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Evolution of quantum entanglement with disorder in fractional quantum Hall liquids
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We present a detailed study of the ground-state entanglement in disordered fractional quantum Hall liquids.
We consider electrons at various filling fractions f in the lowest Landau level, with Coulomb interactions. At
f = 1/3,1/5, and 2/5 where an incompressible ground-state manifold exists at zero disorder, we observe a
pronounced minimum in the derivative of entanglement entropy with respect to disorder. At each filling, the
position of this minimum is stable against increasing system size, but its magnitude grows monotonically and
appears to diverge in the thermodynamic limit. We consider this behavior of the entropy derivative as a compelling
signal of the expected disorder-driven phase transition from a topological fractional quantum Hall phase to an
insulating phase. On the contrary, at f = 1/2 where a compressible composite fermion sea is present at zero
disorder, the entropy derivative exhibits much greater, almost chaotic, finite-size effects, without a clear phase
transition signal for system sizes within our exact diagonalization limit. However, the dependence of entanglement
entropy with system size changes with increasing disorder, consistent with the expectation of a phase transition
from a composite fermion sea to an insulator. Finally, we consider f = 1/7 where compressible Wigner crystals
are quite competitive at zero disorder, and analyze the level statistics of entanglement spectrum at f = 1/3.

DOI: 10.1103/PhysRevB.96.115111

I. INTRODUCTION

The rich physics of two-dimensional (2D) electron sys-
tems subject to a strong perpendicular magnetic field in
the fractional quantum Hall (FQH) regime has attracted
intensive interest. In particular, studying the FQH effect [1–6],
namely the quantized Hall conductance plateaus near various
fractional Landau level filling fractions f [1], is not only
fundamentally crucial for understanding various types of
exotic topological order [7], but is also closely relevant to
the technological development of quantum computers [8,9].

The FQH plateaus, unlike plateaus near integer fillings
whose explanation requires only single-particle physics [10],
are a consequence of the strong electron-electron interaction
combined with (the ever-present) weak disorder in the system.
The interaction opens an energy gap to protect the topologi-
cally ordered FQH ground state at filling f with a quantized
Hall conductance, and the weak disorder localizes excitations
to provide a finite Hall conductance plateau near f . However,
if disorder is much stronger than the interaction scale, the
topological FQH ground state and its corresponding plateau
will be eventually destroyed, which is consistent with the
experimental fact that the FQH effect only exists in samples
with high mobility [6]. A few numerical studies [11,12] of
the disorder-driven transition from a topological FQH state to
an insulating phase exist, tracking the closing of the energy
gap and mobility gap and the collapse of Hall conductance
quantization with increasing disorder strength.

Tremendous effort has also gone into understanding FQH
physics at fillings where Hall conductance plateaus are
absent [13–25]. A representative example is f = 1/2, where
both experimental [16] and theoretical [15,18,21] work has
suggested that composite fermions (CFs) [4] form a Fermi sea
in clean systems. Although the precise nature of the CF sea
is still a central topic of current research [15,18,21–24], early
studies already predicted that a transition to an insulator occurs
at strong disorder [14,15].

Following the extensive applications of quantum en-
tanglement spectroscopy methods to clean FQH systems
[26–40], corresponding studies in disordered FQH liquids
started recently [41–43]. In particular, the ground-state en-
tanglement entropy has been demonstrated as a new and
powerful diagnostic of disorder-driven transitions in FQH
liquids [43]. In Ref. [43], we first applied this diagnostic
to electrons with Haldane’s pseudopotential interaction [3]
at f = 1/3 in the lowest Landau level (LLL), by tracking
the entanglement evolution with increasing disorder. It was
shown that the phase transition point can be precisely identified
by a sharp increase in the magnitude of the ground-state
entanglement entropy derivative with respect to disorder, and
a finite-size scaling analysis of the entropy derivative can
be used to extract the critical exponent ν of the diverging
correlation length at the transition point. Moreover, it was
found that the nearest-neighbor level repulsion statistics of
the ground-state entanglement spectrum (for the same system
sizes as the entanglement entropy) does not dramatically
change at the critical point, and is thus not sensitive to the
phase transition.

In this paper, we extend our research of the disorder-driven
entanglement evolution to other fractional filling fractions,
where the ground states at zero disorder are either incompress-
ible topological FQH states or gapless CF seas. We consider
Coulomb interaction between electrons, which is more realistic
than the Haldane’s pseudopotential used in Ref. [43]. The
structure of this paper is as follows. We first introduce
our model in detail in Sec. II, including the many-body
Hamiltonian, the disorder models, the underlying symmetries,
and the definitions of the ground-state entanglement entropy.
Then in Secs. III and IV, we focus on the Laughlin fillings
f = 1/3,1/5, and the hierarchy filling f = 2/5, where the
ground states at zero disorder are incompressible topological
FQH states. At all of these fillings, we observe a similar
evolution of the ground-state entanglement entropy to that
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reported in Ref. [43], and the entropy derivative with respect to
disorder provides a clear signal for the expected transition from
a topological FQH state to an insulator. We extract the length
exponent ν of this transition by a finite-size scaling analysis.
In Sec. V, we consider f = 1/2 where the ground state at zero
disorder is a gapless CF sea. We examine two disorder models,
for both of which we observe a very chaotic behavior of the
entropy derivative without a convincing phase transition signal
for all probed system sizes within our exact diagonalization
(ED) capability. However, the scaling of the entanglement
entropy itself versus the system size changes with increasing
disorder, which is consistent with the predicted transition
from a CF sea to an insulator. In Sec. VI, we summarize
our results, and list some open questions for future work.
Finally, we also discuss the entropy evolution at f = 1/7,
and demonstrate the ground-state entanglement spectrum (ES)
level statistics at f = 1/3 for completeness in the Appendix.
Similar to the pseudopotential case in Ref. [43], we also
observe the localization of the low-energy part of Coulomb ES
with increasing disorder, which, however, again only occurs
deeply in the insulating phase.

