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We construct fixed-point wave functions and exactly solvable commuting-projector Hamiltonians for a large
class of bosonic symmetry-enriched topological (SET) phases, based on the concept of equivalent classes
of symmetric local unitary transformations. We argue that for onsite unitary symmetries, our construction
realizes all SETs free of anomaly, as long as the underlying topological order itself can be realized with a
commuting-projector Hamiltonian. We further extend the construction to antiunitary symmetries (e.g., time-
reversal symmetry), mirror-reflection symmetries, and to anomalous SETs on the surface of three-dimensional
symmetry-protected topological phases. Mathematically, our construction naturally leads to a generalization of
group extensions of unitary fusion categories to antiunitary symmetries.
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I. INTRODUCTION

Interplay between global symmetry and topological order
has been an exciting research direction in recent years. It is
by now well appreciated that symmetries play very important
roles in our understanding of gapped phases of quantum many-
body systems, even in the absence of spontaneous symmetry
breaking. The classification of gapped quantum systems often
becomes much richer in the presence of symmetries. For in-
stance, an otherwise trivial phase (i.e., adiabatically connected
to an atomic product state) can split into distinct gapped phases
when symmetries are taken into account, called symmetry-
protected topological (SPT) phases. Eminent examples of SPT
phases include time-reversal-invariant topological insulators
and superconductors in both two- and three-dimensional
free-fermion systems [1–9], whose theoretical predictions
and experimental discoveries have generated intense research
interest in the past decade. Very recently, it has been realized
that SPT phases also exist in interacting bosonic systems [10],
e.g., the Haldane phase in spin chains [11–13].

On the other hand, if a two-dimensional (2D) gapped
phase exhibits an intrinsic topological order, characterized by
quasiparticle excitations with fractional braiding and exchange
statistics, symmetry can act in a nontrivial way on the
quasiparticle excitations, leading to the notion of symmetry-
enriched topological (SET) phases. Specifically, quasiparticle
excitations can carry fractionalized quantum numbers under
the global symmetry, a phenomenon known as symmetry frac-
tionalization. For example, quasiholes in fractional quantum
Hall (FQH) states have fractional electric charges [14]. Such
fractionalization has long been regarded as a signature of the
underlying topological order. Another well-studied topologi-
cally ordered phase of matter, gapped quantum spin liquids
(QSL) in frustrated magnets [15,16], also exhibits symmetry
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fractionalization [17–19]. In fact, a defining feature of QSLs is
the existence of a spin- 1

2 spinon excitation [20], which trans-
forms projectively under the SO(3) spin-rotation symmetry
and oftentimes under space-time symmetries as well [17].

Aside from fractionalizations, symmetries can also trans-
form one type of quasiparticle into another. It was recently
realized that extrinsic defects of such symmetries can harbor
exotic zero modes, giving rise to topologically protected
degeneracies and non-Abelian braiding transformations. By
now, many examples of non-Abelian defects in Abelian
parent states have been found, including “genons” in bilayer
quantum Hall systems [21–23], parafermion zero modes in
FQH/superconductor heterostructures [24–26], and lattice dis-
locations or disinclinations in certain exactly solvable lattice
models [27–30]. The non-Abelian defects can potentially be
exploited in topological quantum information processing to
enhance the computational power [31].

A further motivation for the study of SETs comes from a
remarkable connection to three-dimensional (3D) SPT phases
[32]: when the 3D phase has a boundary, the nontrivial bulk
SPT order manifests as anomalous symmetry transformations
on the boundary degrees of freedom. As a result, a symmetry-
preserving gapped boundary must exhibit topological order,
and the symmetry has to be implemented in a way that can
not be consistently realized in truly 2D systems, i.e., the SET
is said to be anomalous. Due to the bulk-boundary correspon-
dence, the study of anomalous surface topological order has
become an essential tool in classifying and characterizing 3D
SPT phases [32–46]. Identifying anomalous SETs also has
important implications for the classification of SETs in two
dimensions [33,47–49].

Theoretically, a number of different approaches have been
developed to understand and classify SPT and SET phases
[17,18,34,50–60]. We will closely follow the classification
scheme developed in [34,57,61], based on the mathematical
framework of tensor category theory.

