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Exotic spin phases in two-dimensional spin-orbit coupled models: Importance of quantum effects
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We investigate the phase diagrams of the effective spin models derived from Fermi-Hubbard and Bose-Hubbard
models with Rashba spin-orbit coupling, using string bond states, one of the quantum tensor network states
methods. We focus on the role of quantum fluctuation effect in stabilizing the exotic spin phases in these models.
For boson systems, and when the ratio between interparticle and intraparticle interaction λ > 1, the out-of-plane
ferromagnetic (FM) and antiferromagnetic (AFM) phases obtained from quantum simulations are the same as
those obtained from the classic model. However, the quantum order-by-disorder effect reduces the classical
in-plane XY-FM and XY-vortex phases to the quantum X/Y-FM and X/Y-stripe phase when λ < 1. The spiral
phase and skyrmion phase can be realized in the presence of quantum fluctuation. For the Fermi-Hubbard model,
the quantum fluctuation energies are always important in the whole parameter regime. A general picture to
understand the phase diagrams from a symmetry point of view is also presented.

DOI: 10.1103/PhysRevB.96.115119

I. INTRODUCTION

The ultracold atoms in an optical lattice [1–4] provide an
excellent toolbox for simulating various spin models, such as
Heisenberg [5] model, Kitaev model [6], etc., and has been one
of the central concepts in quantum simulations. Along this line
some primary results have been obtained [7–9]. The simplest
ferromagnetic (FM) or antiferromatic (AFM) Heisenberg spin
models can be obtained in the deep Mott phase regime [3] when
the Hubbard model possesses rotational symmetry. The recent
interest in the searching of exotic spin structures in optical
lattice is stimulated by the experimental realization of spin-
orbit coupling (SOC), which can be regarded as the simplest
non-Abelian gauge potential in nature [10–27]. In these cases,
the effective spin models may become more complicated due to
the appearance of some exotic terms, e.g., the Dzyaloshinskii-
Moriya (DM) [28,29] interactions and their deformations.

The DM interaction has already been widely investigated
in solid materials [30–39] and now it is resurfaced in ultracold
atoms due to its flexibility in experiments, e.g., the SOC
interactions can be made much stronger than their counterpart
in real materials. Results based on classical simulations
[40–42], Ginzburg-Landau theory [43,44], dynamical mean-
field theory [45], and spin wave expansion [46,47] have un-
veiled rich phase structures including spin spirals, skyrmions
in the presence of the frustrated interactions caused by the
SOC: there is strong competition between spin-independent
tunneling and the SOC induced spin-flipping tunneling. It is
well known that quantum fluctuations are greatly enhanced
in low-dimensional systems, and therefore the ground state
may differ significantly from the semiclassical orderings as
in higher dimensions. Given the role of quantum fluctuation
effects in the above two-dimensional models have not been
thoroughly investigated, it is of great interest to see whether
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the phases predicted by the semiclassical theories can survive
or new phases may emerge because of quantum fluctuation.

In this work we investigate the quantum phase diagrams
of the effective spin models with Rashba SOC, derived from
Bose-Hubbard (BH) model and Fermi-Hubbard (FH) model
on a square lattice, using recently developed string bond
states (SBS) [48], which is one of the tensor network states
(TNS) methods [49–52]. The SBS used in this work satisfies
area law [48,53], and thus can express the ground state
of many interesting quantum systems effectively. We find,
whereas in some parameters regions the classic spin model
can give qualitatively correct ground states, in some regions,
the quantum effects are crucial to get correct ground states.
In particular, for the fermion systems, the quantum effects are
always important.