II. MODEL

We consider N interacting electrons in a 2D random
potential U (r) on an L1 × L2 rectangular torus penetrated by
a uniform perpendicular magnetic field. We suppose Coulomb
interaction V (ri ,rj ) = e2

ε
1

|ri−rj | between electrons, where −e

is the electron charge, ε is the dielectric constant, and ri is
the coordinate of the ith electron. For convenience, we set
e2/(ε�) = 1 and the magnetic length � = 1 as the energy
and length units throughout the paper. In a strong magnetic
field, the energy scales of both interaction and disorder
are small compared with the Landau level spacing, so we
project the many-body Hamiltonian H = ∑N

i<j V (ri − rj ) +
∑N

i=1 U (ri) to the LLL, which can be written in the LLL orbital
basis as

H =
Nφ−1∑

m1,m2,m3,m4=0

Vm1,m2,m3,m4c
†
m1

c†m2
cm3cm4

+
Nφ−1∑

m1,m2=0

Um1,m2c
†
m1

cm2 . (1)

Here Nφ = L1L2/(2π ) is the number of magnetic flux
quanta penetrating the torus, and c

†
m (cm) creates (annihi-

lates) an electron in the LLL orbital m. After choosing
the single-particle wave function of orbital m as ψm(x,y) =
( 1√

πL2
)

1
2 ∑+∞

n=−∞ e
i 2π
L2

(m+nNφ )y
e
− 1

2 [x− 2π
L2

(m+nNφ )]2

, we can com-
pute the interaction matrix elements V{mi } and the disorder
matrix elements U{mi } by the standard second-quantization
procedure, which gives

V{mi } = 1

2
δ

modNφ

m1+m2,m3+m4

+∞∑

s,t=−∞
δ

modNφ

t,m1−m4
Vq

× e− 1
2 |q|2ei 2πs

Nφ
(m1−m3)

(2)

and

U{mi } =
+∞∑

s,t=−∞
δ

modNφ

t,m1−m2
Uqe

− 1
4 |q|2ei πs

Nφ
(2m1−t)

. (3)

Here δ
modNφ

i,j is the periodic Kronecker delta function with pe-

riod Nφ, q = (qx,qy) = ( 2πs
L1

, 2πt
L2

) with |q|2 = q2
x + q2

y , Vq =
1

Nφ

1
|q| is the Fourier transform of Coulomb interaction, and

Uq = 1
2πNφ

∫
U (r)e−iq·rdr is the Fourier transform of U (r).

s = t = 0 must be excluded from the sum in Eq. (2) to remove
the artificial divergence (caused by the lack of a positive
countercharge in the above model, which is always present
in experiments).

We model disorder for the most part using Gaussian white
noise, which satisfies 〈U (r)〉 = 0,〈U (r)U (r′)〉 = W 2δ(r − r′)
and 〈Uq〉 = 0,〈UqUq′ 〉 = W 2

2πNφ
δq,−q′ , where W is the strength

and 〈· · · 〉 represents the sample average. In each sample, we
generate real Uq=0 from a Gaussian distribution with zero
mean and variance W 2

2πNφ
. The real part and imaginary part of

Uq �=0 are separately produced from a Gaussian distribution
with zero mean and variance W 2

4πNφ
. Because U ∗

q = U−q,
the above generation procedures are only implemented for
independent Uq’s with q ∈ {q|qx = 0,qy � 0} ∪ {q|qx > 0}.
For filling factor f = 1/2, for reasons that will become clear
later, we consider, in addition to Gaussian white noise, an
ensemble of short-range scatterers corresponding to U (r) =∑

n Wne
−|r−Rn|2/λ2

and Uq = λ2

2Nφ

∑
n Wne

− 1
4 λ2|q|2e−iq·Rn . Here

λ is the range of scatterers, and Wn is the strength of the nth
scatterer and Rn its position, the latter being randomly chosen
in each sample. When averaging over Ns samples, we estimate
the error bar of quantity A by

√
(〈A2〉 − 〈A〉2)/(Ns − 1).

In the absence of disorder, Eq. (1) is invariant under
the particle-hole (PH) transform c

†
m ↔ cm up to a constant

shift [44]. A single disorder configuration breaks this sym-
metry, because the PH transform replaces U{mi } by −U ∗

{mi } in
Eq. (1) up to a constant shift, which is equivalent to Uqx,qy

→
−Uqx,−qy

in Eq. (3). However, the PH symmetry is statistically
preserved by Gaussian white noise, because −Uqx,−qy

still
satisfies the Gaussian white noise conditions. Moreover, if
the distributions of Wn and R

y
n for an ensemble of scatterers

are symmetric with respect to zero, the PH symmetry is also
statistically preserved, otherwise it is broken. On the other
hand, the magnetic translation invariance conserved in the in-
teraction term (2) is always broken by the disorder (3), making
the numerical simulation significantly more challenging.

In the following, we choose the isotropic limit with
L1 = L2 = √

2πNφ . In order to study the entanglement
properties, we divide the whole system by two cuts at orbital
m = 0 and m = Nφ/2� − 1, respectively, where x� is the
integer part of x. This procedure gives two subsystems A

and B with boundary length L = 2
√

2πNφ , consisting of
orbital m = 0, . . . ,Nφ/2� − 1 and m = Nφ/2�, . . . ,Nφ −
1, respectively. We have checked that different positions of
the cuts provide the same results statistically for averaged
quantities. The entanglement entropy between A and B can
be defined as the von Neumann entropy S(ρ) = −TrρA ln ρA,
where ρA = TrBρ is the reduced density matrix of part A, and ρ
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is the density matrix describing a suitably chosen ground-state
manifold.

