define L = s(b) to be the total length of the curve. In the
coordinate system (s,φ), the metric on M takes the form

g = ds ⊗ ds + [r(s)]2dφ ⊗ dφ, (3.37)

and the volume form is

ωM = r(s)ds ∧ dφ. (3.38)

The total area of the target space is then AM = 2π
∫ L

0 ds r(s).
In addition, the “unit speed” property [∂sr(s)]2 + [∂sz(s)]2 = 1
of the arc length parametrization, combined with the restriction
∂sz(s)|s=0,L = 0, implies that ∂sr(s)|s=0 = 1 and ∂sr(s)|s=L =
−1. The signs here follow from the fact that the width of the
surface M increases from zero near s = 0 and decreases back
to zero at s = L. We also assume that z(s) = −z(L − s) so
that M is symmetric under reflection through the z = 0 plane
in R3.

We can now construct a model for the boundary of the BTI
using the NLSM with target space M. We denote the NLSM
field by m = (m1,m2), with components m1 = s and m2 =
φ. In the low-energy (topological) limit, the boundary action
contains only a WZ term for m. As usual, to construct this
term, we require an extension B of the boundary space-time

7We use standard Cartesian coordinates x,y,z for R3.

S1
T , and an extension m̃ of the NLSM field m into the bulk of

B. Then, the WZ action describing the low-energy physics of
the boundary is

SWZ[m] = 2πk

AM

∫
B

m̃∗ωM, (3.39)

where k ∈ Z is the level of the WZ term. We choose the U(1)
and Z2 symmetries of the BTI state to act on the components
of the field m as

U(1) : φ → φ + ξ (3.40)

and

Z2 : φ → −φ, (3.41a)

s → L − s. (3.41b)

This action of the Z2 symmetry is the generalization to the
target space M of the Z2 action on S2 from Eqs. (3.2).

The next step is to gauge the U(1) symmetry by coupling
the boundary WZ action to the gauge field A = Atdt . One can
check that the action

SWZ,gauged[m,A] = SWZ[m] − 2πk

AM

∫ T

0
dt f (s(t))At (3.42)

will be invariant under the gauge transformation φ → φ +
ξ , A → A + dξ , if the function f (s) satisfies the first-order
differential equation

∂sf (s) = r(s). (3.43)

This equation has the simple solution f (s) = C + ∫ s

0 ds ′ r(s ′),
where C is an as yet undetermined constant. However, since
we require the gauged action to be invariant under the charge-
conjugation operation

Z2 : φ → −φ, (3.44a)

s → L − s, (3.44b)

A → −A, (3.44c)

we find that this constant is fixed to take the value C = −AM
4π

.
Therefore, the function f (s) appearing in the gauged boundary
action is given by

f (s) =
∫ s

0
ds ′ r(s ′) − AM

4π
. (3.45)

In particular, we have

f (L) = −f (0) = AM
4π

, (3.46)

which will be needed for the calculation of the partition
function in the next subsection.

D. Boundary partition function and global anomaly
for all target spaces

We now turn to the evaluation of the partition function
Z[A] for the NLSM with target space M and action given
by Eq. (3.42) using the equivariant localization (EL) tech-
nique. We give a brief introduction to the EL technique in
Appendix B, and in Appendix C we show how to calculate
the Pfaffians which appear in the final expression for Z[A].
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Therefore, in this section we only outline the calculation and
present the result. The final result for the partition function
turns out to be completely identical to the partition function
of Eq. (3.28) which we derived for the special case of the
O(3) NLSM with target space S2. The mechanism which
underlies the EL technique allows us to understand why this
is the case. First, the EL technique applied to our particular
problem yields the result that the partition function depends
only on field configurations m near the points on M which
are fixed by the U(1) action. These are just the two points
s = 0 and L at the bottom and the top of M. The value of the
gauged WZ action at these two points is actually independent
of the specific choice of the target space M [see Eqs. (3.52)
below]. Therefore, we find that since the partition function only
receives contributions from field configurations near s = 0 and
L, and since the action at those two points is independent of
the details of M, the partition function Z[A] is independent of
the specific details of the target space M. The discussion here
is meant to be heuristic, and so we now move on to a more
detailed presentation of the calculation.

We start by rewriting the gauged WZ action for the NLSM
in a way which makes the problem of computing the partition
function of this theory look like a phase-space path integral for
a dynamical system with phase space M. The reason for this
is that the EL technique, in its original formulation, applies to
phase-space path integrals. To achieve this goal, we first recall
that we can use a small U(1) gauge transformation to replace
the gauge field At with its time average At in the gauged WZ
action. Next, we rewrite the gauged WZ action as

SWZ,gauged[m,A] =
∫
B

m̃∗ω −
∫ T

0
dt H (m), (3.47)

where we defined

ω = 2πk

AM
ωM, (3.48a)

H (m) = 2πk

AM
f (s)At . (3.48b)

We can now see that the path integral for Z[A] is equivalent
to a phase-space path integral (see our Appendix A for
a review) for a dynamical system described by the triple
(M,ω,H ), with the symplectic form ω and Hamiltonian H

defined by Eqs. (3.48). The Hamiltonian H and the symplectic
form ω are related via the equation dH = −ivω, where the
vector field v is given by

v = At∂φ. (3.49)

This vector field is clearly proportional to the vector field ∂φ

which generates the action of the U(1) part of the symmetry
group G = U(1) � Z2 of the BTI on the target space M of the
NLSM. The classical equations of motion for this system are

ṡ = 0, (3.50a)

φ̇ = At . (3.50b)

These equations say that (classically) each point on M
revolves around the z axis in R3 with a period 2π

At
. In the

notation of Appendix B, the classical equations of motion can
be rewritten as V a

S [m(t); t] = 0, a = 1,2, where V a
S [m(t); t] =

ṁa(t) − va(m(t)) and va are the components of the vector field
v from Eq. (3.49).

We are now almost ready to to apply the EL results from
Appendix B to compute the partition function. First, let us
assume that T �= 2πn

At
for any n ∈ Z. This means that the only

T -periodic solutions to the classical equations of motion for
the dynamical system defined by (M,ω,H ) are the constant
solutions s = 0 and L. Therefore, the set LMS of T periodic
solutions to the classical equations of motion [defined in
Eq. (B18)] has only these two elements, and the final result for
the partition function Z[A] only involves contributions from
field configurations close to these solutions. Using the EL
technique, we find that the partition function can be expressed
only in terms of contributions from s = 0 and L as

Z[A] ∼ eiSWZ,gauged[m,A]s=0

Pf[O]s=0
+ eiSWZ,gauged[m,A]s=L

Pf[O]s=L

, (3.51)

where the operator O is defined in Eq. (B21) of Appendix B.
The value of the gauged WZ action at these two solutions is

SWZ,gauged[m,A]s=0 = k

2
AtT , (3.52a)

SWZ,gauged[m,A]s=L = −k

2
AtT . (3.52b)

Remarkably, these expressions do not depend on the area AM,

or any other details, of the target space M. We now turn to
the evaluation of the Pfaffians appearing in the denominators
in Eq. (3.51).

