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We evaluate the quantum corrections to the conductivity of a two-dimensional electron system with competing
Rashba (R) and linear and cubic Dresselhaus (D) spin-orbit interactions in the presence of an in-plane magnetic
field B. Within a perturbative approximation, we investigate the interplay between the spin-orbit coupling and
the magnetic field in determining the transport regime in two different limiting scenarios: when only one of the
linear terms, either Rashba or Dresselhaus, dominates, and at equal linear couplings, when the cubic Dresselhaus
breaks the spin symmetry. In each instance, we find that for B higher than a critical value, the antilocalization
correction is suppressed and the effective dephasing time saturates to a constant value determined only by
the spin-orbit interaction. At equal R-D linear couplings, this value is directly proportional with the cubic
Dresselhaus contribution. In the same regime, the magnetoconductivity is expressed as a simple logarithmic
function dependent only on the cubic Dresselhaus constant.
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I. INTRODUCTION

Spin-orbit interaction induced effects in semiconductor
structures with broken inversion symmetry have been inten-
sively studied in the past decade for potential applications
to spin control in electronic devices. In III-V semiconductors
with zinc-blende structure, the origin of the interaction is either
in the asymmetry of the quantum well, which determines the
Rashba coupling (R) [1] or in the inversion asymmetry of the
crystal which determines the Dresselhaus terms (D) [2]. While
the Rashba interaction is linear in the electron momentum,
with coupling constant α, the Dresselhaus interaction has both
linear and cubic components with coupling constants β1 and
β3, respectively.

The interest in considering all three terms simultaneously
is motivated by the specific physics that arises when the
two linear couplings α and β1 are equal. Since they rotate
the electron spin in opposite directions, it is possible to
obtain a state in which, under their perfect cancellation, the
electron spin becomes a good quantum number and avoids
dephasing effects that change its direction. This particular
situation has been flagged in numerous previous works as
having interesting transport properties, such as very long spin-
relaxation times [3–6], itinerant antiferromagnetic spin order
[7,8], or the absence of the antilocalization correction to the
conductivity [6,9,10]. The presence of the cubic Dresselhaus
term disrupts this equilibrium and, by introducing an additional
spin coupling, is bound to affect in a unique way some of the
same transport properties.

In this paper, we investigate the influence of the cubic
Dresselhaus interaction in the quantum expression of the
conductivity of a III-V semiconductor quantum well grown
along (0,0,1) in the presence of an in-plane magnetic
field. In this geometry, the Zeeman coupling between the
electron and the magnetic field introduces an additional
term in the energy balance that is associated with impurity
scattering that affects the propagation modes that involve
spin flipping. The competition between the magnetic field
that aligns the spins and the spin orbit that rotates them
impacts directly the effective dephasing time, a measure of

the inelasticity of the propagation, and the antilocalization
correction, the constructive superposition of quantum states
associated with a spin reversal during the scattering process.
This phenomenology does not appear in a configuration where
the magnetic field is perpendicular on the plane, when the
electrons are scattered only within the same Landau level and
any spin flipping is mediated by the spin-orbit coupling alone
[9–12]. Here it is assumed that the magnetic field couples
exclusively to the electron spin and any orbital effects that
might develop across the width of the well are neglected,
considering that the size of the Zeeman splitting is of the
same order as the spin-orbit interaction.

Our discussion concerns the interplay between the linear
spin-orbit interaction (SOI) terms and the cubic one in two
different situations: a regime where a single linear SOI
coupling, either Rashba or Dresselhaus, dominates and a
transitory state toward the equal Rashba-Dresselhaus linear
coupling regime, where the difference α − β1 is small and
the cubic Dresselhaus interaction acts as a spin-symmetry
breaking term. Experimentally, this situation is realized by
taking advantage of the possibility of manipulating the α value
through the application of an electric voltage across the well
to become almost equal to β1 which is a system parameter, as
it is related to the degree of confinement of the electrons in the
well [6]. Several experimental techniques for achieving this
state were discussed in Refs. [4–6].