For a partially filled LLL at filling f = N/Nφ = p/q

with coprime p and q, the ground states of any translation
invariant Hamiltonian in clean samples are exactly D-fold
degenerate with D � q, guaranteed by the magnetic transla-
tion invariance [45]. If D is independent of the system size,
such a degeneracy motivates us to consider a ground-state
manifold containing the lowest D eigenstates |�i=1,...,D〉 of
the Hamiltonian (1) at any W for consistency, rather than a
single eigenstate. In that case, we will use three choices of ρ:
(i)

ρ = 1

D

D∑

i=1

|�i〉〈�i |;

(ii)

ρi = |�i〉〈�i |;

and (iii)

ρmin
i = ∣∣�i

min

〉〈
�i

min

∣∣,

where |�i
min〉 is the minimally entangled state (MES) [46] in

the ground-state manifold.
Depending on different choices, we correspondingly mea-

sure the entanglement entropy by S(ρ), S = 1
D

∑D
i=1 S(ρi),

and Smin = 1
M

∑M
i=1 S(ρmin

i ), respectively [43], where M is
the number of MESs. The sum over states in S and Smin is
to minimize the effect of statistical fluctuations for a finite
number of samples of finite size. However, if D depends on
the system size, we just choose a ground-state manifold only
containing the lowest eigenstate |�1〉 of the Hamiltonian (1),
i.e. ρ = |�1〉〈�1|, so the ground-state entanglement entropy
is measured by S(ρ) = S(|�1〉).

III. LAUGHLIN FILLINGS

We first consider fillings f = 1/q with q = 3 and 5. In
clean systems, we have numerically confirmed for various
system sizes that the Coulomb ground states at these fillings
are always exactly q-fold degenerate, so we choose the lowest
q eigenstates of the Hamiltonian (1) as the ground-state
manifold. The overlap and energy gap calculations at these
fillings suggest that the Coulomb ground states in clean
systems are gapped and well captured by the Laughlin model
states, although the deviation from the model states increases
for larger q (Table I). In the noninteracting limit with W = ∞
for PH-symmetric disorder, because extended single-particle
states only exist at the center of the LLL band [47], all occupied
single-particle states below the Fermi level at f = 1/3 and
1/5 are localized, which means that the ground state is an
Anderson insulator. Therefore, we expect a transition from
the topological Laughlin phase to an insulating phase with
increasing disorder at these fillings. In the following, we will
characterize this transition by the entanglement entropy of the
ground-state manifold, with disorder modeled by Gaussian
white noise.

TABLE I. The squared overlap O at zero disorder between the
Coulomb ground state and the corresponding Laughlin model state,
and the energy difference � between the qth and the (q + 1)th lowest
eigenstate of the Hamiltonian (1) at zero disorder, at f = 1/3 and
1/5. Laughlin model states are obtained by diagonalizing their parent
Hamiltonians, i.e., Haldane’s pseudopotentials. In topological FQH
phases, while the overlap is expected to decrease as the system size
gets very large, the energy gap is expected to remain robust, as can
be seen for f = 1/3 and 1/5. We also provide the data at f = 1/7,
which will be used in Appendix A.

f = 1/3 f = 1/5 f = 1/7

O � O � O �

N = 4 0.9788 0.0472 0.9528 0.0080 0.9555 0.0028
N = 5 0.9947 0.0631 0.9556 0.0101 0.8613 0.0028
N = 6 0.9891 0.0630 0.9222 0.0107 0.8575 0.0033
N = 7 0.9921 0.0624 0.9351 0.0091 0.7997 0.0022
N = 8 0.9803 0.0603 0.7932 0.0062 0.5230 0.0006
N = 9 0.9694 0.0585 0.7199 0.0070
N = 10 0.9755 0.0630 0.8636 0.0110
N = 11 0.9768 0.0651
N = 12 0.9744 0.0631
N = 13 0.9725 0.0629

A. f = 1/3

For q = 3, the Coulomb ground states at zero disorder are
very well described by the f = 1/3 Laughlin model states, as
indicated by the extremely high overlaps that are stable against
increasing system size (Table I). The Hall conductance plateau
at f = 1/3 is the first reported FQH effect in experiments [1].
Strong disorder closes the energy gap and the mobility gap,
leading to a phase transition to an insulating phase [11,12].
We compute the ground-state manifold by ED for N � 10
electrons with Hilbert space dimension up to 30 045 015,
then monitor the evolution of its entanglement entropy with
increasing disorder.

We first measure the entanglement entropy by S(ρ). Similar
to the case of f = 1/3 with Haldane’s pseudopotential [43],
we find that 〈S(ρ)〉 decreases with W for a fixed system
size [Fig. 1(a)]. However, it increases with the system size
at a fixed W , always agreeing with an area law 〈S(ρ)〉 ∝ L

[Fig. 1(b)]. We further compute the derivative of S(ρ) with
respect to the disorder strength, dS(ρ)/dW , approximated
in each sample by [S(ρ)|W+�W − S(ρ)|W ]/�W with �W =
0.001W , where only the magnitude of W is changed by
a small percentage but the disorder configuration is kept
fixed. One can see that all 〈dS(ρ)/dW 〉 curves exhibit a
pronounced minimum that gets deeper for larger systems
[Fig. 1(c)]. Except the smallest N = 4, this minimum is located
at Wc ≈ 0.09, which is almost independent of the system size.
As demonstrated in a double logarithmic plot [Fig. 1(d)], the
magnitude of the minimum h = | minW 〈dS(ρ)/dW 〉| grows
with N as h ∝ N1.10, which is consistent with a divergence
in the thermodynamic limit. Informed by the fact that thermal
phase transitions are very often characterized by a singularity
in the specific heat (which is proportional to the temperature
derivative of thermal entropy), we consider this divergence of
the disorder derivative of entanglement entropy as a convincing
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FIG. 1. Entanglement entropy measured by S(ρ) for N = 4 − 10 electrons at f = 1/3. (a) 〈S(ρ)〉 versus W . (b) 〈S(ρ)〉 versus the cut length
L at W = 0,0.09,0.6, and ∞. The dashed line is the linear fitting of 〈S(ρ)〉 versus L. (c) 〈dS(ρ)/dW 〉 versus W , replotted in terms of scaled
variables 〈dS(ρ)/dW 〉/N 1