To calculate the Pfaffians [which by Eq. (B21) depend on
the derivatives of the vector field v], we first need to express v

in a system of local coordinates (x,y) near the points s = 0 and
L of the space M. The coordinate system (s,φ) is singular at
these two points (φ is undefined there) and so it cannot be used
for an analysis of the space near these two points. Near s = 0
we choose coordinates x = 2πk

AM
s cos(φ), y = 2πk

AM
s sin(φ), and

near s = L we choose coordinates x = − 2πk
AM

(L − s) cos(φ),

y = 2πk
AM

(L − s) sin(φ). This choice of coordinates has the
virtue that the symplectic form ω takes the Darboux form
ω = dx ∧ dy at both s = 0 and L. To derive this result we had
to use the important property that ∂sr(s)|s=0 = −∂sr(s)|s=L =
1. For these choices of coordinates, the vector field v takes the
form

v = At (x∂y − y∂x) (3.53)

near s = 0, and the form

v = −At (x∂y − y∂x) (3.54)

near s = L.
Using the definition of Pf[O] in terms of a fermion path

integral from Eq. (B23) of Appendix B, we find that Pf[O] at
the points s = 0 and L is given formally by the determinant
of a one-dimensional Dirac operator. More precisely, after
expanding the path integral in Fourier modes, we find that

Pf[O]s=0 = −At

∏
m>0

(
2πm

T
+ At

)(
−2πm

T
+ At

)

= −det[−i∂t + At ] (3.55)

115123-12



PERTURBATIVE AND GLOBAL ANOMALIES IN BOSONIC . . . PHYSICAL REVIEW B 96, 115123 (2017)

and

Pf[O]s=L = −det[−i∂t − At ]. (3.56)

The operators

D± := −i∂t ± At (3.57)

are equivalent to one-dimensional Dirac operators for a
fermion in one space-time dimension coupled to the external
field A = Atdt [48]. As we discussed in Appendix B, the
overall sign of these Pfaffians is ambiguous since we are free
to alter the order of factors in the definition of the path-integral
measure. Therefore, at this point we are free to choose a
particular definition of the path-integral measure such that

Pf[O]s=0 = det[D+], (3.58)

Pf[O]s=L = det[D−]. (3.59)

These determinants still require proper regularization, and we
now turn to a discussion of this issue.

We choose to regularize these determinants using zeta and
eta function methods (see Appendix C for details). To motivate
the definition of the regularized determinants in terms of zeta
and eta functions, we first consider the following (nonrigorous)
manipulations of a definition of these determinants in terms of
an infinite product of their eigenvalues. We are also careful
to point out any ambiguities which arise in defining the
determinants in this way. Let λ(±)

m = 2πm
T

± At , m ∈ Z, be
the eigenvalues of the operator D±. Formally, we have

det[D±] =
∏
m∈Z

λ(±)
m =

∏
m∈Z

|λ(±)
m |sgn(λ(±)

m ). (3.60)

So far, we encounter no difficulties. However, the next step is
to express the sign of the eigenvalues as

sgn(λ(±)
m ) = ei π

2 (1−sgn[λ(±)
m )]. (3.61)

But, this step is ambiguous because we could just as well have
written

sgn(λ(±)
m ) = ei

(2p+1)π
2 [1−sgn(λ(±)

m )] (3.62)

for any integer p. For now, we work with the most general
expression for sgn(λ(±)

m ), which involves an arbitrary integer
p. Later in this section we show how the value of p can be
fixed by a minimal number of physical assumptions on the
properties of the partition function Z[A].

Continuing with our manipulations, we find that the
determinant can be expressed formally as

det[D±] =
(∏

m∈Z
|λ(±)

m |
)

ei
(2p+1)π

2

∑
m∈Z[1−sgn(λ(±)

m )]. (3.63)

We now use zeta and eta function methods to make sense
of the different terms in this expression. Before we start,
we again decompose At as At = 2π�

T
+ at , for some � ∈ Z

and at ∈ (0, 2π
T

). To start with the regularization, we first
use zeta function regularization to define the product over
the magnitude of all the eigenvalues λ(±)

m . We carry out this

calculation in Appendix C and we find that(∏
m∈Z

|λm|
)

reg

= 2 sin

(
atT

2

)
. (3.64)

Next, we define the sum
∑

m∈Z 1 as(∑
m∈Z

1

)
reg

= 1 + 2ζ (0) = 0, (3.65)

where ζ (s) = ∑∞
n=1

1
ns is the Riemann zeta function and we

used ζ (0) = − 1
2 . Finally, we define(∑

m∈Z
sgn(λ(±)

m )

)
reg

= η±(0), (3.66)

where η±(0) is the analytic continuation to s = 0 of the eta
function η±(s) of the operatorD± (see Appendix C for details).
We calculate η±(0) in Appendix C and we find that

η±(0) = ±1 ∓ atT

π
. (3.67)

Putting this all together, we find that the regularized
determinants of D± are given by

det[D±]reg = 2 sin

(
atT

2

)
e−i

(2p+1)π
2 (±1∓ at T

π
)

= 2(∓i)2p+1 sin

(
atT

2

)
e±i

(2p+1)
2 at T , (3.68)

where p was the arbitrary integer which appeared when we
tried to rewrite sgn(λ(±)

m ) as an exponential. We then find
that the partition function for our quantum mechanical system
coupled to the external field A = Atdt evaluates to

Z[A] = (−1)k�+p+1 sin
[

at T

2 (k − 2p − 1)
]

sin
(

at T

2

) . (3.69)

The next step is to determine which choice of p gives
the correct partition function. To do this, we will impose
the following two conditions on the value of Z[A = 0] (the
partition function in zero external field). Physically, the value
of Z[A = 0] is the dimension of the Hilbert space of our
quantum mechanical system. Therefore, it makes sense to
impose the following two conditions on Z[A = 0]:

(1) For k = 0, we require Z[A = 0] = 1 since k = 0 gives
a trivial theory with action equal to zero. The dimension of the
Hilbert space of this theory should be equal to one.

(2) For k �= 0, Z[A = 0] should be a positive number.
In terms of � and at , the limit At → 0 is taken by first

setting � = 0, and then taking at → 0. In this limit we find

Z[A = 0] = (−1)p+1(k − 2p − 1). (3.70)

The first condition implies that p satisfies the equation

1 = (−1)p(2p + 1). (3.71)

This equation has the two solutions p = 0 and p = −1. For
these two solutions for p, we find that Z[A = 0] at any k takes
the form

Z[A = 0] =
{−k + 1, p = 0
k + 1, p = −1.