In each case, we find that at low magnetic field values,
the effective dephasing time increases proportional to B2, as
the Zeeman energy favors spin flips in the scattering process.
The saturation state obtained at high magnetic fields is the
result of the spin alignment. In this regime, the dephasing
occurs only as the result of the spin-orbit interaction that
rotates the spins at a rate proportional with the coupling
constants, independent of the values of the magnetic field.
Further, the antilocalization correction is suppressed leading to
a minimum in the conductivity. When the linear couplings are
equal, both the dephasing rate and the minimum conductivity
are simple functions only on the cubic Dresselhaus term
offering an experimental opportunity to determine directly this
parameter.
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The analysis presented here adds to the large amount
of literature on the weak localization corrections to the
conductivity developed for the case of spin-orbit interaction
in two-dimensional (2D) systems as it extends to larger
magnetic fields some of the results derived in Ref. [13]. Other
case studies were developed for either just the Dresselhaus
interaction, in both linear and cubic form, acting alone and
in the presence of perpendicular magnetic fields [11], or for
both linear Rashba and Dresselhaus interactions considered
directly in the regime of equal coupling strengths, without the
inclusion of the cubic Dresselhaus term [9,10].

The paper starts with a description of the 2D electron system
endowed with Rashba and Dresselhaus interactions, both
linear and cubic in the electron momentum, in a rotated system
of coordinates that showcases in a straightforward way the
symmetry properties of the α = β1 state. For this Hamiltonian
we develop the weak localization theory based on the Born
approximation of scattering on impurities in the presence of
an in-plane magnetic field, by solving self-consistently the
impurity mediated equation satisfied by the Cooperon. The
quantum corrections to the conductivity calculated through
this algorithm are strongly influenced by the competition
between the spin-orbit interactions and the magnetic field on
the electron spins and the analytic results we derive reflect the
dominant mechanism.

II. THE SINGLE-PARTICLE HAMILTONIAN

At the center of the quantum conductivity calculation is
the single-particle Hamiltonian that describes an electron of
effective mass m∗, momentum p = {px,py,pz}, and spin σ =
{σx,σy,σz}, localized in the x̂ − ẑ (the ŷ axis is perpendicular
on the plane), which experiences the Rashba α and Dresselhaus
β1 and β3 spin-orbit interactions [14],

Hp = p2
x + p2

z

2m∗ + α(σzpx − σxpz) + β1(σzpz − σxpx)

−β3
(
σzpzp

2
x − σxpxp

2
z

)
. (1)

Under a change of coordinates, p′
x = (−px +

pz)/
√

2, p′
z = (px + pz)/

√
2 along with the change of

spin components, σ ′
x = (−σx + σz)/

√
2, σ ′

z = (σx + σz)/
√

2,
the Hamiltonian becomes

Hp = p2
x + p2

z

2m∗ + (α − β1)pzσx − (α + β1)pxσz

− β3

2

(
p2

x − p2
z

)
(pzσx − pxσz)

= p2
x + p2

z

2m∗ +
[
α − β1 − β3

2

(
p2

x − p2
z

)]
pzσx

−
[
α + β1 − β3

2

(
p2

x − p2
z

)]
pxσz. (2)

In the conductivity calculation, the Fermi liquid is assumed
to be totally degenerate, the electrons engaged in transport
having momenta p of equal magnitude, p = m∗v correspond-
ing to the Fermi velocity v. In terms of the angle made by the

momentum with the x̂ axis, ϕp, the Hamiltonian becomes

H = p2

2m∗ +
[
p

(
α − β1 + β3p

2

4

)
sin ϕp−β3p

3

4
sin 3ϕp

]
σx

−
[
p

(
α + β1 − β3p

2

4

)
cos ϕp − β3p

3

4
cos 3ϕp

]
σz.

(3)

We follow Ref. [9] and introduce the notations

h̄�1 = β1p − p3β3

4
,

h̄�2 = αp, (4)

h̄�3 = p3β3

4
,

such that

�x
p = (�2 + �1) cos ϕp − �3 cos 3ϕp,

(5)
�z

p = (�2 − �1) sin ϕp − �3 sin 3ϕp,

and write the Hamiltonian in a compact form

Hp = p2

2m∗ + h̄(�p × σ ) · ŷ. (6)

In this configuration, an in-plane magnetic field B = {Bx,Bz}
is added along an arbitrary direction. Its coupling with the
electron spin S through an effective coupling constant h̄γ adds
the usual Zeeman term to Eq. (6), leading to the final form of
the Hamiltonian that will be used throughout:

Hp = p2

2m∗ + h̄(�p × σ ) · ŷ + h̄γ σ · B. (7)