2 + 1
2ν and N

1
2ν (W − Wc) in the inset with Wc ≈ 0.09 and ν ≈ 0.9. The vertical dashed line indicates W = 0.09. Each

color corresponds to the same system size as in (a). (d) The minimum magnitude h versus N on a double logarithmic scale. The dashed line
corresponds to h ∝ N 1.10. We averaged 20000 samples for N = 4–7, 5000 samples for N = 8, 800 samples for N = 9, and 50 samples for
N = 10 electrons. The calculation for N = 10 is only done at a few points near W = 0.09. The results are consistent with those for smaller
systems sizes, but with much larger error bars due to much fewer samples. In (a), we also give the data at W = ∞.

signature of the expected quantum phase transition from the
f = 1/3 Laughlin phase to an insulating phase. A sharp drop
in the entanglement entropy and a pronounced peak in the
entanglement derivative were also used to identify a first-order
transition in clean bilayer quantum Hall systems as a function
of layer separation [48].

For a continuous phase transition in our case, the area law
shown in Fig. 1(b) suggests a scaling behavior

S(ρ) ∝ N
1
2 f

[
N

1
2ν (W − Wc)

]
,

for large N (here we have used L = 2
√

2πNφ = 2
√

2πN/f ∝√
N ), leading to

dS(ρ)/dW ∝ N
1
2 + 1

2ν f ′[N 1
2ν (W − Wc)

]

and, in particular,

dS(ρ)/dW |W=Wc
∝ N

1
2 + 1

2ν ,

where f ′ means derivative. Thus h ∝ N1.10 in Fig. 1(d)
implies that ν ≈ 0.9. By plotting the rescaled variable
〈dS(ρ)/dW 〉/N 1

2 + 1
2ν versus N

1
2ν (W − Wc) for Wc ≈ 0.09 and

ν ≈ 0.9, we indeed find that besides the smallest size N = 4,
all data in Fig. 1(c) collapse onto a single curve [Fig. 1(c)
inset].

Wc obtained from Coulomb interaction is very different
from its counterpart obtained from Haldane’s pseudopoten-
tial [43]. For Coulomb interaction, we find Wc ≈ 0.09, which
is seven times smaller than the reported value ≈0.6 for
Haldane’s pseudopotential, reflecting the fact that Coulomb
ground states are protected by a smaller gap and are more
fragile against disorder. Since ν is a critical exponent, however,
we would expect that Coulomb interaction and pseudopotential
interaction should give roughly the same ν. However, we
numerically get ν ≈ 0.9 for Coulomb interaction, which is
50% larger than the reported value ≈0.6 for Haldane’s
pseudopotential and almost reaches the conventional ν � 2/d

bound for d-dimensional disordered systems [49,50]. We
have further examined an interpolation between Coulomb
and Haldane’s pseudopotential, and observed a continuous
varying of ν. Such an apparent dependence of ν on the
interaction suggests that corrections to finite-size scaling are
still significant in the system sizes reached by ED.

An alternative measure of the entanglement entropy is given
by S. Because the ground states in clean systems are exactly
degenerate and different choices of ground states may lead to
very different S [46], this quantity is not well defined at W = 0.
This also causes the larger error bars of 〈dS/dW 〉 compared to
〈dS(ρ)/dW 〉 at very small W . However, once the disorder is
not too weak, the results of S (Fig. 2) are very similar to those
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FIG. 2. Entanglement entropy measured by S for N = 4–10 electrons at f = 1/3. (a) 〈S〉 versus W . (b) 〈S〉 versus the cut length L at
W = 0,0.085,0.6, and ∞. The dashed line is the linear fitting of 〈S〉 versus L. (c) 〈dS/dW 〉 versus W , replotted in terms of scaled variables
〈dS/dW 〉/N 1

2 + 1
2ν and N

1
2ν (W − Wc) in the inset with Wc ≈ 0.085 and ν ≈ 0.9. The vertical dashed line indicates W = 0.085. Each color

corresponds to the same system size as in (a). (d) The minimum magnitude h versus N on a double logarithmic scale. The dashed line
corresponds to h ∝ N 1.10. We averaged 20000 samples for N = 4–7, 5000 samples for N = 8, 800 samples for N = 9, and 50 samples for
N = 10 electrons. The calculation for N = 10 is only done at a few points near W = 0.085. The results are consistent with those for smaller
systems sizes, but with much larger error bars due to much fewer samples. In (a), we also give the data at W = ∞.

of S(ρ). Remarkably, the minimum of 〈dS/dW 〉 is located at
Wc ≈ 0.085, which is almost the same as that of 〈dS(ρ)/dW 〉
[Fig. 2(c)]. The finite-size scaling analysis also gives a similar
ν ≈ 0.9 [Fig. 2(c) inset].

Finally, we study the entanglement entropy of the MES
[46,51,52] in the ground-state manifold. We consider all su-
perpositions |�〉 = sin θ1 sin θ2|�1〉 + sin θ1 cos θ2e

iφ1 |�2〉 +
cos θ1e

iφ2 |�3〉 with θ1,θ2 ∈ [0,π/2] and φ1,φ2 ∈ [0,2π ), then
numerically search for the local minima of S(|�〉) in the
parameter space spanned by (θ1,θ2,φ1,φ2). |�〉’s at these
local minima correspond to the MES |�i=1,··· ,M

min 〉. Since
searching for these MESs is a complicated four-dimensional
minimization problem, we can only reach N = 8 electrons
with less samples, and do not perform the calculation of
〈dSmin/dW 〉. Instead, in Fig. 3, we show 〈Smin〉 as a function
of W . At small disorder, an almost constant 〈S̄min〉 suggests
that the ground-state topological properties are the same as
those in clean systems. However, the plateau of 〈S̄min〉 is not as
good as that for Haldane’s pseudopotential [43]. We attribute
this as being due to the larger finite-size effect in Coulomb
ground states. 〈S̄min〉 starts to significantly drop at W ≈ 0.08,
signifying a transition point consistent with those indicated by
〈dS(ρ)/dW 〉 and 〈dS/dW 〉.