II. EFFECTIVE SPIN MODELS

For a BH model with Rashba SOC, the Hamilto-
nian can be written as HBH = H0 + U

2

∑
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operator with site i and spin σ = ↑,↓ and eij being the unit
vector from site i to j . In the first Mott lobe (U � t), each
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written as
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where J = −4t2/U < 0, and 〈i,j 〉μ means the nearest neigh-
bors in the μ = x,y directions. In this model, α determines
the strength of SOC, and λ represents the anisotropy of
the exchange interactions. Similarly in the FH model, the
Hamiltonian reads as HFH = H0 + ∑

i Uni↑ni↓, where H0

has the same form as the boson model with �† replaced
by (f †

i↑,f
†
i↓), where f

†
iσ is the fermion creation operator at

site i and spin σ = ↑,↓. The corresponding effective spin
model is equal to that in Eq. (1) at λ = 1 except that now
J = 4t2/U > 0 due to Pauli exclusion principle. Hereafter
we let 4t2/U = 1 for convenience.

The following order parameters are used to distinguish
different phases. First, the static magnetic structure factor is
defined as [μ = x,y,z, i = (ix,iy)]

Sμ(k) = 4

L2

∑
i,j

〈
S

μ

i · S
μ

j

〉
ei[(ix−jx )kx+(iy−jy )ky ]/L (2)

on a L × L square lattice. For the FM and AFM phases
along μ direction, Sμ(k) has peaks at k = (0,0) and (π,π ),
respectively; and in the strip phase the strongest peaks happen
at k = (0,π ) or (π,0). We also define the spiral and skyrmion
order parameters in real space as [54]

Spμ(i,j ) = 16
〈
θ i
μθj

μ

〉
, Sk(i,j ) = 64

〈
vi

sv
j
s

〉
, (3)

where θ i
x = (Si × Si+ex

)y and θ i
y = (Si × Si+ey

)x are related
to the relative planer spin angles for spins at site i and i + eμ.
To account for the three-dimensional spin alignment effect, we
define the spin volume constructed by the spins at the three
neighboring sites as vi

s = Si · (Si+ex
× Si+ey

). In the coplanar
spiral phase, vi

s = 0 exactly, but it is nonzero in the skyrmion
phases. To determine the long-range order of the system, we
calculate the order parameters as

Spμ =
∑

i

1

L2
|Spμ(i,i + l)|, Sk =

∑
i

1

L2
|Sk(i,i + l)|,

(4)

where l = (L/2,L/2) to make |i − j | as large as possible
and i is averaged over the whole lattice for better numerical
accuracy.

III. NUMERICAL METHOD

We explore the quantum spin models on a 12 × 12 lattice
with periodic boundary condition, using the SBS method,
which is a specific type of tensor network state (TNS)
methods developed by Schuch et al. [48]. In this method,
the SBS forms a systematically improvable variational space,
controlled by the virtual bond dimensions. Once we have
the SBS representation of the many-particle wave functions,
the ground state energies as well as corresponding wave
functions can be obtained variationally. We recently predict
a peculiar supersolid phases induced by frustrated tunneling
in the extended Bose-Hubbard model using this method [55].

The many-particle wave functions represented in SBS can
be written as

|�〉 =
∑

s1···sN

∏
p∈P

Tr

⎡
⎣∏

k∈p

A
sn(k)

p,k

⎤
⎦|s1 · · · sN 〉, (5)
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FIG. 1. Three types of strings included in the simulation: (a) a
horizontal snake string, (b) a vertical snake string, and (c) the loops.
The white circles stand for tensors locates on the 2D square lattice,
whereas the red lines stand for the tensor virtual bonds that form
strings.

where P is a certain string pattern which contains a set of
strings p. In each string p, as illustrated in Fig. 1, we have
an ordered list of tensors As

p,k , locate on the kth site of the
string, which is the n(k)th site of the lattice. The tensor has
a physical index s. The two nearby tensors are connected
via the the virtual bonds, with bond dimension D. Therefore,
each As

p,k is a d × D × D tensor, where d = 2 is the physical
dimension (for spin), and the bond dimension D encodes
the entanglement between the site and its environment. With
increasing the bond dimension D, the SBS can systematically
converge to the ground state.