When diagonalized in the spin space, the Hamiltonian Eq. (7)
generates two eigenvalues,

E± = p2

2m∗ ± h̄�p, (8)

where the gap �p is given by

�p =
√(

�z
p − γBx

)2 + (
�x

p + γBz

)2
. (9)

The corresponding associate eigenstates are plane waves
modulated by a spin function,

ψ+ = eik·r[− sin θp| ↑〉 + cos θp| ↓〉],
(10)

ψ− = eik·r[cos θp| ↑〉 + sin θp| ↓〉],
with

tan θp = γBx − �z
p

γBz + �x
p
. (11)

In the absence of the magnetic field, and when �1 = �2

and �3 = 0, Hp commutes with Sz, thus designating the spin
projection along the ẑ axis as a good quantum number. In this
state, losing the spin orientation can occur only in the presence
of an additional spin-orbit coupling interaction, here the cubic
Dresselhaus.

Neglecting the product between the magnetic field and
the SOI constants, as well as the product between the SOI
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constants, the gap between the two Fermi surfaces E± is

�p =
√

(�1 + �2)2 cos2 ϕp + (�1 − �2)2 sin2 ϕp + �2
3 + (γB)2. (12)

At weak magnetic fields, the size of the gap is set by the spin-
orbit coupling, while in the strong field regime it is determined
by the Zeeman splitting, a behavior that strongly affects the
quantum corrections to the conductivity.

III. WEAK LOCALIZATION FORMALISM

The quantum corrections to the conductivity result from the
introduction in the Kubo formula of the Cooperon, a term that
marks the renormalization of the scattering matrix element
when the quantum nature of the electron states is considered.
Impurity scattering is considered uncorrelated, elastic, and in
this case, spin independent. The Fermi surface states involved,
of a single spin density of states of ν0 = m∗/2πh̄2, generate a
scattering matrix element |Vp,p′ |2 dependent only on the angle
between the directions of the incident and scattered momenta,
p and p′, ϕ. In the Born approximation, the scattering lifetime
is τ0,

h̄

τ0
= ν0

∫
|Vp,p′ |2(ϕ)dϕ. (13)

The quantum corrections to the conductivity are calculated
from the general expression [15]

�σ = −2e2Dτ 2
0 ν0

h̄2

∑
q,i

Ci(q), (14)

where D = v2τ1/2 is the diffusion coefficient in two dimen-
sions expressed as a function of the transport scattering time,

τ1. This is the first (n = 1) term in a series of transport times
that describe the anisotropy of the scattering process,

h̄

τn

= ν0

∫
|Vp,p′ |2(1 − cos nϕ)dϕ. (15)

Ci(q) are the eigenvalues of the Cooperon operator which
represents an impurity averaged scattering amplitude for an
electron state p that is almost perfectly backscattered into
p′ ≈ −p, the deviation from this situation being represented by
h̄q = p + p′, with h̄q 	 p. The impurity mediated Cooperon
satisfies a self-consistent equation

Cp,p′(q) = |Vp,p′ |2 +
∑

p′′
|Vp,p′′ |2G+

−p′′+h̄q,ε+h̄ωG−
p′′,εCp′′,p′ ,

(16)

where the impurity averaged advanced (A) and retarded (R)
Green’s functions are given by

G±(p,ε) = 1

ε − Hp ± i h̄
2τ0

. (17)

The kernel of the integral in Eq. (16) is evaluated by
integrating first after the kinetic energy p2/2m∗ in the complex
plane, followed by an expansion in the scattering rate, h̄/τ0,
assumed to dominate the denominator. It is important to
note that the directions of the electron spin, before and
after the collision are uncorrelated and consequently have
to carry different names, here σ and ρ. Thus, Eq. (16)
becomes

Cp,p′(q) = |Vp,p′′ |2 + ν0

∫ 2π

0
dϕp′′ |V (ϕp − ϕp′′ )|2{1 + iωτ0 + iγ B · (ρ − σ )τ0 + iq · vp′′τ0 − (iq · vp′′ )2τ 2

0

+ [i�p′′ × (σ + ρ) · ŷ]τ0 − [i�p′′ × (σ + ρ) · ŷ]2τ 2
0 − 2(q · vp′′ )[�p′′ × (σ + ρ) · ŷ]τ 2

0

}
Cp′′

,p′ . (18)