In summary, at f = 1/3, all of the three entanglement mea-
surements give consistent identifications of the transition from
the Laughlin phase to an insulating phase. We have examined
that this consistency also holds for f = 1/5 and 2/5. There-
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FIG. 3. Entanglement entropy measured by Smin versus W for
N = 4–8 electrons at f = 1/3. We averaged 2000 samples for N =
4–7 and 1000 samples for N = 8 electrons. The vertical dashed line
indicates W = 0.08. The data at W = ∞ are also given.
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FIG. 4. Entanglement entropy measured by S(ρ) for N = 4–7 electrons at f = 1/5. (a) 〈dS(ρ)/dW 〉 versus W , replotted in terms of scaled
variables 〈dS(ρ)/dW 〉/N 1

2 + 1
2ν and N

1
2ν (W − Wc) in the inset with Wc ≈ 0.012 and ν ≈ 1.3. The vertical dashed line indicates W = 0.012.

(b) The depth of the minimum h versus N on a double logarithmic scale. The dashed line corresponds to h ∝ N0.90. We averaged 20000 samples
for N = 4 and 5, 2000 samples for N = 6, and 100 samples for N = 7 electrons.

fore, we will only demonstrate the results of dS(ρ)/dW in the
remainder of this section as well as in the following section.

B. f = 1/5

For q = 5, the overlaps between the ground states at zero
disorder and the f = 1/5 Laughlin model states are still
high (Table I), which is consistent with the experimental
observation of a robust FQH effect in high-quality samples
at f = 1/5 [53]. However, compared with the f = 1/3 case,
the deviation from the model states is larger, and the energy
gaps are smaller, implying that the topological ground states
at f = 1/5 are more fragile against disorder than those at f =
1/3. In the following, we compute the ground-state manifold
by ED for N � 7 electrons with Hilbert space dimension up
to 6 724 520, and track their entanglement entropy evolution.
The reason why we can only reach a smaller N at f = 1/5
than at f = 1/3 is that the Hilbert space for a fixed N is larger
at lower fillings.

We show 〈dS(ρ)/dW 〉 in Fig. 4. Similar to the f = 1/3
case, we observe a pronounced minimum in all 〈dS(ρ)/dW 〉
curves at f = 1/5, whose magnitude increases with the system

size [Fig. 4(a)]. However, as expected from the overlap
and energy gap calculations at zero disorder, this minimum
is located at a much smaller Wc ≈ 0.012 (except for the
smallest system size N = 4) than that ≈0.09 at f = 1/3.
The minimum magnitude h also shows a larger finite-size
effect than the f = 1/3 case. At f = 1/5, the data point
of N = 4 in the ln h- ln N plot obviously deviates from the
linear growth of other three points [Fig. 4(b)]. With the point
of N = 4 neglected, we obtain h ∝ N0.90, which suggests
ν ≈ 1.3 according to the finite-size scaling. Indeed, if we set
Wc ≈ 0.012 and ν ≈ 1.3, all data in Fig. 4(a) collapse to a
single rescaled curve for N = 5–7 electrons [Fig. 4(a) inset].
We notice that ν obtained at f = 1/5 is larger than that ≈0.9
at f = 1/3, and is consistent with the ν � 2/d bound.

IV. f = 2/5

We next go beyond the Laughlin fillings and consider
f = 2/5. A robust FQH effect was experimentally observed
at this filling [54], which can be interpreted as two fully
filled effective Landau levels of CFs [4], or the daughter of
the f = 1/3 FQH effect in the hierarchy scenario [3]. At
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FIG. 5. Entanglement entropy measured by S(ρ) for N = 4,6,8, and 10 electrons at f = 2/5. (a) 〈dS(ρ)/dW 〉 versus W , replotted in
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2 + 1
2ν and N

1
2ν (W − Wc) in the inset with Wc ≈ 0.06 and ν ≈ 0.6. The vertical dashed line indicates
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20000 samples for N = 4,6,8, and 400 samples for N = 10 electrons.
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TABLE II. Ground-state degeneracy D in clean systems for N =
6–13 electrons at f = 1/2.

N 6 7 8 9 10 11 12 13

D 4 8 8 2 8 16 2 8

zero disorder, the Coulomb ground states at f = 2/5 are
incompressible FQH states with large overlaps with the CF
ansatz wave functions [55,56]. Here again, for PH symmetric
disorder, in the noninteracting limit, all single-particle states
below the Fermi level at f = 2/5 are localized, leading to an
Anderson insulator. Therefore, we again expect a transition
from a topological FQH phase to an insulator with increasing
disorder at this filling. Since the Coulomb ground states
at f = 2/5 are fivefold degenerate at zero disorder for all
system sizes, we choose the ground-state manifold containing
the lowest five eigenstates of the Hamiltonian (1), which is
obtained by ED for N � 10 electrons with Hilbert space
dimension up to 3 268 760. We model disorder by Gaussian
white noise in this section.

The evolution of entanglement entropy at f = 2/5 is
similar to those at Laughlin fillings (Fig. 5). We observe a
pronounced minimum in all 〈dS(ρ)/dW 〉 curves. The position
of this minimum stays around Wc ≈ 0.06 for N � 8 electrons
[Fig. 5(a)], which means that the FQH phase with Coulomb
interaction at f = 2/5 is more robust against disorder than that

at f = 1/5. There is a large finite-size effect in the minimum
magnitude h: the data points of N = 4 and N = 6 electrons in
the ln h- ln N plot deviate from the linear growth of other two
points [Fig. 5(b)]. Based on the finite-size scaling analysis of
the data for N = 8 and N = 10 electrons, we obtain ν ≈ 0.6
[Fig. 5(a) inset]. This value is smaller than those at f = 1/3
and f = 1/5, and again violates the ν � 2/d bound.