In this paper, we construct exactly solvable lattice models
for bosonic SET phases, based on the concept of equivalent
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class of symmetric local unitary transformations [62,63].
The motivation for the work is threefold: first, exactly solvable
models (with commuting-projector Hamiltonians) provide
valuable insights into the general structure of the ground-state
wave functions since they represent the fixed-point state of
the quantum phase under wave-function renormalization, and
may shed light on the search for microscopic realizations of
such phases. One can also study excitations in the model
and understand the symmetry actions concretely. Second,
constructions of fixed-point wave functions for quantum
phases imply that these states have exact tensor-network
representations. Therefore, these states can in principle be
efficiently targeted in numerical algorithms based on tensor-
network states [64]. Lastly, investigation of the fixed-point
wave functions constructed from equivalent class of symmetric
local unitary transformations provides an independent deriva-
tion of the classification of SET phases.

In particular, we believe our construction provides a
possible framework to classify nonchiral bosonic SETs with
space-time symmetries, which are relevant to most material
realizations of such phases including TIs and QSLs. Unlike
the case of onsite unitary symmetries [57,61], there still lacks
a systematic framework for the classification of SET phases
protected by space-time symmetries, which is needed to study
possible symmetry fractionalization patterns in 2D QSLs. So
far, progress has been made with the help of other onsite
unitary symmetries, especially the spin-rotational symmetry
[47–49]. However, these methods do not apply to systems
without any onsite unitary symmetries, e.g., materials with
strong spin-orbit couplings [65].

More specifically, we focus on symmetry-enriched phases
in a large class of 2D topological phases, known broadly as
the quantum doubles. The defining feature of a quantum-
double phase is that there exists a representative “fixed-
point” (i.e., zero correlation length) wave function with a
commuting-projector parent Hamiltonian. Well-known exam-
ples of quantum-double models include discrete gauge theories
[66–68], string-net models [69,70], and doubled Chern-
Simons theory [71]. Physically, it is known that all topolog-
ically ordered states with gappable boundaries belong to this
class [72], which certainly implies vanishing of chiral central
charges, but in fact stronger than just that. Due to the fixed-
point nature, these states admit natural tensor-network rep-
resentations with relatively small bond dimensions [73–75].
In the following, we will loosely refer to topological phases
which can arise from quantum doubles as being “nonchiral”.

For an onsite unitary symmetry group, we show that
all (nonanomalous and nonchiral) SETs, at least within the
classification scheme introduced in [61], can be realized in
our construction. In fact, our construction in this case can be
understood naturally as “ungauging” the Levin-Wen model for
the gauged SET state: because the symmetry group is onsite
and unitary, one can always gauge the symmetry for the SET
state (i.e., by coupling to lattice gauge fields). If the topological
order of the SET state is a quantum double, one can show that
the gauged model remains so. Starting from the string-net
construction of the gauged model, one can apply a duality
transformation [76] which then “ungauges” the symmetry to
get the SET state. Since every nonanomalous SET state is

“gaugeable”, such a procedure can always be carried through
to produce a string-net construction of the SET state.

For antiunitary and mirror symmetries, we conjecture that
our construction is also general enough to represent all the
nonanomalous and nonchiral SETs. We further extend these
ideas to construct fixed-point wave functions for anomalous
surface topological orders of 3D SPT phases described by
group cohomology models [32–36]. The general mathematical
structure underlying our construction is a generalization
of group extensions of unitary fusion categories [77,78].
More precisely, the self-consistent conditions derived from
equivalent class of symmetric local unitary transformations are
weaker than the group extensions of unitary fusion categories,
which allows us to consider much more general types of
symmetry actions, including antiunitary symmetry, reflection
symmetry, and anomalous symmetry. Essentially, our fixed-
point wave-function constructions produce Hamiltonian-type
[79] topological phases which do not necessarily admit topo-
logically invariant actions in arbitrary space-time manifold
(known as Lagrangian type).

Once the general formalism is laid out, we present an ex-
tensive list of examples, namely, symmetry-enriched Abelian
gauge theories, in Sec. III. In particular, we construct all
nonanomalous SETs in this family where symmetries do not
permute quasiparticles. Using our construction, we also derive
a sufficient and necessary condition for a pattern of symmetry
fractionalization to be nonanomalous. A similar obstruction-
vanishing condition was obtained for unitary onsite sym-
metries in Refs. [34,61]. Our approach can be applied to
antiunitary and spatial symmetries, although the computation
is only explicitly carried out for Abelian gauge theories so far.