The Cooperon equation is linearized in an itera-
tive approach where Cp,p′(q) = C

(0)
p,p′(q) + C

(1)
p,p′(q) cos ϕp +

C
(2)
p,p′(q) cos 2ϕp + · · · , where ϕp is the angle between h̄q =

p + p′ and p. The first-order correction to the isotropic
Cooperon is readily written in terms of the total spin J =
(σ + ρ)/2 (in h̄ units) components,

C(1) = i(τ1 − τ0)[vp′′ · q + 2(�2 − �1)Jx sin ϕp′′

− 2(�2 + �1)Jz cos ϕp′′ ]

− i(τ3 − τ0)(−2�3Jx sin 3ϕp′′ + 2�3Jz cos 3ϕp′′ )C(0),

(19)

where the magnitude of the velocity corresponds to the Fermi
level, v.

Finally, a formal equation for the lowest order of the
Cooperon operator can be obtained as

C
(0)
p,p′(q) = |Vp,p′ |2

τ0H
, (20)

where H is an operator in the 2 × 2 spin space,

H = Dq2 + 1

τϕ

+ 2
[
(�2 + �1)2τ1 + �2

3τ3
]
J 2

z

+ 2
[
(�2 − �1)2τ1 + �2

3τ3
]
J 2

x

+ 2(�2 − �1)τ1vqzJx − 2(�2 + �1)τ1vqxJz

+ 2iγ B · (σ − ρ). (21)

A measure of the inelasticity of the propagation, −iω is
replaced by 1/τϕ , the dephasing time. We introduce the
following notations that reflect in a straightforward way the
superposition of the linear spin-orbit couplings in a symmetric
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(S) and antisymmetric combination (A), as well as the cubic
term, all normalized by the diffusion coefficient.

QS = 2(�2 + �1)

v
,

QA = 2(�2 − �1)

v
, (22)

Q3 = 2�3

v

√
τ3

τ1
,

and rewrite H as

H = Dq2 + 1

τϕ

+ D
{[

Q2
S + Q2

3

]
J 2

z + [
Q2

A + Q2
3

]
J 2

x

+ 2QAqzJx − 2QSqxJz

} − iγ B · (σ − ρ). (23)

The eigenvalues ofH are employed to evaluate the quantum
corrections to the conductivity, through Eqs. (20) and (14).
The diagonalization of H is done in the state space of the
total spin of the electron pair where the Zeeman splitting
term will generate off-diagonal contributions. We note that
the eigenvalue corresponding to J 2 = 0, Jz = 0, the singlet
Cooperon, enters the conductivity calculation with a negative
sign as it corresponds to a spin state that is odd under a particle
exchange. This is the antilocalization correction term.

IV. THE COOPERON EIGENVALUES

Equation (23) is solved in the basis of {J 2,Jz} associated
with total spin quantum numbers J = 0,1. Analytic solutions
can be obtained for the quartic characteristic equation in E
in some simplifying limits set by the scales of the competing
small factors that determine the characteristics of the quantum
transport regime.

In the following considerations, we explore two different
limits of the characteristic equation and its associated solu-
tions. The first case corresponds to a dominant linear SOI
coupling (either �1 or �2 can be considered since the result
is symmetric with respect to these two values) and the cubic
Dresselhaus term. The second instance occurs in the vicinity
of the cancellation point of the two linear couplings, where
α 
 β1, and the only spin-orbit contribution is that of the
cubic Dresselhaus, which is responsible for any remaining
spin effects on transport.

In both situations, two terms in Eq. (23) can be set to zero.
First, since we are interested in understanding the symmetry-
breaking properties of the difference �1 − �2 as well as of
the cubic Dresselhaus, we neglect terms proportional to Bx

which is essentially playing the same role, as all these fields
drive the misalignment of the electron spins from the dominant
direction, ẑ. Further, we set qz(�1 − �2) = 0, an assumption
justified by the fact that in both cases under consideration, one
of the two terms of this product is approaching zero faster
than the other quantities in the problem. When only one SOI
is present, this term is small on account of qz → 0, while in
the vicinity of the cancellation point of the two linear SOIs,
both terms are small leading to higher order corrections.