(3.72)

115123-13



MATTHEW F. LAPA AND TAYLOR L. HUGHES PHYSICAL REVIEW B 96, 115123 (2017)

We see that in order to satisfy condition two, we must pick
p = −1 for k > 0 and p = 0 for k < 0. In this way we find
that for all k, the partition function is given by

Z[A] = (−1)k�
sin

[
at T

2 (|k| + 1)
]

sin
(

at T

2

) , (3.73)

which is identical to the answer we computed for the O(3)
NLSM. Therefore, we find that for any two-dimensional target
space M which respects the symmetries of the BTI phase, the
NLSM description of the BTI using the target space M has
the same global anomaly as the O(3) NLSM description. This
result also implies that a large class of bosonic theories in
0 + 1 dimensions with U(1) � Z2 symmetry share the same
global anomaly as a Dirac fermion in 0 + 1 dimensions with
the same symmetry [48].

IV. RENORMALIZATION GROUP FLOWS AND THE FATE
OF OUR MODELS AT LOW ENERGIES

In this section, we briefly comment on the expected low-
energy behavior of the boundary theories discussed in this
paper. Recall that the basic models we consider are NLSMs
with a WZ term. On a d-dimensional space-time Xbdy (which
we imagine to lie at the boundary of an SPT phase), we can
construct a WZ term for a NLSM with target space M if
dim[M] = d + 1. In addition to the WZ term, the NLSM
action will also contain an ordinary kinetic term

Skin[m] = 1

2f

∫
Xbdy

ddx Gab(m)∂μma∂μmb, (4.1)

where m : Xbdy → M is the NLSM field, and Gab(m) is
the Riemannian metric on M [compare with Eq. (2.5) for
the case of a spherical target space]. If we assume that the
NLSM field m is dimensionless, then the coupling constant
f has dimensions of (mass)2−d . Equivalently, the inverse 1

f

of the coupling constant has dimensions of (mass)d−2. We
now consider the consequences of this fact for the low-energy
behavior of the theories discussed in this paper. We focus on the
case where d � 2 since for d = 1 our theory is not a quantum
field theory but just an ordinary quantum mechanical system.

For simplicity, we first consider the case where the target
space M is the sphere Sd+1 and so the NLSM field is a
(d + 2)-component unit vector n. In the absence of the WZ
term (i.e., for a WZ term with level k = 0) then for d = 2
the renormalization group (RG) flow is towards the disordered
(f → ∞) phase at all scales [67–70]. In this limit, the theory
is massive and the ground state (or vacuum state) possesses the
full O(d + 2) = O(4) symmetry of the action [the ground state
transforms as a singlet under the action of the O(4) symmetry].
When the WZ term is turned on, a stable fixed point appears
at a finite value of the coupling f [71], and this fixed point
is actually the SU(2)k Wess-Zumino-Witten conformal field
theory. To see this, we note that the four-component unit
vector field of the O(4) NLSM is equivalent to a 2 × 2 SU(2)
matrix field. Explicitly, if n = (n1, . . . ,n4), then one possible
mapping to the matrix field U is U = n4I + i

∑3
a=1 naσ a ,

where σa for a = 1,2,3, are the Pauli matrices. In addition,
the U(1) symmetry that we are interested in in this paper is
realized as a right (or left, depending on the mapping from n

to U) U(1) symmetry of the SU(2)k theory, and this symmetry
is well known to be anomalous [56,57].

For the case of d > 2, the coupling constant f is dimension-
ful and one expects (by a simple power-counting argument)
that the theory flows towards the ordered phase f → 0 and so
the O(d + 2) symmetry of the theory is spontaneously broken
at low energies. In fact, for the theory without a topological
term, a double perturbation expansion in f and ε = d − 2
reveals the existence of an unstable fixed point at a finite
value f1 of the (suitably rescaled) coupling f [68,69]. If this
computation can be trusted, then below this fixed point the
theory flows to f → 0 and the symmetry is spontaneously
broken, while above the fixed point the theory flows to a
(presumably) disordered strong-coupling (f → ∞) phase in
which the O(d + 2) symmetry is restored.8 Since in the d = 2
case turning on the WZ term introduces a stable fixed point
at a finite value of the coupling, some authors have recently
proposed a scenario for d > 2 in which the introduction of
the WZ term introduces a stable fixed point at a finite value
f = f2 of the coupling constant, with f2 > f1, where f1 is the
location of the unstable fixed point (see Fig. 2(a) of Ref. [73]).
This possibility was first raised in Ref. [73], and it has been
pursued recently in Ref. [74] using a combination of several
perturbation expansions. Both of these works consider the case
of d = 3 space-time dimensions.9

What can we deduce about our boundary theories from this
discussion? Let us first consider the case for BIQH states.
Recall that these boundary theories were O(2m) NLSMs
with WZ term in space-time dimension 2m − 2, and also
NLSMs with deformed target spaces M which still possessed
a U(1) symmetry. We first discuss the case m > 2, so that the
boundary space-time dimension is larger than two. In this case,
the conclusion which is supported by the most evidence is that
the U(1) symmetry of these theories is spontaneously broken in
the ground state. In this case, the symmetry-broken theory will
possess a gapless Goldstone mode. Interestingly, this gapless
mode will still couple to the external field A = Aμdxμ and
it is this Goldstone mode which exhibits the anomaly in the
symmetry-broken theory. For example, if we consider a general
target space M with U(1) symmetry, and we add a potential
to the action which is minimized along the U(1) orbit of a
particular point on M, then the low-energy theory will possess
a gapless Goldstone mode corresponding to motion around this
orbit.10

It is helpful to see an explicit example of this kind in order
to appreciate the fact that the Goldstone mode really does

8The present authors provided further evidence for the existence
of this strong-coupling phase in our recent work [72], where we
computed the beta function for the coupling constant f to leading
order in a strong-coupling lattice regularization inspired by the
approach of Ref. [70].

9More precisely, Ref. [73] considered the O(4) NLSM in d = 3
space-time dimensions with a topological theta term with coefficient
π . This theory can be understood as a deformation of the O(5) NLSM
with WZ term (in the same dimension) at level k = 1 in which the
fifth component of the NLSM field has been set to zero.

10We would like to thank one of the referees of this paper for
suggesting that we consider an example of this kind.
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exhibit the anomaly. Let us take the O(2m) NLSM with WZ
term at level k and introduce a potential into the action which is
minimized when |b1|2 = 1 and all other b� = 0 (� = 2, . . . ,m).
In the symmetry-broken vacuum we then have b1 = eiϕvac for
some constant ϕvac. If we expand around this vacuum by setting
b1 = eiϕvac+iϕ then the gauged NLSM action with WZ term
reduces to an action for the gapless Goldstone mode ϕ coupled
to A. This action takes the explicit form

S[ϕ] = 1

2f

∫
d2m−2x (∂μϕ − Aμ)(∂μϕ − Aμ)

− k

(2π )m−1

∫
Xbdy

dϕ ∧ A ∧ Fm−2. (4.2)

It is now easy to see that under a U(1) gauge transformation
ϕ → ϕ + χ , A → A + dχ , the action for the Goldstone mode
ϕ has the same anomaly as the original O(2m) NLSM. From
this analysis, we can conclude that even when the U(1)
symmetry of the BIQH state is spontaneously broken in the
boundary theory, the boundary theory will still possess the
same perturbative U(1) anomaly as the original NLSM that we
started with.