We then analyze the example of Z2 toric code SET with
unitary/antiunitaryZ2 symmetry in Sec. IV, showing explicitly
the symmetry actions on quasiparticles. Aside from symmetry
fractionalization, the Z2 symmetry can also permute the e

and m particles in the toric code, known as an electromag-
netic duality (EMD) symmetry. Our model provides onsite
realization of the EMD symmetry in the Z2 toric code with
commuting-projector Hamiltonians.1

II. FIXED-POINT WAVE FUNCTIONS

In the following, we outline the construction of fixed-point
wave functions for SET phases, inspired by the string-net
construction as well as group cohomology models of SPT
phases.

A. String-net states and local relations

The fixed-point wave functions can be defined on any
trivalent graph, as shown in Fig. 1. We shall assume that

1We note that solvable models where such EMD symmetry is
realized as an onsite symmetry were constructed in [41,61], by
gauging the fermion parity symmetry in topological superconductors.
However, they are not commuting-projector models. In addition, the
well-known plaquette model introduced in Ref. [101] realizes e ↔ m

exchange by the lattice translation symmetry.
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FIG. 1. A trivalent-graph lattice. The arrows on the links show the
branching structure. Each plaquette is decorated by a group element
gi ∈ G.

the edges of the graph are directed, and the directions are
such that the arrows are two-in–one-out or one-in–two-out on
each vertex . This is called a branching structure. As we will
discuss later in this section, the wave function does not depend
on the particular choice of the branching structure, although
the branching structure is explicitly used in the construction.

Let G be a finite global symmetry group. We will consider
both onsite symmetries (unitary and antiunitary) and mirror
symmetries, so G is equipped with two Z2 gradings: p : G →
{0,1}, where p(g) = 1 means g is an orientation-reversing
operation (i.e., mirror reflection), and q : G → {0,1} where
q(g) = 1 means g corresponds to an antiunitary operation.

Let us now specify the Hilbert space of the model. Each
edge of the graph is associated with an n-dimensional Hilbert
space, and an orthonormal basis is denoted by |a〉, where a

is drawn from a label set of order n. They can be thought as
different types of strings that occupy the edges, with a unique
“vacuum” label 0 (sometimes denoted by I ) corresponding to
no string. We will denote the label set by CG, for reasons that
will become clear shortly.

Three strings meet at a vertex. Whether three string types
a, b, and c are allowed to meet or not is determined by the
fusion rule Nab

c , which is a non-negative integer. If Nab
c > 0,

a, b and c can meet at a vertex:

a b

c

. (1)

When Nab
c > 1, one has to include additional local degrees

of freedom at each vertex. We will assume Nab
c only takes

values in {0,1} to simplify the discussions. In addition, each
label a has a unique “dual” label ā such that Naā

0 = 1. We
associate to each label a a positive number da , called the
quantum dimension of a, which satisfies dadb = ∑

c Nab
c dc.

To account for the symmetry, we add a spin degree of
freedom in the center of each plaquette, whose basis |g〉 are
labeled by the element g of the symmetry group G. For each
edge we can then associate a group element ḡ0g1 (here, ḡ
denotes the inverse of group element g):

g0 g1

ḡ0g1.
(2)

We say that the there is a ḡ0g1 domain wall on the edge. In
the symmetry-enriched wave function, domain walls decorated

with different group elements have different sets of labels. We
require that the set of labels have a G-graded structure, in
the following sense: labels are organized into |G| different
sectors Cg, where each sector Cg contains labels allowed on
a g domain wall. Following the notations in Ref. [61], we
denote labels in Cg by ag. Furthermore, the fusion rules must
respect the G grading: N

ck
agbh

= δk,ghN
cgh

ag,bh
, so one has Cg ×

Ch ∈ Cgh. In particular, the C1 sector is closed under fusion. A
useful fact that follows from the G-graded fusion rules is the
total quantum dimensions of each sector must be equal: D2

g =∑
ag∈Cg

d2
ag

= D2
1 [61]. We define the total quantum dimension

D2 = ∑
ag∈CG

d2
ag

= |G|D2
1 .