With these simplifying assumptions, the eigenvalue equa-
tion for H is∣∣∣∣∣∣∣∣
H11 − E 0 D

Q2
A+Q2

3
2 0

0 H10 − E 0 2iγBz

D
Q2

A+�2
3

2 0 H1−1 − E 0
0 2iγBz 0 H00 − E

∣∣∣∣∣∣∣∣
= 0, (24)

where

H11 = Dq2 + 1/τϕ + D

[
Q2

S + Q2
3 + Q2

A+Q2
3

2
+ 2qxQS

]
,

H1−1 = Dq2 + 1/τϕ + D

[
Q2

S + �2
3 + Q2

A+Q2
3

2
− 2qxQS

]
,

H10 = Dq2 + 1/τϕ + D
[
Q2

A + Q2
3

]
,

H00 = Dq2 + 1/τϕ. (25)

Several characteristic features of the eigenvalues of this
equation can be assessed from general considerations based
on the exact spectrum of the electron states involved in
this problem, Eqs. (8) and (10). From this perspective, the
states in the total spin momentum representation are linear
combinations of the ± eigenstates, so in the energy balance of
the scattering process one has to consider transitions between
the two Fermi surfaces E± that are separated by the gap �p
twice. If the state is symmetric, i.e., the triplet Cooperon,
then the gap function appears twice with opposite signs and
generates no contribution in first order in the case of Jz = 0 or
does not appear at all when Jz = ±1. In contrast, the singlet
state J = 0, Jz = 0 is antisymmetric and in its scattering
energy balance the gap functions add, indicating that in this
case the perturbing effect of the magnetic field is maximum.

A. Jz = 0 Cooperon modes and the dephasing time

The two Cooperon modes corresponding to total spin
Jz = 0, but total spin angular momentum J = 1 and J = 0,
respectively, are coupled, as they satisfy

H00
[
H00 + DQ2

A + DQ2
3

] + γ 2B2
z = 0. (26)

Consequently, we extract the eigenvalues associated with the
triplet Jz = 0, E10 and the singlet Jz = 0, E00,

E10
00 = Dq2 + 1

τϕ

+ D

(
Q2

A + Q2
3

)
2

± Re

√
D2

(
Q2

A + Q2
3

2

)2

− 4γ 2B2
z , (27)

where Re designates the real part of the expression and the
plus sign corresponds to the upper index.

The behavior of E10 and E00 is determined by the relation-
ship between two competing energies:

EZ = 2h̄γBz, (28)

the energy required by an electron to flip spin and

ESOI = h̄D(Q2
A + Q2

3), (29)

the energy associated with the spin-orbit interaction, pro-
portional with the spin relaxation rate along the in-plane
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directions,
1

τs

= 1

τxx

= 1

τzz

= D
(
Q2

A + Q2
3

)
. (30)

Since 2EZ is the energy required for the electron to flip spin
twice in the scattering process and generate a constructive
interference effect which impacts the conductivity corrections,
the ratio 2EZ/ESOI is the parameter that is reflected by the
solutions of Eq. (31),

E10
00 = Dq2 + 1

τϕ

+ D

(
Q2

A + Q2
3

)
2

×
⎡
⎣1 ± Re

√
1 −

(
2EZ

ESOI

)2
⎤
⎦. (31)

In the low field limit, when 2EZ � ESOI , we obtain

E10
00 = Dq2 + 1

τϕ

+ D

(
Q2

A + Q2
3

)
2

×
{

1 ±
[

1 − 1

2

(
2EZ

ESOI

)2
]}

. (32)

Up to a small quadratic correction in EZ/ESOI , E10 is inde-
pendent of the magnetic field, its magnitude being determined
by the spin-orbit coupling interaction alone as anticipated from
general considerations since E10 corresponds to a symmetric
state. Thus,

E10 = Dq2 + 1

τϕ

+ D
(
Q2

A + Q2
3

)[
1 −

(
EZ

ESOI

)2
]
. (33)

In contrast, the effect of the field on the singlet Cooperon
is substantial:

E10 = Dq2 + 1

τϕ

+ D
(
Q2

A + Q2
3

)( EZ

ESOI

)2

. (34)

It is customary to define an effective dephasing rate, such that

1

τϕ(B)
= 1

τϕ

+ D
(
Q2

A + Q2
3

)( EZ

ESOI

)2

, (35)

a result previously obtained in Ref. [13] which indicates that
as the magnetic field increases, the dephasing rate increases
proportionally as the probability of the scattering processes
that lead to spin flips increases. This can be explained by
recognizing that the additional Zeeman energy acquired by
the electrons in the magnetic field favors transitions between
the two Fermi surfaces E± which are now separated by a gap
determined mostly by the spin-orbit coupling as indicated by
Eq. (12). As the magnetic field increases, the rate of spin flips
increases too with respect to the B = 0 case.