In the case of m = 2 (boundary space-time dimension equal
to two), the situation is more interesting. As we noted above,
if we preserve the full O(4) symmetry of the theory, then
our theory flows at low energies to the SU(2)k Wess-Zumino-
Witten conformal field theory. On the other hand, we can
introduce some O(4)-breaking but U(1)-preserving anisotropy
into the theory to set |b1|2 = 1 and b2 = 0 (or vice versa). In
this case, we end up with a free boson theory of the form

S[ϕ] = 1

2f

∫
d2x (∂μϕ − Aμ)(∂μϕ − Aμ)

− k

2π

∫
Xbdy

dϕ ∧ A, (4.3)

where we have b1 = eiϕ . In this case, however, ϕ should
not be interpreted as a Goldstone boson as we do not have
spontaneous symmetry breaking in this dimension. The SU(2)k
theory has a central charge of c = 3k

k+2 � 1 (see, for example,
Ref. [75]) so it can and will flow to the free boson theory
with central charge c = 1 when perturbations which break
the O(4) symmetry down to U(1) are introduced (this flow
is consistent with Zamolodchikov’s c theorem [76]). Note
that if we preserve the U(1) symmetry, then the boundary
theory cannot be gapped out since we always need some
gapless degrees of freedom to saturate the anomaly. Finally, we
remark that in the k = 1 case, the free boson theory is actually
equivalent to the SU(2)1 theory for a particular value of the
coupling f . However, marginal perturbations which break the
O(4) symmetry down to U(1) will in general tune f away from
this special value.

We close this section with a few words about the boundary
theories of BTI states. These boundary theories occur in odd
space-time dimensions 2m − 1, and they lie at the boundary of
a BTI state in 2m dimensions. We have already analyzed the
case m = 1 in detail in Sec. III. In this case, the boundary is
just a quantum mechanical system and there are no subtleties
involved in assessing the fate of the system at low energies.
For the case of m > 1, the most likely scenario is that

these boundary theories spontaneously break the U(1) � Z2

symmetry of the BTI state. As we noted in Ref. [36], because
of the way the U(1) symmetry in our models acts on S2m

(the target space of the NLSM in this case), in the BTI case
it is possible to break the Z2 symmetry while preserving the
U(1) symmetry. In this way, we were able to show that the
boundary of the BTI state can exhibit a Z2 symmetry-breaking
electromagnetic response, and we found that this response is
given by a CS term for Aμ with level m!

2 . We then argued,
based on this evidence, that the boundary theories of the BTI
state exhibit a bosonic analog of the parity anomaly.

For m > 1, it is still an open problem to exhibit this bosonic
analog of the parity anomaly in a concrete way (e.g., at the level
of the partition function). The most interesting case is m = 2
in which the boundary space-time dimension is d = 3. Here,
we can list three possibilities for the fate of the boundary
theory at low energies. First, as noted above, the boundary
could break part or all of the symmetry group U(1) � Z2 of
the BTI state. Second, the results of Refs. [73,74] indicate that
a gapless conformal field theory preserving the full U(1) � Z2

symmetry may be possible. Finally, since the anomaly in this
case is global and not perturbative, there is the possibility
that the boundary theory can flow to a topological quantum
field theory whose partition function (in the presence of the
external field Aμ) exhibits the anomaly. In this last case, all
other degrees of freedom at the boundary become gapped and
decouple from the topological quantum field theory which
describes only the ground-state sector of the boundary theory.
We comment more on this last possibility in Sec. V.

V. DISCUSSION AND CONCLUSION

In this paper, we continued the program, initiated in
Ref. [36], of characterizing the anomalies at the boundary of
BIQH and BTI states in all odd and even dimensions, respec-
tively. In Sec. II we revisited the perturbative U(1) anomaly at
the boundary of BIQH states. There we proved that the target
space M of the NLSM describing the boundary theory of
these states can be subjected to arbitrary smooth, symmetry-
preserving deformations without affecting the anomaly. In
Sec. III we revisited the global anomaly at the boundary of BTI
states. In Ref. [36] we gave an argument that the boundary of
the BTI state exhibits a bosonic analog of the parity anomaly
of Dirac fermions in odd dimensions. In this paper we elevated
this argument to a proof for the case of the (0 + 1)-dimensional
boundary of the (1 + 1)-dimensional BTI state. In that case,
we also used the equivariant localization technique to prove
that the global anomaly of the BTI boundary is robust against
arbitrary smooth, symmetry-preserving deformations of the
target space of the NLSM used to describe this state.

From a fundamental point of view, perhaps the most
important result in this paper is our concrete demonstration,
at the level of the partition function, of an analog of the parity
anomaly in a purely bosonic system. Indeed, our result in
Sec. III is a direct bosonic analog of the results of Ref. [48]
on global anomalies of fermions in 0 + 1 dimensions. In the
context of SPT phases, our results in this paper also imply
that the universal properties of an SPT phase can be captured
by a much wider range of models than the NLSMs with
spherical target space originally considered in Refs. [37,38].
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The results of this paper lead us to conjecture that an SPT
phase in D + 1 dimensions with symmetry group G, which
would be described by an O(D + 2) NLSM in the approach
of Refs. [37,38], can be modeled using an NLSM with any
target space M related to SD+1 by a diffeomorphism which is
equivariant with respect to the action of the group G. Note that
this conjecture only applies to SPT phases for which an NLSM
description exists. This does not seem to be the case for all SPT
(or short-range entangled) phases, for example, the “E8” state
in 2 + 1 dimensions and the “beyond cohomology” state with
time-reversal symmetry in 3 + 1 dimensions [22,32].

An ambitious goal for future work would be to present
a concrete demonstration, again at the level of the partition
function, of an analog of the parity anomaly in a (2 + 1)-
dimensional bosonic model with U(1) andZ2 symmetry, where
Z2 now represents time reversal. A precise understanding
of global anomalies in (2 + 1)-dimensional bosonic systems
would also be extremely useful in the search for new dualities
in quantum field theory in 2 + 1 dimensions [77–83]. A crucial
check on any proposed duality is that the two theories which
are conjectured to be dual to each other must have the same ‘t
Hooft anomalies when coupled to various external fields.

An interesting candidate for a (2 + 1)-dimensional bosonic
model displaying a bosonic analog of the parity anomaly is the
O(5) NLSM with WZ term, and with the U(1) � Z2 symmetry
of the BTI state acting in the manner described in Ref. [36].
In Ref. [36] we already gave several pieces of evidence which
suggest that this model displays a bosonic analog of the parity
anomaly. The first piece of evidence was our computation of
the time-reversal breaking electromagnetic response of this
model, which we already mentioned above. However, we also
gave a second argument which was based on the demonstration
that there is a certain composite vortex excitation in this model
with fermionic statistics (an observation which goes back to
Refs. [32,84]), and such an excitation should not exist in a
purely bosonic model which is not anomalous.