We use the products of three types of string tensors: the
horizontal snake string [Fig. 1(a)], the vertical snake string
[Fig. 1(b)], and the loops [Fig. 1(c)]. Note that if we use only
the horizontal snake string or the vertical snake string, the SBS
reduces to the conventional matrix product state (MPS), which
is equivalent to the widely used density matrix renormalization
group (DMRG) method. However, since MPS does not satisfy
the area law [48,53] in two dimensions, it is inefficient to
simulate the two-dimensional problems.

For a given a Hamiltonian H , the total energy of the system
is a function of the SBS tensors at each lattice site As

p,k , i.e.,
E = E({As

p,k}). We recently developed an efficient algorithm
to obtain the ground state wave function and corresponding
energy by mapping the problem to optimizing the total energy
of a classical mechanical system, in which the elements
as

ij (p,k) of the tensor As
p,k are treated as the generalized

coordinates of the system. We calculate the total energy and the
energy gradients for a given SBS via Monte Carlo sampling
[48,56] method. The ground state wave function and total
energy are then obtained via a replica-exchange (also known
as parallel tempering) [57,58] molecular dynamic simulation.
The replica-exchange MD method can effectively avoid the
system being trapped in local minima. In our simulations, we
use M = 42 temperatures. Initially, the temperatures distribute
exponentially between the highest (1/β0 = 10−4) and lowest
(1/βM−1 = 10−6) temperatures. For each temperature, we start
from random tensors. During the simulations, we adjust the
temperatures after configuration exchange ten times, whereas
there are 200 MD steps between the two configuration
exchanges, with a step length 	t = 0.05. For each MD step,
we sample about 20 000 spin configurations. The energies
used for temperature exchange are averaged over 200 MD
steps. After we finish the replica-exchange MD optimization,
we further decrease the temperature to 10−8 to obtain more
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accurate results. Full details of the method are presented in
our previous publication [56]. For the spin models, we use
bond dimension D = 8 which converges the total energies
with errors less than 10−4 per site.

IV. PHASE DIAGRAM FOR BOSON

The phase diagram is presented in Fig. 2 and corresponding
order parameters are given in Fig. 3 at λ = 1.5 and λ = 0.8
and α ∈ [0,π/2]. The spin model in Eq. (1) possesses some
unique symmetries, which is crucial to understand this phase
diagram. First, the Hamiltonian in Eq. (1) is invariant upon
operation α → π − α and S

x,y

i → −S
x,y

i , which is equiv-
alent to the transformation U

†
↑bi↑U↑ = −bi↑, where U↑ =

exp(iπ
∑

i ni↑) in the original BH model. This symmetry
directly leads to U

†
↑H (α,λ)U↑ = H (π − α,λ), i.e., the phase
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FIG. 2. Upper panel: Phase diagram for Eq. (1), calculated from
TNS method. Z-FM (Z-AFM) denote the ferromagnetic (antiferro-
magnetic) phase with spin polarized along the z direction, and X/Y
means that the spins are polarized along either x or y direction. For a
comparison the phase boundaries determined by classical simulations
are shown as dashed lines. Lower panel: Spin textures of (a) spiral-1
phase with spins spiral along Q = ex − ey direction, (b) spiral-2 phase
with spins spiral along Q = ex direction, (c) spiral-3 phase spins spiral
along both Q1 = ey and Q2 = ex directions, and (d) 3 × 3 skyrmion
phase.