The ground-state wave function is a superposition of
string-net states (i.e., string states on the lattice that satisfy
the branching rules). A defining feature of the string-net wave
function is that the amplitudes for different string-net states
satisfy a set of local relations:

(1) The wave function is invariant under local deformation
of strings,

(3)

Here, the graph in the parentheses represents a local patch
of the string state. We notice that the group element in the
right plaquette, g0g, is determined from the group element in
the left plaquette and the grading g on the domain wall ag.
Therefore, without causing ambiguity, the label of the group
element in the right plaquette can be omitted. We will follow
this convention in the rest of the paper.

(2) The wave function is invariant up to a normalization
factor, under the creation/annihilation of bubbles:

(4)
In Eqs. (3) and (4), the dashed lines denote strings carrying the
vacuum label “0”. Hence, these two moves alter labels on the
edges in a way that appears to change the shape of the strings,
if edges carrying label “0” are treated as vacuum. However,
the underlying lattice, and the degrees of freedom on it, are left
unchanged. This is in contrast to the generalized symmetric
local unitary transformations we introduce in Appendix B,
which truly change the underlying lattice, and consequently
the number of degrees of freedom. These two types of moves
differ by a normalization factor, if a local bubble is added or
removed, as explained in Appendix B.
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(3) The wave function transforms as the following under
the so-called F moves:

(5)
Here,F is a generalized F symbol, in which g0 labels the group
element in the leftmost plaquette. As before, the elements in
other plaquettes can be determined from g0 and the gradings
on the edges. The gradings of edges labeled by dghk, egh, and
fhk can be determined from those of ag, bh, and ck from fusion,
hence, we can omit the grading labels of these sectors and use a
simplified notation g0 [Fagbhck

d ]ef for the generalized F symbol.

We will often view g0 [Fagbhck

d ] as a matrix, with e,f being the
two indices.

The local moves are defined in terms of a set of data
da,

g0 [Fagbhck

d ]ef . They need to satisfy several consistency
conditions, which will be given in the following.

First of all, to preserve the norm of the wave function, we
require that the F moves are unitary:(g0

[
Fagbhck

dghk

])−1 = (g0
[
Fagbhck

dghk

])†
. (6)

Obviously, the following associativity relation of fusion rules
needs to be satisfied:∑

egh

N
agbh
egh N

eghck

dghk
=

∑
fhk

N
bhck
fhk

N
agfhk

dghk
. (7)

Another unitarity condition comes from considering a local
move similar (but inequivalent) to the F move with one of
the lines bent down. Leaving the details to Appendix B, the
condition reads as∑

fghk

dfghk
g0

[
F cge

′
hbk

f

]
ad

g0
[
F cgehbk

f

]∗
ad

= daghddhk

deh

δehe′
h
. (8)

Self-consistency of local moves requires that any two
sequences of moves starting from and ending with the same
string-net states must yield the same total amplitudes. This can
be achieved by imposing the so-called pentagon equations on
the F symbols:

g0
[
Ffghckdl

e

]
mq

g0
[
Fagbhqkl

e

]
fp

=
∑

nhk∈Chk

g0
[
Fagbhck

m

]
f n

g0
[
Fagnhkdl

e

]
mp

g0g[Fbhckdl
p

]
nq

. (9)

Another slightly more technical condition is that the
diagrammatic rules we have defined for string-net states should
be isotopy invariant, i.e., one has the ability to introduce and
remove bends in lines. One can show that this leads to the
condition

dag = ∣∣g0
[
Fagagag

ag

]
0,0

∣∣−1
. (10)

The isotopy invariance is completely analogous to the usual
diagrammatic calculus of fusion categories, and we refer the
readers to Refs. [80,81] for more details.

The structure of fixed-point wave function defined in this
section is modeled on the well-known string-net construction
of quantum doubles of unitary fusion categories (UFC) [69].
In particular, notice that the sector C1 is closed under fusion,
so if we restrict all group elements to be 1, the consistency
conditions (6), (8), (9), and (10) define C1 as a UFC [80].
We should note, however, that the equivalence classes of
wave functions under local unitary transformations produce a
weaker set of axioms than those of UFCs, which in a sense can
be thought as a “Hamiltonian-type” UFC [62,63]. This strongly
suggests that the topological order of the system is identical
to the quantum double of C1 if we ignore the symmetry. In the
rest of the paper, we will use Z(C) to denote the topological
order realized by the quantum double of a UFC C.