The O(5) NLSM with WZ term may be tractable analyti-
cally in the topological limit in which the coupling constant
fbdy of the NLSM is sent to infinity (i.e., if one considers the
model with only the topological term). This would correspond
to the third possibility that we raised at the end of Sec. IV:
the boundary theory could flow to a topological quantum
field theory whose partition function exhibits the anomaly. It
may even be the case that a more sophisticated version of the
equivariant localization technique can be used to calculate the
partition function of the O(5) NLSM with WZ term in the
topological limit and properly coupled to an external U(1)
gauge field as described in Sec. VI of Ref. [36]. However,
there are several difficulties which must be surmounted before
one can apply any kind of equivariant localization technique
to this problem. The main problem is that one needs to
find a hidden supersymmetry in this problem which can be
exploited in order to establish the localization of the path
integral. In the (0 + 1)-dimensional case, this supersymmetry
followed, at least partially,11 from the fact that the path-integral

11As we reviewed in Appendix B, the fact that the Hamiltonian was
associated with a U(1) action on the phase space was also a crucial
ingredient.

measure could be exponentiated by introducing a set of
real Grassmann-valued (i.e., fermionic) fields ηa(t) into the
problem. This could only be done with real fermionic fields
because the target spaces of the (0 + 1)-dimensional NLSMs
that we studied were all symplectic manifolds. On the other
hand, the target space S4 of the O(5) NLSM is not symplectic.
Therefore, one can only exponentiate the path-integral measure
by introducing complex fermionic fields. Currently, we are
not aware of a generalization of the equivariant localization
techniques of Refs. [49–52] which starts by exponentiating
the path-integral measure by introducing complex fermions,
but such a generalization may still be possible. We leave a
detailed investigation of this to future work.
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APPENDIX A: CLASSICAL MECHANICS AND
PHASE-SPACE PATH INTEGRAL FOR GENERAL

HAMILTONIAN SYSTEMS

In this Appendix, we review the symplectic geometry
formulation of classical Hamiltonian mechanics, closely fol-
lowing the discussion in Chap. 11 of Ref. [85]. We use this
formalism in Sec. III of the paper to aid in the evaluation of the
partition function for a gauged NLSM with WZ term which
describes the (0 + 1)-dimensional boundary of the BTI state
in 1 + 1 dimensions. The symplectic geometry formulation of
Hamiltonian mechanics is a geometric formulation in terms
of a phase space M (a closed, orientable, smooth manifold)
equipped with a symplectic form ω. We take M to have
dimension 2n, where n is an integer greater than or equal
to one. The symplectic form ω is a closed, nondegenerate
two-form on M. In a system of local coordinates ma on
M, in which ω = 1

2ωab(m)dma ∧ dmb, the nondegeneracy
condition is equivalent to the condition that the components
ωab(m) are the elements of an invertible matrix. We use the
notation m = (m1, . . . ,m2n) to refer to the entire collection
of phase-space coordinates, and we use latin indices near the
beginning of the alphabet to label the components of general
tensor fields on M. We also use the notation ∂a ≡ ∂

∂ma and
ṁa ≡ dma

dt
in what follows.

To start, for any function f on phase space we define an
associated vector field vf by the equation

df = −ivf
ω (A1)

where ivω = vaωabdmb denotes interior multiplication of the
form ω by the vector field v. The components of vf then take
the form

va
f = ωab∂bf, (A2)
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where ωab are the elements of a matrix which is the inverse of
the matrix with elements ωab, i.e.,

ωabωbc = δa
c. (A3)

We see that the symplectic two-form ω must be nondegenerate
for this to work.

The Poisson bracket of two functions f and g on phase
space is then defined by12

{f,g} = ivg
ivf

ω. (A4)

In a system of local coordinates the Poisson bracket has the
form

{f,g} = ωab∂bf ∂ag. (A5)

For a given Hamiltonian function H , Hamilton’s equations are
equivalent to the single equation

dH = −ivH
ω, (A6)

where vH is the vector field whose components are the time
derivatives of the phase-space coordinates

vH = ṁa∂a. (A7)

Finally, in each coordinate patch on M we can write

ω = dϑ, (A8)

where the one-form ϑ = ϑa(m)dma is known as the symplectic
potential.

Next, we review the form of the phase-space path integral
for the partition function Z(T ) = tr[e−iHT ] of the quantum
mechanical system obtained via quantization of the classical
system defined by the triple (M,ω,H ). Here, the trace is over
the Hilbert space of the quantum mechanical system. As is
reviewed in Sec. 4.1 of Ref. [53], the phase-space path integral
for Z(T ) takes the form

Z(T ) =
∫

LM
[d2nm]

⎡
⎣ ∏

t∈[0,T )

Pf[ωab(m(t))]

⎤
⎦eiS[m], (A9)

where the action appearing in the exponential is

S[m] =
∫ T

0
dt [ϑa(m)ṁa − H (m)]. (A10)

The path integral is taken over all field configurations ma(t)
with periodic boundary conditions ma(0) = ma(T ) on the
interval [0,T ). The space of all such configurations is known
as the loop space LM of the phase-space manifold M. In
addition, [d2nm] denotes a flat measure on phase space at all
points in time. The nontrivial geometry of the phase space is
taken into account by the insertion of∏

t∈[0,T )

Pf{ωab(m(t))} (A11)

into the path integral. This factor can be understood by noting
that the 2n-form ωn

n! provides a natural volume form (the

12The placement of vf and vg on the right-hand side of this equation
is not a typo. We are using the nontraditional definition of the Poisson
bracket from Ref. [85].

Liouville measure) on M, and also by making use of the
formula ωn

n! = Pf[ωab]dm1 ∧ · · · ∧ dm2n.
The first term in the action can also be recast into a

form which is very similar to a WZ term. Let us denote
the interval [0,T ) with periodic boundary conditions by S1

T ,
the circle of circumference T . This circle is the space-time
that our quantum mechanical system evolves on. To write the
first term in the action in a WZ form, we first introduce a
two-dimensional manifold B which has S1

T as its boundary,
∂B = S1

T . Then, we choose an extension m̃ of the field
configuration m into the bulk of B such that m̃|∂B = m. We
can now use Stokes’ theorem to rewrite the first term in S[m]
as∫ T

0
dt ϑa(m)ṁa =

∫
S1

T

m∗ϑ =
∫
B

m̃∗dϑ =
∫
B

m̃∗ω. (A12)

In this form, the term
∫ T

0 dt ϑa(m)ṁa appearing in the action
looks very similar to a WZ term, in the sense that it involves
(i) an extended space-time B, (ii) an extension m̃ of the field
configuration m into B, and (iii) the integral over B of the
pullback of a closed form on M.

APPENDIX B: A BRIEF INTRODUCTION TO
EQUIVARIANT LOCALIZATION FOR PHASE-SPACE

PATH INTEGRALS

In this Appendix, we give a brief review of the equivariant
localization (EL) technique for the evaluation of certain phase-
space path integrals of the form of Eq. (A9) from Appendix A.
We use the EL technique in Sec. III to evaluate the partition
function for a gauged NLSM with WZ term which describes
the (0 + 1)-dimensional boundary of a BTI state in 1 + 1
dimensions. Our presentation in this appendix is based on the
discussion in Sec. 4 of Ref. [53]. We also give a brief discussion
on how one can define the Pfaffians of infinite-dimensional
operators which appear in the formulas obtained by applying
the EL technique.