V. f = 1/2

Having considered several filling fractions where incom-
pressible FQH phases exist in clean systems, we now extend
our discussion to f = 1/2. For the half-filled Landau level
without disorder, in a mean-field picture CFs feel a zero
effective magnetic field and consequently form a gapless CF
sea instead of an incompressible FQH state [15,16,18,21,25].
For finite systems, the shape of such a CF sea depends on
the system size, leading to a variable ground-state degeneracy
D, as shown in Table II. Because the averaging method used
in Secs. III and IV is not appropriate for a manifold with
a degeneracy depending on the system size, here we just
focus on the entanglement entropy of the lowest eigenstate
|�1〉 of the Hamiltonian (1), which is obtained by ED
for N � 13 electrons with Hilbert space dimension up to
10 400 600.

Naively one may expect that the metallic CF sea in clean
systems will be destroyed by an arbitrarily small disorder,
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FIG. 6. Entanglement entropy measured by S(|�1〉) at f = 1/2 with Gaussian white noise. (a) 〈S(|�1〉)〉 versus W for N = 6–12 electrons.
(b) 〈dS(|�1〉)/dW 〉 versus W for N = 6–12 electrons. Each color corresponds to the same system size as in (a). (c) 〈S(|�1〉)〉 versus L at
various W for N = 6–13 electrons. The dashed line is the linear fitting of 〈S(|�1〉)〉 versus L. (d) 〈S(|�1〉)〉/L versus ln L at various W for
N = 6–13 electrons. Each color corresponds to the same W as in (c). We averaged 20000 samples for N = 6–9, 5000 samples for N = 10, 500
samples for N = 12, and 100 samples for N = 13 electrons. In (a), (c), and (d), we also give the data at W = ∞.
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according to the scaling theory of localization, which excludes
the metallic behavior in 2D noninteracting systems with
random disorder if the magnetic field is absent [57]. However,
being different from ordinary fermions, CFs carry magnetic
flux. Early arguments suggested [14] that the disorder-induced
inhomogeneous CF density produces random local fluctua-
tions of the effective magnetic field (although the net effective
magnetic field is still zero), thus suppressing the localization of
CFs and stabilizing the metallic CF sea at weak disorder [58].
Then, at strong disorder, the transition to an insulator occurs,
consistent with the conventional localization theory. In the
following, we will look for the clue of this phase transition in
the entanglement entropy.

We first consider Gaussian white noise, which preserves
the PH symmetry. S(|�1〉) and 〈dS(|�1〉)/dW 〉 are shown
in Figs. 6(a) and 6(b), respectively. Strikingly, we observe
a chaotic behavior of the entropy derivative at f = 1/2, which
is very different from those at f = 1/3,1/5, and 2/5. For some
system sizes such as N = 6 and N = 7 electrons, it is difficult
to identify a minimum in 〈dS(|�1〉)/dW 〉. For other system
sizes where an obvious minimum in 〈dS(|�1〉)/dW 〉 exists,
its position is still changing significantly with the system size,
and the magnitude does not nicely scale with N . Therefore,
at least for the system sizes that we can reach by ED, the
disorder derivative of the entanglement entropy with Gaussian
white noise does not provide a convincing signal of the phase
transition at f = 1/2.

As a result of the PH symmetry, the f = 1/2 ground
state in the W = ∞ limit for Gaussian white noise is not an
insulator, but a metallic critical phase with the same Hall and
longitudinal conductance σxy = σxx = 0.5e2/h [59], which
may make Gaussian white noise inappropriate for the study
of a transition at f = 1/2 from a CF sea to an insulator.
In order to understand whether the chaotic 〈dS(|�1〉)/dW 〉
observed above is due to the absence of an insulator in the
noninteracting limit, we then consider a different disorder
model that breaks the PH symmetry. We choose an ensemble
of scatterers [59], and assume that (i) the range of scatterers
is λ = 1/

√
2, which is comparable with the magnetic length

� = 1; (ii) the number of scatterers in the ensemble is 3Nφ ,
which is significantly more than one per flux quantum; (iii)
W is negative, and Wn = 10W for 20% of the scatterers and
Wn = W for the remaining in each sample; (iv) the distribution
of Rn is symmetric with respect to zero. In the noninteracting
limit, these settings significantly skew the density of states
and shift the position of extended single-particle states from
LLL filling fc = 1/2 to fc ≈ 0.6, thus breaking the PH
symmetry. The f = 1/2 ground state at W = ∞ for such an
ensemble of scatterers is hence an Anderson insulator with
σxy = σxx = 0. However, even in this case, we still observe a
very chaotic 〈dS(|�1〉)/dW 〉 [Fig. 7(b)]. S(|�1〉) [Fig. 7(a)] is
also similar to that for Gaussian white noise. Therefore, our
numerical data suggest that, for the system sizes that we can
reach by ED, the significant size-dependence in the disorder
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FIG. 7. Entanglement entropy measured by S(|�1〉) at f = 1/2 with an ensemble of scatterers. (a) 〈S(|�1〉)〉 versus W for N = 6–12
electrons. (b) 〈dS(|�1〉)/dW 〉 versus W for N = 6–12 electrons. Each color corresponds to the same system size as in (a). (c) 〈S(|�1〉)〉 versus
L at various W for N = 6–13 electrons. The dashed line is the linear fitting of 〈S(|�1〉)〉 versus L. (d) 〈S(|�1〉)〉/L versus ln L at various W for
N = 6–13 electrons. Each color corresponds to the same W as in (c). We averaged 20000 samples for N = 6–9, 5000 samples for N = 10, 500
samples for N = 12, and 100 samples for N = 13 electrons. In (a), (c), and (d), we also give the data at W = ∞.
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derivative of ground-state entanglement entropy at f = 1/2 is
not significantly affected by the choice of the disorder model,
or the state in the infinite disorder limit, but is more likely due
to the absence of a gap at zero disorder.