Although our construction explicitly uses a branching
structure on the trivalent graph, the wave function obtained
in such a construction is actually independent of the choice of
the branching structure. On one hand, a branching structure
can be induced from an ordering of the vertices of the graph,
by assigning the orientation of each edge according to the
ordering. For the usual quantum double (i.e., G is trivial),
if the category C satisfies the so-called sphericity condition,
it has been shown that the wave function is invariant under
the reordering of vertices [82], on the same trivalent graph.
We believe that a similar conclusion holds for the present
construction as long as CG is spherical in a suitable sense.
On the other hand, as explained in Appendix B, the wave
function is invariant under the generalized symmetric local
unitary (gSLU) transformations, which can add or remove
vertices on the graph. Thus, using the gSLU transformations,
one can change the branching structure by first removing the
vertices, and then adding them back, with a different branching
structure. Such processes of removing and adding vertices can
be used to relate any two branching structures [83].

We notice that the fixed-point wave function constructed
using the generalized F symbols can be viewed as the
string-net construction of a unitary multifusion category [84].
Instead of the G-graded structure, one can also view the
labels on the edges as having a double-graded structure ag,h,
where g and h are the group elements on the two sides of the
domain wall, respectively. Then, the labels form a multifusion
category, and the generalized F symbols are the F symbols of
the multifusion category, satisfying the pentagon equation in
Eq. (9).

The F symbols have gauge redundancies. Physically, we
can consider the following local unitary transformation on the
state:

(11)

g0v
agbh
c are U(1) phase factors. Again, here in g0v

agbh
c we

omit the G grading of cgh since it can be inferred from the
gradings of ag and bh. In order for Eq. (11) to be a symmetric

local unitary transformation, g0 [v
agbh
c ] also needs to satisfy a

symmetry condition, which we will postpone to Sec. II B.
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As a result, F symbols which are related through the
following gauge transformations should yield the same SET
phases:

g0
[
Fagbhck

d

]
ef

→
g0g

[
v

bhck
f

]
g0

[
v

agfhk

d

]
g0

[
v

agbh
e

]
g0

[
v

eghck

d

] g0
[
Fagbhck

d

]
ef

. (12)

To summarize, we have defined a fixed-point ground-state
wave function for a SET phase using local moves. This
construction generalizes the usual string-net wave functions
in two aspects: first, the fusion rules now have a G-graded
structure; second, the F symbols depend explicitly on the
group element in the leftmost domain. One should also notice
that so far the symmetry has not entered the discussion. In fact,
the rules we have defined so far are not enough to uniquely
determine the wave function on the plane or on a sphere
(i.e., there is unstable |G|-fold ground-state degeneracy on
a sphere). In the next section, we will complete the theory
by eliminating the dependence of F symbols on the leftmost
group element using the symmetry.

B. Symmetry action on the F symbols

The consistency conditions in Eqs. (3)–(5) ensure the
existence of a fixed-point wave function �. However, the wave
function needs to be symmetric under the symmetry group G,
which yields additional conditions on the input data. More
precisely, we assume that the wave function on the sphere is
invariant under G, or forms a one-dimensional representation.

We will show that the symmetry condition relates the F

symbol g0 [Fagbhck

d ]ef to 1[Fagbhck

d ]ef . The former can be viewed
as the result of the g0 action of the latter. In this section, we
discuss the form of the G action for different types of symmetry
operations. We find it convenient to define

1[Fagbhck

d

]
ef

= [
F

agbhck

d

]
ef

, 1[vagbh
c

] ≡ u
agbh
c . (13)

The F symbols [F
agbhck

d ]ef then satisfy a twisted pentagon
equation[

F
fghckdl
e

]
mq

[
F

agbhqkl
e

]
fp

=
∑

nhk∈Chk

[
F

agbhck
m

]
f n

[
F

agnhkdl
e

]
mp

g[Fbhckdl
p

]
nq

, (14)

where g[Fbhckdl
p ]nq schematically denotes that there is a

nontrivial g action on the F symbols. The detailed forms of
the action for different types of symmetry operations will be
determined below.

As we will see, when G is an onsite unitary symmetry group,
the F symbols defined in Eq. (5) are independent of g0, and
Eq. (14) becomes the usual pentagon equation of F for the G-
graded fusion category CG. In this case, what we have defined
is called a G extension of the UFC C1 [77]. The mathematical
classification of such extensions has been obtained in [77].
Remarkably, Ref. [77] showed that the equivalence classes of
G extensions of C1 are in one-to-one correspondence with the
(nonanomalous) symmetry-enriched topological orders in the
double of C1 (for a summary of the mathematical results, see
Appendix C). Therefore, our construction can represent all
SETs in Z(C1) with a unitary finite symmetry group G.