The EL technique for phase-space path integrals can
be thought of as an infinite-dimensional generalization
of the finite-dimensional integration formulas derived in
Refs. [86–88]. In this paper, we only use the simplest version
of the EL technique. The path-integral formula which follows
from this particular version of the EL technique is sometimes
referred to as the “WKB” localization formula. This basic
version of the EL method and several generalizations of it (in
particular, the “Niemi-Tirkkonen” formula) were developed in
Refs. [49–52]. Stone’s paper [89] on a hidden supersymmetry
in the quantum mechanics of spin can be seen as a herald for
the developments on the EL technique for phase-space path
integrals which followed soon after. The application of the
EL technique to systems with a two-dimensional phase space,
which is the case of interest in this paper, was considered
in detail in Ref. [90]. Finally, some issues related to the
regularization of determinants and Pfaffians appearing in the
EL formulas were greatly clarified by Miettinen in Ref. [91].

In the context of the EL technique, the word “localization”
refers to the fact that although the path integral in question
ostensibly gets contributions from all possible field configu-
rations, the final result only depends on contributions from a
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very small subset of these configurations. Thus, the integral
“localizes” to a sum or, in some cases, a finite-dimensional
integral over this subset of all field configurations. The word
“equivariant” refers to the fact that the mechanism responsible
for the localization of the integral is best understood in
terms of the equivariant cohomology of the manifold that
one is integrating over [88]. In the case of the phase-space
path integrals considered here, this turns out to be the U(1)-
equivariant cohomology of the infinite-dimensional loop space
LM of the classical phase space M.

The basic idea of the EL technique is as follows. First,
to apply the EL technique we need to start with a classical
system possessing a U(1) symmetry. It turns out that this
U(1) symmetry “lifts” to a supersymmetry of the phase-space
path integral. This supersymmetry is then used to construct a
one-parameter family of equivalent path integrals parametrized
by λ ∈ [0,∞), with the original path integral of interest
corresponding to λ = 0. The supersymmetry guarantees that
the path integral at any value of λ is equivalent to the
original path integral. Therefore, the original path integral
can be computed by taking the opposite limit λ → ∞. In
this limit, the path integral simplifies dramatically, getting
contributions only (in the cases considered here) from the
field configurations which correspond to time-independent
solutions to the classical equations of motion. One says that
the path integral localizes onto these configurations. We now
outline the main ideas behind the EL technique in more detail,
closely following Sec. 4 of Ref. [53].

To start, we assume that it is possible to define an action
of the group U(1) on the phase space M. Let v = va(m)∂a

be the vector field which generates the U(1) action, in the
sense that under a U(1) transformation by the small angle ξ

the phase-space coordinates transform as ma → ma + ξva . On
M there is a Hamiltonian function H (m) which is naturally
associated with this vector field, and which is determined by
v and ω via the equation

dH = −ivω. (B1)

Note that this is just Eq. (A1) with the function f taken to
be the Hamiltonian. We choose this specific Hamiltonian to
describe the dynamics of the system that we consider in what
follows. With this choice of Hamiltonian, the action for our
dynamical system will also have a U(1) symmetry. Finally, we
will need a Riemannian metric gab(m) onMwhich is invariant
under the U(1) action generated by v. This is equivalent to the
requirement that v is a Killing vector for the metric, i.e., gab

and va should satisfy the Killing equation

vc∂cgab + gac∂bv
c + gbc∂av

c = 0, ∀ a,b. (B2)

The path integral in Eq. (A9) involves an integration over
the loop space LM of M, which is spanned by the T -periodic
functions ma(t) which, for each t , represent a point on M. We
now introduce an additional set of Grassmann-valued fields
ηa(t) which also obey periodic boundary conditions. The space
of these new fields is equivalent to the loop space of �1M,
the vector space of one-forms on M, and this space is denoted
by L�1M. The interpretation in terms of �1M is due to the
fact that at each time t the anticommuting fields ηa(t) can be
regarded as a basis of one-forms on M. Using the rules for
integration over real Grassmann variables, the new fields ηa(t)

can be used to rewrite Z(T ) in the form

Z(T ) =
∫

LM⊗L�1M
[d2nm][d2nη] ei(S[m]+[m,η]), (B3)

where we defined

[m,η] = 1

2

∫ T

0
dt ωab(m(t))ηa(t)ηb(t), (B4)

and where the integration is now over the “super loop space”
LM ⊗ L�1M. One should compare Eq. (B3) with the
original expression (A9) for Z(T ).

Using the Grassmann-valued fields, we can define the
operators

dL =
∫ T

0
dt ηa(t)

δ

δma(t)
(B5)

and

iS =
∫ T

0
dt V a

S [m(t); t]
δ

δηa(t)
, (B6)

where

V a
S [m(t); t] = ṁa(t) − va(m(t)). (B7)

The quantities V a
S [m(t); t] can be interpreted as the compo-

nents of a vector field

V S =
∫ T

0
dt V a

S [m(t); t]
δ

δma(t)
(B8)

on the loop space. To understand the physical significance of
the components V a

S [m(t); t], note that the classical equations
of motion for the system under consideration are

δS[m]

δma(t)
= ωab(m(t))V b

S [m(t); t] = 0 , ∀ a. (B9)

Since ω is nondegenerate, the classical equations of motion are
equivalent to the equations V a

S [m(t); t] = 0, ∀ a. The operator
dL can be interpreted as an exterior derivative on LM, and
iS has the interpretation of interior multiplication by the loop
space vector field V S .

In terms of these operators, we now define the loop space
equivariant exterior derivative

QS = dL + iS. (B10)

The square of this operator can be interpreted as a loop space
Lie derivative (acting on loop space differential forms) along
the loop space vector field V S ,

LS ≡ Q2
S = dLiS + iSdL. (B11)

Some algebra shows that

QS(S[m] + [m,η]) = 0, (B12)

which means that the integrand in the path integral is equiv-
ariantly closed (i.e., closed under the action of the equivariant
exterior derivative). To prove this relation, one needs to use
the fact that ω is closed as an ordinary two-form on M, and
also Eq. (B9) relating V S to the classical equations of motion.
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The closure of the integrand can be interpreted in terms of
a supersymmetry (SUSY) of this system which is generated
by the “supercharge” QS . In particular, Eq. (B12) implies
that the path integral for Z(T ) is invariant under the SUSY
transformation

δεm
a(t) = εQSm

a(t), (B13a)

δεη
a(t) = εQSη

a(t), (B13b)

where ε is a constant Grassmann parameter. An explicit cal-
culation gives QSm

a(t) = ηa(t) and QSη
a(t) = V a

S [m(t); t],
so we know the exact form that this SUSY transformation
takes. The next step towards establishing localization of the
path integral is to use the supersymmetry to deform the path
integral by adding a suitably chosen SUSY-exact term to the
integrand. To this end, we modify Z(T ) to