At high field values, when 2EZ � ESOI , the two Jz = 0
modes of the Cooperon become equal, as the real part of the
square root in Eq. (31) is zero. Then,

E10
00 = Dq2 + 1

τϕ

+ D

(
Q2

A + Q2
3

)
2

. (36)

The saturation regime for the Jz = 0 is a result of the gap
between the two Fermi surfaces E± being now set by the
magnetic field. Hence scattering processes with spin flipping
can be realized exclusively only as a result of the spin rotation
imposed by SOI, which for a given system is a constant,
independent of B.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.00 0.50 1.00 1.50 2.00

(
/

s)

2EZ/ESOI

FIG. 1. The variation of the dephasing rate as a function of
2EZ/ESOI expressed in 1/τs units. �(1/τϕ) saturates at a constant
value equal to 1/2 of the in-plane spin-relaxation rate.

E00 and E10 have equal, but opposite signs, and their
contributions to the conductivity cancel each other, signaling
the disappearance of the antilocalization correction. The
effective dephasing rate is also constant,

1

τϕ(B)
= 1

τϕ

+ D
(
Q2

A + Q2
3

)
2

= 1

2τs

, (37)

a result which generalizes Ref. [16] where only linear Rashba
was considered to the present case where both linear R-D and
cubic D terms are considered. When only one linear spin-orbit
coupling dominates, QA ∼ �1, we note that the limit of the
dephasing time is exactly half of the spin-relaxation rate along
the in-plane direction, a result verified experimentally for a
Rashba linear coupling term in Ref. [17]. The variation of
the dephasing rate expressed in terms of the spin relaxation
rate is represented as a function of the Zeeman splitting,
measured in units of the spin-orbit energy, in Fig. 1. When
QA ≈ 0, the effective dephasing rate is determined only
by Q3, the term proportional with the cubic Dresselhaus
interaction. Consequently, an experiment similar to that in
Ref. [17] performed in the saturation regime close to the
QA = 0 point, would allow a direct determination of Q3 from
the measurement of the dephasing rate. We note that QA = 0
when α = β1 + β3p

2/4, an offset from the strict equality of the
linear couplings α = β1 determined by the cubic Dresselhaus
parameter. At the α = β1 point, QA = Q3 if τ1 
 τ3.

B. Jz = ±1 Cooperon modes and the conductivity corrections

The two remaining solutions of Eq. (24) correspond to the
states that share Jz = ±1 and are obtained from

(H11 − E)(H1−1 − E) −
(

D
Q2

A + Q2
3

2

)2

= 0. (38)

The resulting eigenvalues are given by

E11
1−1 = Dq2 + 1/τϕ + D

[
Q2

S + Q2
3 + Q2

A + Q2
3

2

±
√

(2qxQS)2 +
(

Q2
A + Q2

3

2

)2
⎤
⎦. (39)
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Equations (39) and (31) are derived under the general
conditions discussed at the beginning of this section and they
describe the complete effect of the SOI couplings on the
eigenstates of the Cooperon.

When only one SOI coupling is considered, QA = QS ∼
�1. Then in Eq. (39), 2qxQS → 0, as, on account of qx , it
becomes much smaller than the spin-orbit term. Then, the
Jz = ±1 eigenvalues of the Cooperon are

E11 = Dq2 + 1

τϕ

+ 2D
(
Q2

A + Q2
3

)
,

E1−1 = Dq2 + 1

τϕ

+ D
(
Q2

A + Q2
3

)
. (40)

E11 and E1−1 are found to be independent of the magnetic
field, their magnitude being determined by only the spin-
orbit coupling. This is not surprising since the quantum
states associated with these modes that have the same spin
orientation before and after the collision are associated only
with transitions between points on the same Fermi surface E±
and their scattering energy balance does not involve the energy
gap at all. It is customary to express these results in terms of
the spin-relaxation rate along the in-plane axes τ−1

s in Eq. (30),
and the spin-relaxation rate along the axis perpendicular on the
plane, τ−1

yy = 2τ−1
zz = 2τ−1

s that enters E11. When the original
spin-orbit coupling constants are introduced through Eqs. (22)
the result of Ref. [11] is recovered.