1. Onsite symmetry

First, we consider an onsite unitary symmetry operation
g0. Such a symmetry operation acts on group elements in all
plaquettes: |gi〉 → |g0gi〉, while leaving all the edge labels
unchanged. To get a wave function invariant under g0, we
demand that the symmetry action commutes with the F move
in Eq. (5) [the symmetry action obviously commutes with the
other two types of moves in Eqs. (3) and (4)]:

.

(15)

This implies that the F symbol is independent of g0:

g0
[
Fagbhck

d

]
ef

= 1
[
Fagbhck

d

]
ef

. (16)

Similarly, we find that the gauge transformations are also
independent of g0:

g0
[
v

agbh
c

] = u
agbh
c . (17)

Second, we consider an onsite antiunitary symmetry op-
eration g0. In this case, the action of g0 not only transforms
all group elements gi → ggi , but also complex conjugates
the amplitude. The condition that the following diagram
commutes,

,

(18)
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implies that the g0 action on the F symbol is the complex
conjugation

g0
[
Fagbhck

d

]
ef

= 1[Fagbhck

d

]∗
ef

. (19)

The action on the gauge transformation is similar:

g0
[
v

agbh
c

] = (
u

agbh
c

)∗
. (20)

2. Mirror symmetry

We now consider g0 a mirror-reflection operation. Other
point-group operations can be generally composed out of
reflections. Due to the branching structure, there may seem
to be different ways to position the mirror axis. We choose the
mirror reflection according to the following convention:

ag

g1

g1g

ag

. (21)

Heuristically, it means that the strings ag transform as if
they are pseudovectors, which is consistent with the intu-
itive interpretation that they are like “symmetry flux lines”.
Therefore, we choose a branching structure that transforms
as a pseudovector under the mirror symmetry. Since the
construction is independent of the branching structure, such
a choice is always possible.

We again demand that the F move commutes with the
symmetry action, as shown in the following diagram:

.

(22)

We need to evaluate the “dual” F move denoted by F̃ in the
diagram. By stacking the diagrams of F̃ on top of those of F ,
we can easily derive the following relation:∑

f

g0
[
F̃agbhck

d

]
ef

g0
[
Fagbhck

d

]
e′f = δee′ (23)

or in matrix form g0 [F̃agbhck

d ] g0 [Fagbhck

d ]T = 1. Because
g0 [Fagbhck

d ] is unitary, it follows that g0 [F̃agbhck

d ]ef =

g0 [Fagbhck

d ]∗ef . So, we find that the mirror action on F symbols
is the same as that of an antiunitary symmetry:

g0
[
Fagbhck

d

]
ef

= 1
[
Fagbhck

d

]∗
ef

. (24)

Using the two Z2 gradings p(g) and q(g) we introduced at
the beginning of this section, the symmetry transformations
in Eqs. (16), (19), and (24) can be unified into the following
form:

g0
[
Fagbhck

d

]
ef

= 1
[
Fagbhck

d

]s(g0)
ef

, (25)

where s(g0) = 1 if p(g0)q(g0) = 1, and s(g0) = ∗ if
p(g0)q(g0) = −1.

3. Anomalous symmetry

Finally, we discuss anomalous symmetry actions, which
can be used to study anomalous SET states that can only exist
on the surface of a 3D SPT state. On a symmetry-preserving
surface of a nontrivial 3D SPT state, the symmetry cannot be
realized in an onsite fashion in terms of degrees of freedoms
on the 2D surface. Due to the anomalous symmetry action, a
symmetry-preserving surface state (i.e., no spontaneous sym-
metry breaking) is either gapless or gapped by an anomalous
SET state. In this section, we define a generalized form of
G extension of a UFC to study such anomalous SET states,
realized on the surface of 3D group-cohomology SPT models.
We only consider onsite symmetries (unitary or antiunitary) in
this section, and will comment on possible generalizations to
mirror symmetries in the end.