FIG. 3. Order parameters for the effective spin model derived
from Bose-Hubbard model at (a) λ = 1.5 and (b) λ = 0.8, where
Splg [Spsm] is the larger (smaller) one of Spx and Spy (see text for
details).

diagram should be symmetric about α = π
2 . Therefore, we

only show the result for α ∈ [0,π/2].
We first discuss the phase diagram at four corners, where

α ∼ 0 or π/2 and λ � 1 or λ � 1. When α = 0, i.e., in the
absence of SOC, the original spin model can be reduced to an
effective XXZ spin model, with Jx = Jy = −1/λ, and Jz =
−(2λ − 1)/λ. When λ > 1, |Jz| > |Jx |, the ground state is a
Z-FM state, i.e., all spins are ferromagneticlly aligned along
the z direction. Our TNS calculations show that for small
α � 0.15, the ground state is still Z-FM, as determined by
the order parameters shown in Fig. 3(a). In this region, the
quantum simulations yield the same ground state as the classic
one, suggesting the minor role of quantum fluctuation effect.

Interestingly, at α = π
2 , the model can be mapped

to the α = 0 case via a symmetry transformation U =∏
i e

−i π
2 ixσx e−i π

2 iyσy , i.e., U†Hπ
2
U = H0. Use this transforma-

tion, we immediately see that the ground state near α = π
2 is

a Z-AFM. We therefore see that these two limits (α = 0 and
α = π

2 ) should have the exact same energies, and the quantum
effects are small in both phases, which are confirmed by the
numerical results.

However, there are dramatic differences in the case of
λ < 1 where the in-plane exchange energy dominates. The
order parameters calculated by TNS at λ = 0.8 are shown in
Fig. 3. In the region of 0 < α/π < 0.13, the ground state is
a FM phase, where all spins are polarized along either x or y

direction, which we denote as X/Y-FM phase. Remarkably this
phase is very different from what is obtained from the classical
spin model, which gives a rotational invariant FM state [41]
where all spins lay in the x-y plane (dubbed as XY-FM). To
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understand this difference, we note that the in-plane rotational
symmetry is not inherent of the original Hamiltonian, which
possesses only C4 symmetry. The rotational invariance of the
ground state in the classic model is due to the accidental degen-
eracy because the ground state of the classic model happens to
have Sz = 0. When quantum fluctuation is introduced, it breaks
the accidental degeneracy and restores the C4 symmetry of the
original Hamiltonian, which therefore singles out a ground
state with lower energy than the classical solution. This is the
known as order-by-disorder mechanism [59,60]. Again, we
can apply symmetry transformation U = ∏

i e
−i π

2 ixσx e−i π
2 iyσy

near α = π/2, which yields a X/Y-stripe phase (as confirmed
by numerical results) for a quantum spin model, in contrast to
the 2 × 2 vortex state obtained from classical simulations.

The line λ = 0 in principle cannot he achieved due
to the energy-costless double occupation. However,
this limit can still be defined in the sense of
limλ→0 λHλ = −∑

〈i,j〉x [cos(2α)(Sx
i Sx

j + Sz
i S

z
j ) + S

y

i S
y

j ] −∑
〈i,j〉y [cos(2α)(Sy

i S
y

j + Sz
i S

z
j ) + Sx

i Sx
j ]. Obviously when

α = π
4 ,

lim
λ→0

λHλ,α= π
4

= −
⎛
⎝∑

〈i,j〉x
S

y

i S
y

j +
∑
〈i,j〉y

Sx
i Sx

j

⎞
⎠, (6)

which gives a compass model due to the strong coupling
between the spins and directions [61]. This model cannot be
solved exactly; however, it can be shown exactly that the
ground state is 2L+1-fold degenerated for a L × L square
lattice [62–64]. It therefore corresponds to a critical boundary
between the X/Y-FM and X/Y stripe phases since any deviation
from this critical point by varying the parameters (λ and α) can
break the degeneracy and open an energy gap. The classical
and quantum simulations yield the same critical point.