It is known that a logarithmic correction to the area law
of entanglement entropy is expected if a Fermi surface is
present, like in the case of CF sea [19,60]. However, if
disorder really induces the collapse of the CF sea, the area
law should be recovered at strong disorder. Therefore we
further examine the scaling of S(|�1〉) versus the boundary
length L of the subsystem A at various disorder. For both
of the Gaussian white noise and the scatterer ensemble, we
indeed find that S(|�1〉) grows with L faster than a linear
scaling at small disorder, then gradually evolves to a linear
scaling with increasing disorder [Figs. 6(c) and 7(c)]. This
tendency is consistent with the predicted transition from a
CF sea to an insulator. Although our system sizes are still
too small to manifest S/L ∝ ln L at small disorder [Figs. 6(d)
and 7(d)] (a similar finite-size effect at small L can also be seen
in Ref. [19]), we can estimate an upper bound of the critical
point as Wc ∼ 0.1 for Gaussian white noise and Wc ∼ 0.05
for the scatterer ensemble, after which an unambiguous linear
scaling of S ∝ L starts to show. Considering that the CF
picture conceptually does not apply to the noninteracting case,
the f = 1/2 metallic critical phase for Gaussian white noise
at W = ∞, which only exists in the W = ∞ limit, is not
contradictory with the insulating phase at strong disorder.

VI. DISCUSSION

In this paper, we have tracked the evolution of ground-state
entanglement entropy with increasing disorder for electrons
with Coulomb interactions at various LLL filling fractions,
and estimated the critical points and the length exponents of
pertinent disorder-driven phase transitions using a finite-size
scaling analysis of the ground-state entanglement entropy. Our
main results are summarized in Table III. At f = 1/3,1/5,
and 2/5, we observe the same feature in the derivative of the
entropy with respect to disorder: there is always a pronounced
minimum whose position is size independent, but whose
magnitude increases markedly with the system size, and is
consistent with a divergence in the thermodynamic limit.
We consider the location of this minimum as the critical
point Wc of the expected transition from a topological FQH
state to an insulator. A finite-size scaling analysis of the

TABLE III. The estimated zero-disorder gap �, the critical
disorder strength Wc for Gaussian white noise, and the length
exponent ν extracted from the evolution of entanglement entropy
with increasing disorder at various fillings f . “N/A” means that the
value is not available based on our present ED calculation. The data
at f = 1/3 obtained from the first-order Haldane’s pseudopotential
interaction are also given in the brackets.

f 1/5 1/3 2/5 1/2

� ∼0.008 ∼0.06 [∼0.4] ∼0.03 0
Wc 0.012 0.09 [0.6] 0.06 ∼0.1
ν 1.3 0.9 [0.6] 0.6 N/A

magnitude of the minimum gives us an estimation of the
critical length exponent ν at these fillings. The values of
ν that we obtain by this method vary by as much as 50%
depending on the filling fraction. Moreover, our estimates lie
on either side of the conventional bound ν � 2/d for the length
exponent for nontopological transitions in disordered systems.
This suggests that while our data for the transition from the
gapped FQH states (especially for the larger sizes) are quite
consistent with finite-size scaling, there are likely corrections
to finite-size scaling. These corrections are likely largest for
the FQH states with the smallest gaps (like f = 1/5). The
larger finite-size effects observed at f = 1/5 and 2/5 than
that at f = 1/3 may be related to the larger size of composite
fermions at these fillings [61].

However, it is noteworthy that all our estimates are very
different from ν ≈ 2.5 for the localization length at integer
plateau transitions [47,62–71]. It would therefore be of great
interest to have experimental estimates of these exponents
to see whether they are the same as that for integer plateau
transitions. Previous experiments have studied integer quan-
tum Hall plateau transitions by tuning the magnetic field; this
may not work for FQH-insulator transition because of the
possibility of intervening FQH states. Tuning the disorder,
while significantly more challenging, is not out of the question,
e.g., by gating a sample, and thereby changing the disorder
potential felt by the 2D electron gas. On the numerical side,
clearly the best possibilities for improvement remain for FQH
states with the largest gaps, which also have the largest
Wc, as indicated in Table III by a nearly constant �/Wc

that is close to the value found at f = 1/3 for the Haldane
pseudopotential [43].

At f = 1/2, the entropy derivative with respect to disorder
has a behavior that is quite size dependent, varying in a
somewhat chaotic manner for the system sizes we are able
to study. At this filling, the effective magnetic field for
composite fermions vanishes; as a result, there is no gap
and the effective length scale (magnetic length) diverges.
Consequently, finite-size effects are much more prominent. A
similar chaotic behavior is also observed at f = 1/4—another
filling fraction where compressible CF liquid is formed at zero
disorder. Access to larger systems, probably with the help
of more advanced numerical techniques, is needed to verify
whether the derivative will become regular when the system is
large enough. Even so, extracting Wc and ν through a finite-size
scaling technique could be more complicated because of the
different size dependence of the entanglement entropy for the
CF Fermi liquid and the disordered insulator.

Several future directions are suggested by our present
work. One is to study the entanglement evolution at f > 1/2
driven by PH symmetric disorder, and compare the result
with that of the PH conjugate at filling 1 − f . It should
be noted, however, that because the orbital partition used
here cannot distinguish f and 1 − f in the presence of PH
symmetry [36], the entanglement computed from a real-space
partition [35,36] will be necessary in that case. Another,
more interesting topic is to investigate the role of disorder
for non-Abelian FQH states, such as those at f = 5/2 and
12/5. However, even at zero disorder, these states are more
difficult to stabilize than the Abelian states studied in this
work. Before considering the disorder effect, we first need to
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modify the bare Coulomb interaction, for example, by tuning
its pseudopotential components or sample thickness [72,73],
to reach robust non-Abelian phases.
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APPENDIX A: f = 1/7

Previous studies in clean systems have shown that the
proximity to compressible Wigner crystals makes the Coulomb
ground states at f = 1/7 deviate more substantially from the
Laughlin model states than the f = 1/3 and 1/5 cases [74–76].
At zero disorder, we indeed find that both the overlap between
the Coulomb ground state and the Laughlin model state
and the energy gap drop significantly at N = 8 electrons
(Table I). The high overlaps for smaller N are then probably
because the formation of Wigner crystal, which is sensitive
to the sample geometry, is frustrated in these smaller systems
on the square torus. In experiments, the f = 1/7 FQH effect
was also observed only at relatively high temperature [77,78]
compared with the f = 1/3 and 1/5 cases, which can be
explained as the melting of Wigner crystals. Therefore, both
numerics and experiments suggest that the f = 1/7 Coulomb
ground state in a large clean system at zero temperature is a
compressible Wigner crystal instead of a FQH phase.