Z(T ,λ) =
∫

LM⊗L�1M
[d2nm][d2nη]ei(S[m]+[m,η])−λQS�[m,η],

(B14)

where �[m,η] is some functional of m and η which will be
required to satisfy

Q2
S�[m,η] = 0. (B15)

If we can find such a functional �[m,η], then we can show
that Z(T ,λ) is actually independent of λ by the following
manipulations. We compute (we suppress the arguments of
the different terms for brevity)

dZ(T ,λ)

dλ
= −

∫
[d2nm][d2nη] QS� ei(S+)−λQS�

= −
∫

[d2nm][d2nη] QS[� ei(S+)−λQS�]

= 0. (B16)

The second line follows from the first since the argument of
the exponential is annihilated by QS (and this requires that
Q2

S� = 0). Finally, the third line follows from the second due
to an infinite-dimensional version of the statement that the
integral of a total derivative is zero. In the infinite-dimensional
case, this is only true if the path-integral measure is invariant
under the action of QS , but that is the case here. An alternative
explanation of the λ independence of this integral, which uses
a Ward identity associated with the symmetry generated by
QS , can be found in Ref. [53].

The arguments from the last paragraph show that the
original partition function Z(T ) is equal to the deformed
partition function Z(T ,λ) for any value of λ. The final step
in establishing the localization of Z(T ) is to pick a particular
functional �[m,η] such that the λ → ∞ limit of Z(T ,λ)
becomes easy to evaluate. There are various choices for such a
�[m,η], but the choice which leads to the WKB localization
formula is

�[m,η] =
∫ T

0
dt gab(m(t))V a

S [m(t); t]ηb(t). (B17)

One can check that this functional satisfies Q2
S�[m,η] = 0,

but the derivation relies on the fact that v is a Killing vector
for the metric gab.

Using this particular choice of �[m,η], one can now show
that the path integral Z(T ) localizes to a sum over contributions
from the field configurations in the set

LMS = {m(t) ∈ LM | V a
S [m(t); t] = 0, ∀ a}, (B18)

which is the set of all T -periodic solutions to the classical
equations of motion. To motivate this, we simply note that the
bosonic term in QS�[m,η] is∫ T

0
dt gab(m(t))V a

S [m(t); t]V b
S [m(t); t]. (B19)

Now, QS�[m,η] appears in the exponential of the path integral
multiplied by a factor of −λ, which means that in the limit
λ → ∞, this term becomes a delta function which restricts
the path integral to only those field configurations where
V a

S [m(t); t] = 0.
The final result of the EL calculation is the formula

Z(T ) = lim
λ→∞

Z(T ,λ)

∼
∑

m(t)∈LMS

eiS[m]

Pf[O]m(t)=m(t)
, (B20)

where the infinite-dimensional operatorO has matrix elements

Oab(t,t ′) = δV c
S [m(t ′); t ′]
δma(t)

δcb

= δab∂t ′δ(t − t ′) − ∂av
c(m(t))δcbδ(t − t ′), (B21)

and where the notation “∼” indicates equivalence up to infinite
products of constant (but λ-independent) factors. The final
formula (B20) is famously equivalent to the stationary-phase
approximation to Z(T ), but where the sum is taken over all
T -periodic solutions of the classical equations of motion, and
not just the solution which minimizes the action. In favorable
cases there are a finite number of solutions m(t) ∈ LMS , and
the partition function reduces to a sum of finitely many terms.
In addition, the Pfaffians appearing in this expression can be
computed using standard regularization techniques (see, for
example, Ref. [91]), as we discuss in Appendix C for the
examples considered in this paper.

We note here that there is a typo in the presentation of this
formula in several original references on the EL technique.
The formula presented here is the correct one and it can be
found in this form in Eq. (3.13) of Ref. [50] and Eq. (13) of
Ref. [91], for example. Note, however, that we present this
formula in terms of an operator O which has all indices down,
Oab(t,t ′). We find that this presentation makes more sense
since typically one considers the Pfaffian of an antisymmetric
bilinear formOab and not a linear operatorOa

b which happens
to be antisymmetric. In addition, in the infinite-dimensional
case one needs to also properly define the Pfaffian, and with
the index structure that we have chosen it is possible to define
this Pfaffian in terms of a fermion path integral as we now
discuss.

The Pfaffian of a 2n × 2n antisymmetric matrix Oab is
a well-defined object, in the sense that there is an explicit
formula for it. One way of computing the Pfaffian is by
Grassmann integration. If ηa , a = 1, . . . ,2n, are a set of 2n
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real Grassmann variables, then we have

Pf[O] =
∫

d2nη e− 1
2 ηaOabη

b

, (B22)

provided that we define the measure as d2nη = dη1 . . . dη2n.
We therefore propose that in the infinite-dimensional case one
should define the Pfaffian of the operator O via the fermionic
path integral

Pf[O] =
∫

[d2nη]e− 1
2

∫ T

0 dt
∫ T

0 dt ′ηa (t)Oab(t,t ′)ηb(t ′), (B23)

where ηa(t) are the Grassmann-valued fields with periodic
boundary conditions that we considered earlier in this section.
We can then evaluate the integral by expanding the fields in
Fourier modes as

ηa(t) =
∑
m∈Z

ηa
m

ei 2πmt
T√
T

, (B24)

where the Fourier coefficients ηa
m are ordinary Grassmann

numbers. We also need to define the path-integral measure.
One possible definition is (we specialize to n = 1 here)

[d2η] = dη1
0dη2

0

∏
m>0

dη1
−mdη1

mdη2
−mdη2

m, (B25)

however, the definition of the measure is ambiguous because
different orderings of the terms will lead to answers which
differ by an overall sign. This ambiguity is not important at
this stage, however, because we will eventually need to regulate
the result of the path integral in order to make sense of it. We
consider the careful regularization of this integral for specific
examples in Sec. III of the main text and in Appendix C.

APPENDIX C: EVALUATION OF DETERMINANTS

In this Appendix, we compute the amplitude and phase
of the regularized determinants det[D±]reg which are needed
for the calculation of the partition function Z[A] for the
gauged boundary theory of the BTI state in Sec. III of
this paper. We use zeta and eta functions (to be defined
below) to regularize the magnitude and phase, respectively,
of these determinants. The application of zeta and eta function
methods to the regularization of determinants appearing in
the context of EL calculations was discussed in detail by
Miettinen in Ref. [91]. In particular, Miettinen showed that
by defining the phase of the regularized determinant using the
eta invariant of the operator in question, the character formula
for SU(2) (equivalent to the partition function for a spin in a
constant magnetic field) could be obtained directly from an EL
path-integral calculation, without the need to correct the final
answer by hand using a so-called “Weyl shift”.13

In Sec. III we showed that the expression for the determinant
of D± could be manipulated into the form

det[D±] =
(∏

m∈Z
|λ(±)

m |
)

ei
(2p+1)π

2

∑
m∈Z[1−sgn(λ(±)

m )], (C1)

13For the spin J representation of SU(2), the Weyl shift refers to the
replacement of J with J + 1

2 in the final answer obtained from the
phase-space path integral.

where p was an arbitrary integer. We remind the reader that
D± = −i∂t ± At , and the eigenvalues ofD± are λ(±)

m = 2πm
T

±
At , m ∈ Z. In Sec. III we also showed that a regularization
of the infinite sum

∑
m∈Z 1 using the Riemann zeta function

allowed us to reduce this expression to

det[D±] =
(∏

m∈Z
|λ(±)

m |
)

e−i
(2p+1)π

2

∑
m∈Z sgn(λ(±)

m ). (C2)

In this Appendix, we show how zeta and eta function methods
can be used to carefully define the amplitude and phase in this
formal expression for the determinant of D±.