We next try to understand the spiral and skyrmion phases in
the presence of strong DM interaction. The order parameters
are shown in Eq. (4) (and the corresponding spin textures are
shown in the lower panel of Fig. 2). The spiral-1 phase has
two degenerate states spiral along either ex + ey or ex − ey

direction. For these two cases the strongest peaks in the
structure factor S(k) appear at k = ±(k0,k0) and k = ±(k0, −
k0), respectively, where k0 can be smoothly tuned by α and
λ. However, due to the finite size used in the simulation, only
k0 = 2π

3 , π
2 , π

3 , and π
6 are observed, which are commensurate

with the system size. In this phase, the skyrmion order Sk ∼ 0,
whereas Spx = Spy �= 0 are strongest among all the order
parameters. The spiral-2 phase has two degenerate states, one
is a spin spiral along x direction, and other one is along y

direction. Therefore, only one of the order parameters, either
Spx or Spy [see Fig. 3(b)], is nonzero. In contrast, in spiral-3
phase, Spx = Spy , both are nonzero. Spiral-3 phase is also
observed in the classical model, and compared to the classical
model, the spiral-3 phase region is greatly suppressed in the
quantum model. It is worth noting that the spiral-3 phase was
missing in Ref. [41]. One possible reason for the difference
is that we use very high precision in the classical simulations
in which the relative energy errors are about 10−5 compared
to 10−2 in Ref. [41]. In the skyrmion phase, the structure
factor exhibits strongest peaks at k = (±k0,0) and (0, ± k0).
Furthermore, the noncoplanar of spin alinement induces a

FIG. 4. Ground state energies from the classical (Ec) and quan-
tum (Eq) simulations at (a) λ = 1.3, (b) λ = 0.8, and (c) λ = 0.3
for boson, and (d) for fermion models. Insets give the corresponding
fluctuation energy δEfluc. The vertical lines are the phase boundaries
calculated by TNS.

finite skyrmion order Sk. The skyrmion phase is Néel type
[65] and has a period 3 × 3 (light purple region in Fig. 2) or
larger (dark purple region in Fig. 2), which is consistent with
the numerical results for the classic spin model [41].

To understand the quantum effects in a more quantitative
way, we plot the ground state energies per site for λ =
1.3, 0.8, 0.3 in Figs. 4(a)–4(c), respectively, obtained from
classical simulations (Ec) and full quantum mechanical TNS
simulations (Eq). In the inserts, we also show the energy
differences

δEfluc = Ec − Eq . (7)

Obviously Ec � Eq, thus δEfluc � 0. From Fig. 4(a) we find
that when α = 0, and λ = 1.3, Ec = −0.61537, and Eq =
−0.61538 in the 12 × 12 lattice, while the exact classical
energy in a infinite size system is E∞

c = 2λ−1
2λ

= −0.61538.
This agreement can be understood as follows: at α = 0, the
original model Eq. (1) reduces to a XXZ model (see the
Appendix) with J = −1, and when λ > 1, the product state
(Z-FM) is the exact ground state, and therefore δEfluc = 0
exactly. In fact the XXZ model can be used as a benchmark for
the TNS method, which shows great accuracy in this problem.
As shown in Fig. 4(a), δEfluc ∼ 0 in the whole Z-FM and
Z-AFM phase regimes, even when α �= 0. In the spiral phase,
δEfluc ∼ 0.01–0.02 is more significant.

The fluctuation energy increases with the decreasing of λ.
At λ = 0.8, δEfluc ∼ 0.01 in the X/Y-FM and X/Y strip phases,
which is about 4% of the total energies. However, even though
this energy difference seems not very large, the ground states
predicted by classical model and quantum model are totally
different. Full quantum treatments are therefore required to
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FIG. 5. Order parameters for the effective spin model derived
from the Fermi-Hubbard model.

capture the correct physics in these phases. δEfluc is also
different for different phases, which is most significant in the
skyrmion phase, where δEfluc ∼ 0.02. When λ further decrease
to 0.3, δEfluc increases dramatically. It is about 0.1–0.3 in the
X/Y-FM and X/Y strip phases, which counts almost 10%–20%
of the total energies. The strong quantum fluctuation at small λ
suppresses the spiral-3 and skyrmion phases compared to the
the classical phase diagram (see Fig. 2).