In the presence of Gaussian white noise, we track the
evolution of the entanglement entropy at f = 1/7 in a
manifold containing the lowest seven eigenstates of the
Hamiltonian (1). Due to the very fast growth of the Hilbert
space with increasing electron numbers, we can only efficiently
study up to N = 5 electrons by ED. We find that the behavior
of entropy derivative for these very small systems at f = 1/7
(Fig. 8) are similar to that at f = 1/3 and 1/5. There is a
pronounced minimum in all 〈dS(ρ)/dW 〉 curves. Except for
the smallest system size N = 3, the position of this minimum
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FIG. 8. Entanglement entropy measured by S(ρ) for N = 3–5
electrons at f = 1/7. (a) 〈dS(ρ)/dW 〉 versus W . The vertical dashed
line indicates W = 0.003. (b) The depth of the minimum h versus N

on a double logarithmic scale. We averaged 20000 samples for N =
3, 10000 samples for N = 4, and 2000 samples for N = 5 electrons.

is around a very small value Wc ≈ 0.003 [Fig. 8(a)], but a
reasonable linear fitting of the points in the ln h- ln N plot
[Fig. 8(b)] is not possible. Nevertheless, this similarity with
the f = 1/3 and 1/5 cases is probably just a result of the
nonvanishing finite-size gaps at zero disorder in these very
small systems (Table I). Once the compressible Wigner crystal
dominates at zero disorder for large enough systems, we expect
that the behavior of entanglement entropy would likely become
strikingly different.

APPENDIX B: ENTANGLEMENT SPECTRUM LEVEL
STATISTICS

Finally, we discuss the level statistics of ground-state ES,
i.e., the spectrum of − ln ρA, in the presence of Gaussian white
noise. In clean systems, each ES level can be labeled by the
number of electrons NA and the total momentum KA in part
A [30,34]. Disorder breaks the conservation of KA. However,
NA remains a good quantum number, which still allows us
to decompose the ES into various NA sectors. ES levels in
different NA sectors are independent, so putting them together
will hide the true level statistics in each NA sector. Therefore,
in the following we will focus on a specific NA sector, the one
with NA = N/2�, to study the ES level statistics therein.

In Ref. [43], the ES level statistics were diagnosed using
the distribution P (s) of the normalized level spacing sn/〈sn〉,
where sn = ξn − ξn−1 with ξn’s the unfolded [79,80] ES levels
with NA = N/2� sorted in ascending order in each sample.
Here we consider the ratio between two consecutive level
spacings, i.e., 〈rn〉 with rn = min(sn,sn+1)/ max(sn,sn+1), as
another indicator of the ES level statistics. We first compute
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FIG. 9. 〈rn〉 of the ground-state ES for (a) ξ ∈ (0,10] and
(b) ξ ∈ (0,15]. The values of 〈r〉 for GUE and Poisson distribution
are given by solid lines as references. The dashed line corresponds to
the middle value 〈r〉 ≈ 0.495 between GUE and Poisson. The arrow
indicates the transition point of 〈rn〉 from GUE to Poisson, diagnosed
by the crossing of 〈rn〉 with 〈r〉 ≈ 0.495. We averaged 20000 samples
for N = 4–7, 5000 samples for N = 8, and 800 samples for N = 9
electrons.
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〈rn〉 for the ES of each eigenstate of the Hamiltonian (1) in the
ground-state manifold, then further average it over the whole
manifold to get the mean 〈rn〉. In Fig. 9, we show the evolution
of 〈rn〉 at f = 1/3 in two windows ξ ∈ (0,10] and ξ ∈ (0,15].
The results at other fillings are similar.

We indeed observe a transition of 〈rn〉 from the Gaussian
unitary ensemble (GUE) value 〈r〉 ≈ 0.603 to the Poisson
value 〈r〉 ≈ 0.386, which becomes more obvious for larger
system sizes. However, contrary to the naive expectation that
the ES level statistics might have a dramatic change at the
same disorder strength as Wc ≈ 0.09 where dS/dW diverges,
the transition of 〈rn〉 occurs at a much larger W

ξ
c . By assuming

that 〈rn〉 crosses with 〈r〉 ≈ 0.495 (i.e., the middle value
between GUE and Poisson) at W = W

ξ
c , we find W

ξ
c ≈ 3 for

ξ ∈ (0,10] [Fig. 9(a)] and W
ξ
c ≈ 6 for ξ ∈ (0,15] [Fig. 9(b)],

respectively, which are more than an order of magnitude larger
than Wc ≈ 0.09 indicated by dS/dW . In both cases, Wξ

c almost
does not move with increasing system sizes. The smaller W

ξ
c

in the ξ ∈ (0,10] window is consistent with our previous
observation for the pseudopotential interaction in Ref. [43]
that the localization in the ES, reflected by P (s) changing from
Gaussian unitary ensemble (GUE) to semi-Poisson and finally
to Poisson, is first activated among low levels, then propagates
towards higher-ξ region with increasing disorder strength.

Thus, like in Ref. [43], instead of being at (or near) the same
disorder strength where dS/dW diverges, the transition point
of ES level-spacing statistics from GUE to Poisson is at a very
different value of W ; further, it depends on the choice of the
ξ window. Therefore it is not feasible to use this measure of
the entanglement spectrum to precisely locate the ground-state
phase transition. One may wonder whether using a narrower
window above ξ = 0 can approach Wc ≈ 0.09. In fact, this is
also very difficult, because the ES density of states goes to zero
when ξ → 0 [43], which means that the number of ES levels
in the narrow window is too small to give us a reasonable level
statistics.
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