From Eq. (14), the conductivity correction is obtained by
integrating in the q space, with the radial integral extended
only up to a maximum value qmax, established by the condition
Dq2

max ∼ 1/τ1, the transport time. With input from Eqs. (31),
(37), (30), and (40), the general expression of the conductivity
corrections in the limit of a dominant linear spin-orbit coupling
at weak magnetic fields is

�σ (B) = e2

4πh̄2

{
ln

[
τ1

τϕ

+ 2τ1D
(
Q2

A + Q2
3

)]

+ 2 ln

[
τ1

τϕ

+ τ1D
(
Q2

A + Q2
3

)] − ln

(
τ1

τϕ(B)

)}
.

(41)

At high magnetic fields, such that 2EZ � ESOI , the real
part of the square root in the expressions of E10 and E00 is
zero and the two solutions generate terms in the conductivity
corrections that cancel each other. Thus, in this regime, the
conductivity is constant, independent of the magnetic field,

�σ = e2

4πh̄2

{
ln

[
τ1

τϕ

+ 2τ1D
(
Q2

A + Q2
3

)]

+ ln

[
τ1

τϕ

+ τ1D
(
Q2

A + Q2
3

)]}
. (42)

The second limit of the Cooperon eigenvalues for Jz = ±1
is studied close to the point where the two linear spin-orbit
couplings cancel. In our notations, this corresponds to QS 

QA,Q3, while qxQS remains finite. This implies that, from
Eq. (39),

E11
1−1 = D(qx ± QS)2 + Dq2

y + 1/τϕ

+D

[
Q2

3 + Q2
A + Q2

3

2

]
. (43)

These values are independent of the magnetic field, since Jz =
±1 configuration corresponds to spin states whose orientation
was left unchanged by the scattering.

In the limit of small magnetic fields, when 2EZ � ESOI ,
with input from Eqs. (33), (34), and (43), the quantum
conductivity correction is

�σ (B) = e2

4πh̄2

{
2 ln

[
τ1

τϕ

+ τ1
D

(
Q2

A + 3Q2
3

)
2

]

+ ln

[
τ1

τϕ

+ τ1D
(
Q2

A + Q2
3

)] − ln

(
τ1

τϕ(B)

)}
.

(44)

When 2EZ � ESOI , as before, E00 = E10 saturate and
become independent of the magnetic field at values given by
Eq. (36) and the conductivity correction is constant:

�σ (B) = e2

2πh̄2 ln

[
τ1

τϕ

+ τ1
D

(
Q2

A + 3Q2
3

)
2

]
. (45)

When QA = 0, the conductivity correction depends only on
Q3, a term proportional with the cubic Dresselhaus interaction.

V. CONCLUSION

In conclusion, we calculated the quantum corrections to
the conductivity in the presence of an in-plane magnetic field
in a system with linear and cubic spin-orbit coupling. In
two different limiting situations associated either with the
dominance of one linear coupling or with the equality of
the linear couplings, we explored the effect of an in-plane
magnetic field on the dephasing time and the conductivity.
We find that the characteristic features of the results are
determined by the competing effects of the Zeeman coupling
and the spin-orbit interaction. In each case, the larger of these
energies determines the energy gap between the Fermi surfaces
associated with the exact quantum states of the electrons, while
the smallest determines the dephasing rate by favoring spin
flipping in the scattering processes.

The most important result of this paper is that in the limit
of the almost cancellation of the linear spin-orbit terms, at a
magnetic field that is larger than the spin-orbit coupling, the
effective dephasing rate as well as the quantum corrections
are determined by the cubic Dresselhaus term alone. Experi-
mentally, one would drive the system in the saturation phase
by increasing the magnitude of the magnetic field until the
conductivity becomes constant. Then, by varying the external
field across the well, the Rashba coupling is modified until the
conductivity reaches an absolute minimum which corresponds
to the point where linear Rashba and Dresselhaus cancel
each other. In this geometry the cubic Rashba coefficient is
determined directly, offering some advantage over the other
possible orientation of the magnetic field, perpendicular on
the plane, where a more complicated dependence on β3 is
found in the magnetoconductance [12].
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