V. PHASE DIAGRAMS FOR FERMION

For the spin model from FH model, we have J =4t2/U >0,
and λ = 1. Therefore, α serves as the only adjustable parameter
in this model. The calculated phase diagram and the order
parameters from the TNS method are presented in Fig. 5.
Similar to the phase diagrams in the bosonic system, we
find X/Y-AFM phase when α/π < 0.08 and X/Y-stripe phase
when α/π ∈ [0.34,0.5] (the mirror symmetry about α = π

2 is
assumed). As before the classical model predicts a rotational
invariant AFM and vortex phases in the x-y plane, which
reduce to the X/Y-AFM and X/Y-stripe phase due to order-
by-order effect. Between the AFM and stripe phases, there
are spiral phases and one skyrmion phase. The spiral phase
may also be distinguished by the period p = 12

5 , 3, 4 which
can be accommodated by our simulation sizes. In these phases
the skyrmion order almost equal to zero and the spiral order
dominates. However, when α/π ∈ [0.29,0.34], the skyrmion
order become important although the spiral order is still
nonzero, similar to that in Fig. 3(b).

The quantum fluctuation energy is much more pronounced
in the FH model than in the BH model for all phases, as
depicted in Fig. 4(d). For α = 0 we find Ec = −0.5, and Eq =
−0.6579, thus δEfluc = 0.1579. In the AFM and strip phases,
δEfluc is about 30% of the total energy. The large quantum
fluctuation energy in the AFM state is due to that there are vast
Hilbert spaces near the S = 0 that are energetically close to
the ground state. The δEfluc is slightly small in the spiral phase
and skyrmion phase, but still significant.

It is very interesting to note that the Z-AFM state in BH
model however has very small δEfluc, in sharp contrast with

the AFM state derived from the FH model. To understand this
difference, we note that the Z-AFM state in BH model can
be mapped to the Z-FM state via symmetry transformations,
which has small quantum fluctuation energy. Therefore, even
though the two AFM states appear very similar to each other
at the classical level, their physics are entirely different. More
fundamentally, this difference is rooted from the different
statistic properties between bosons and fermions.

VI. CONCLUSION

We address the role of quantum fluctuation effect on the
possibilities on observing the exotic spin structures in the spin-
orbit coupled BH and FH models on a square lattice using
TNS method. While for the out-of-plane FM and AFM phases
the classical and quantum solution are the same, we find that
the quantum order-by-disorder effect reduces the classical in-
plane XY-FM and XY-vortex phases to the quantum X/Y-FM
and X/Y-stripe phase. Moreover, the spiral phase and skyrmion
phase can still be found even in the presence of quantum
fluctuating effect. The structure of the phase diagrams are also
understood from the symmetry point of view.
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APPENDIX: HOLSTEIN-PRIMARKOV
TRANSFORMATION FOR THE XXZ MODEL

At α = 0 the original model Eq. (1) in the main text reduces
to a XXZ model,

λH = −
∑
〈i,j〉

[
Sx

i Sx
j + S

y

i S
y

j + (2λ − 1)Sz
i S

z
j

]
. (A1)

We solve the effective XXZ model, using the Holstein-
Primarkov (HP) method [66]. We consider first the case of
λ > 1. When λ > 1, the spin is fully polarized along the
z direction in the classical simulation, based on which we
perform HP transformation,

Sz
i = S − ni = 1

2
− ni, (A2)

Sx
i = 1

2
(
√

2S − niai + a
†
i

√
2S − ni)

≈ 1

2
(ai + a

†
i ), (A3)

S
y

i = i

2
(−

√
2S − niai + a

†
i

√
2S − ni)

≈ i

2
(−ai + a

†
i ). (A4)
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FIG. 6. Comparison between the ground state energies calculated
by the classical model, HP method, and SBS method for the two-
dimensional XXZ model.