We start with the calculation of the amplitude
∏

m∈Z |λ(±)
m |.

To be concrete, we first assume that At ∈ (0, 2π
T

). In this case,
we have

∏
m∈Z

|λ(±)
m | = At

∏
m>0

[(
2πm

T

)2

− (At )
2

]
. (C3)

To regularize the product on the right-hand side of this
equation, we first note that the ratio

∏
m>0

[(
2πm
T

)2 − (At )2(
2πm
T

)2

]
= sin

(
AtT

2

)
AtT

2

(C4)

is a completely well-defined quantity. To compute this ratio,
we used the infinite product formula for the sine function

sin(x) = x

∞∏
m=1

(
1 − x2

π2m2

)
. (C5)

The product
∏

m>0 ( 2πm
T

)
2

in the denominator on the left-hand
side of Eq. (C4) can be interpreted as det′[−i∂t ], where the
prime indicates the determinant without the contribution from
the zero mode. We can use zeta function regularization [92] to
assign a finite value to this determinant.

To apply zeta function regularization, we first define a
differential operator P with eigenvalues ( 2πm

T
)
2
, m > 0. We

then define the spectral zeta function for this operator as

ζP (s) =
∑
m>0

(
2πm

T

)−2s

, (C6)

which is well defined for Re[s] > 1
2 . Then, the regularized

version of the determinant of P is defined as

det[P]reg = e−ζ ′
P (0), (C7)

where ζ ′
P (0) is the analytic continuation of ζ ′

P (s) to s = 0
(and the prime denotes a derivative with respect to s). In this
case, the spectral zeta function ζP (s) is related to the ordinary
Riemann zeta function ζ (s) by

ζP (s) =
(

T

2π

)2s

ζ (2s), (C8)
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which means that

ζ ′
P (0) = 2 ln

(
T

2π

)
ζ (0) + 2ζ ′(0). (C9)

Using the well-known values ζ (0) = − 1
2 and ζ ′(0) =

− 1
2 ln(2π ), we find that ζ ′

P (0) = − ln(T ), so that

det[P]reg = T . (C10)

Then, in view of the ratio (C4), we define(∏
m∈Z

|λ(±)
m |

)
reg

= At det[P]reg
sin

(
AtT

2

)
AtT

2

= 2 sin

(
AtT

2

)
.

(C11)

More generally, suppose that At lies in the open interval
( 2π�

T
, 2π�+2π

T
) for some � ∈ Z. In this case, it is convenient

to decompose At as

At = 2π�

T
+ at , (C12)

where at ∈ (0, 2π
T

). If we now repeat the amplitude calculation
above for this case, then we find that(∏

m∈Z
|λ(±)

m |
)

reg

= (−1)�2 sin

(
AtT

2

)

= (−1)�2 sin

(
π� + atT

2

)

= 2 sin

(
atT

2

)
. (C13)

We now move on to the computation of the phase of the
regularized determinants. First, for a complex number s with
sufficiently large and positive real part, the eta function η±(s)
of the Dirac operator D± is defined by [17]

η±(s) =
∑
m∈Z

sgn(λ(±)
m )|λ(±)

m |−s , (C14)

where we use the convention that sgn(0) = 1. This expression
has a well-defined analytic continuation to s = 0, known as the
eta invariant, and we use this analytic continuation to define
the regularized phase of the determinant in question via the
formula (∑

m∈Z
sgn(λ(±)

m )

)
reg

= η±(0). (C15)

We focus our attention on the calculation of the eta invariant
for D+. The calculation for D− is very similar.

First, recall that we are assuming that At lies in an open
interval between two eigenvalues of −i∂t . This guarantees that
the operators D± do not possess any zero modes. In this case,
each term in η±(s) can be differentiated with respect to At

since the value of sgn(λ(±)
m ) does not vary as we move At

within this open interval. After taking the derivative, we find

that (focusing on the case of D+)

dη+(s)

dAt

= −sζD2+ ( s+1
2 ), (C16)

where ζD2+(s) is the spectral zeta function for D2
+, the square

of the Dirac operator D+. This formula is in fact just a special
case of the general formula in Proposition 2.10 of Ref. [19].
Taking the s → 0 limit then gives

dη+(0)

dAt

= − lim
s→0

sζD2+

(
s+1

2

)
. (C17)

The spectral zeta function ζD2+(s) has a first-order pole at

s = 1
2 , which is due to the fact that the leading part of D2

+
is −∂2

t [i.e., the dominant part of the eigenvalues of D2
+ for

large m is the piece ( 2πm
T

)
2
]. It then follows from Eq. (C17)

that dη+(0)
dAt

is equal to minus the residue of ζD2+(s) at s = 1
2 .

This residue can be computed using the heat kernel expansion
for D2

+, and the residue turns out to be equal to the residue of
the spectral zeta function for −∂2

t at s = 1
2 , which is easier to

compute. From these considerations, we find that

dη+(0)

dAt

= −T

π
, (C18)

and then an integration with respect to At gives

η+(0) = C+ − AtT

π
, (C19)

where C+ is an as yet undetermined constant.
The value of the constant C+ can be fixed uniquely by

requiring the eta invariant to vanish when At lies halfway
between two eigenvalues of −i∂t [symmetry dictates that η+(s)
for any s should vanish in this case]. Let us assume that At ∈
( 2π�

T
, 2π�+2π

T
) for some � ∈ Z. Then, we require η+(0) to vanish

when At = 2π
T

(� + 1
2 ), which fixes C+ = 2� + 1. Therefore,

the eta invariant is given in this case by

η+(0) = 2� + 1 − AtT

π
. (C20)

For the Dirac operator D−, and still assuming that At ∈
( 2π�

T
, 2π�+2π

T
), all of the signs are reversed. We then find that

for At ∈ ( 2π�
T

, 2π�+2π
T

), the eta invariants of the operators D±
are

η±(0) = ±(2� + 1) ∓ AtT

π
. (C21)

As in Eq. (C12), it is convenient to again write At = 2π�
T

+ at

with at ∈ (0, 2π
T

). Then, in terms of at , the eta invariants for
D± take the form

η±(0) = ±1 ∓ atT

π
. (C22)

We see that the eta invariant only depends on the value of At

modulo 2π
T

.
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