By keeping the leading quadratic terms we find

λH = −1

2

∑
〈i,j〉

[a†
i aj + H.c.] − (2λ − 1)

∑
i

[
1

2
− 2a

†
i ai

]
.

(A5)

After direct diagonalization of the above model we have the
ground state energy (per site),

λEHP
q = 1

2 − λ, (A6)

which is exactly the ground state energy for the classical
model. It can be proved that the HP method gives the exact
quantum energy when λ > 1. Therefore, when λ > 1, the
quantum fluctuation energy δEfluc ∼ 0 in this model.

When λ < 1, the spins are polarized in the x-y plane, for
instance, along x direction (the model has rotation symmetry
in the x-y plane), we thus make a different HP transformation,

Sx
i = S − ni = 1

2
− ni, (A7)

S
y

i = 1

2
(
√

2S − niai + a
†
i

√
2S − ni) ≈ 1

2 (ai + a
†
i ), (A8)

Sz
i = i

2
(−

√
2S − niai + a

†
i

√
2S − ni) ≈ i

2
(−ai + a

†
i ).

(A9)

The Hamiltonian becomes

λH = −
∑

i

[
3

2
− (aia

†
i + H.c.)

]
−

∑
〈i,j〉

[
λ

2
(a†

i aj + H.c.)

+ 1 − λ

2
(a†

i a
†
j + H.c.)

]
. (A10)

Different from Eq. (A5), in the above equation we now have
pairing terms a

†
i a

†
j , which are beyond the classical models.

Transferring the above equation to momentum space we have

λH = −3

2
N + 1

2

∑
k

{[2−λ(cos kx+ cos ky)](a†
kak+a−ka

†
−k)

+ (λ − 1)(cos kx + cos ky)(a†
ka

†
−k + H.c.)}. (A11)

By performing Bogoliubov transformation,⎛
⎜⎜⎜⎝

γk
γ−k

γ
†
k

γ
†
−k

⎞
⎟⎟⎟⎠ =

⎛
⎜⎝

u 0 0 −v

0 u −v 0
0 −v u 0

−v 0 0 u

⎞
⎟⎠

⎛
⎜⎜⎜⎝

ak
a−k

a
†
k

a
†
−k

⎞
⎟⎟⎟⎠, (A12)

where u and v satisfy

uv = (1 − λ)(cos kx + cos ky)

2
√

[2 − λ(cos kx + cos ky)]2 − (1 − λ)2(cos kx + cos ky)2
, (A13)

u2 + v2 = 2 − λ(cos kx + cos ky)

2
√

[2 − λ(cos kx + cos ky)]2 − (1 − λ)2(cos kx + cos ky)2
, (A14)

ak and a
†
−k are transformed into new bosonic operators γk and γ

†
−k,

λH = −3

2
N + 1

2

∑
k

√
4 − 4λ(cos kx + cos ky) + (2λ − 1)(cos kx + cos ky)2 (γ kγ

†
k + γ

†
−kγ−k). (A15)

Therefore, the ground state energy calculated by HP method is

λEHP
q = −3

2
+ 1

8π2

∫
dk

√
4 − 4λ(cos kx + cos ky) + (2λ − 1)(cos kx + cos ky)2. (A16)

The ground state energy of the classical model is calculated
as

λEc = − 1
2 , (A17)

which is a constant.
We compare the ground state energies λEgs as functions

of λ calculated by the classical model, the HP method, and

the SBS method in Fig. 6. The results show that above
λ > 1, the ground state energies obtained from the above
three methods are almost identical, suggesting the quantum
effects in this region are negligible. However, when λ < 1, the
energy differences become obvious. The ground state energies
calculated by the HP method and SBS method are much lower
than those calculated by the classical model, revealing the
importance of the quantum effects and with the decreasing of

115119-6
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λ the quantum effects become more pronounced. We note that
the ground state energies calculated by SBS are even lower

than those calculated by the HP method, which ignores the
higher-order terms.
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