First, we outline how our construction can be adopted
to study the surface topological order of a 3D SPT state.
We will focus on those 3D SPT states within the so-called
group-cohomology classification [85]. These SPT phases can
be realized in exactly solvable commuting-projector models.
For this reason, one can decouple the boundary degrees of
freedom from the bulk, in the sense that the boundary can
be formally treated as a stand-alone two-dimensional system,
but the bulk SPT state leaves its fingerprint in how the global
symmetry acts on the boundary degrees of freedom. If the bulk
SPT state is nontrivial, the symmetry action on the boundary is
“anomalous”, in a way that can not be realized as a truly onsite
symmetry in the 2D lattice model. In our construction, we will
view the plaquette spin degrees of freedom as coming from a
3D SPT state (after the bulk has been traced out). Notice that
by construction the symmetry only acts on the spin degrees of
freedom in the plaquettes. We now derive the precise form of
the anomalous symmetry transformation.

According to [85], each cohomology class of H4[G,U(1)]
describes a distinct 3D SPT phase, of which a fixed-point
wave function can be constructed using a representative 4-
cocycle β of the class. The wave function can be defined on any
triangulation of the 3D spatial manifold. For the convenience
of studying the surface state, we choose the following minimal
triangulation of the bulk, by adding a single vertex to the bulk
and connecting the bulk vertex to all surface vertices. The
branching structure is chosen such that all additional links
point from the bulk vertex to the surface. As shown in Fig. 2,
there is a one-to-one correspondence between the tetrahedra
in the bulk and the triangles on the surface.
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g2

g1

g3

g4

g∗

FIG. 2. A triangulation of a 3D bulk, with a 2D surface. The bulk
is represented by only one vertex, carrying a group element g∗. The
vertices carrying g1, . . . g4 belong to the 2D surface.

The basis states in the Hilbert space are labeled by assigning
a group element to every vertex in the triangulation. In
particular, we denote the group element on the bulk vertex
as g∗. The fixed-point wave function is a superposition of all
basis states, with the following phase factor associated to each
tetrahedron:

(26)

The states on the surface are in fact dual to group-element
configurations on the trivalent graph used in Sec. II, where a
vertex on the surface corresponds to a plaquette of the trivalent
graph, and the branching structure on the triangulated surface
is canonically induced from the one on the trivalent graph,
according to the rule in Eq. (2). We can then write the phase
factors for a given group configuration on the trivalent graph:

(27)

Plugging this phase factor into Eq. (5), we find that this wave
function has a nontrivial phase factor associated with an F

move,

(28)

g0 [Fghk](g∗) = β(g∗,g−1
∗ g0g,h,k)β(g∗,g−1

∗ g0,g,hk)

β(g∗,g−1∗ g0,g,h)β(g∗,g−1∗ g0,gh,k)
. (29)

Using the cocycle condition dβ = 1, the F symbol in Eq. (29)
can be simplified as

g0 [Fghk](g∗) = β(g−1
∗ g0,g,h,k)s(g∗)

β(g0,g,h,k)
. (30)

Next, we consider how the symmetry acts on the wave
function. Similar to the discussion in Eqs. (15) and (18),

we compare the F moves before and after a symmetry
transformation that changes the group element in the leftmost
plaquette from 1 to g0. However, the symmetry also acts in the
bulk, and changes g∗ to g0g∗. Comparing the two F moves,
we get

g0 [Fghk](g0g∗)

[Fghk](g∗)s(g0)
= β(1,g,h,k)s(g0)

β(g0,g,h,k)
. (31)

Using the coboundary equivalence, we can choose a gauge,
such that β(1,g,h,k) = +1. In this case, the result in Eq. (31)
is simplified to

g0 [Fghk](g0g∗) = β(g0,g,h,k)−1[Fghk](g∗)s(g0). (32)

The additional phase factor appearing in Eq. (32) reflects the
anomalous nature of the symmetry action on the surface of
a nontrivial 3D SPT, and cannot be gauged away by any
redefinition of the symmetry action. In fact, such redefinitions
can only account for trivial phase factors, which are the
coboundary of a 3-cochain.

To demonstrate this, we consider a general symmetry action
which generates a nontrivial phase factor on each vertex of the
trivalent graph,

g0 :

ag bh

cgh

1
→ ω(g0,g,h)

ag bh

cgh

g0

, (33)

where ω is an arbitrary 3-cochain. We also assume that
the symmetry group is onsite and unitary, but the following
discussion can be easily generalized to antiunitary and mirror
symmetries by adding the complex conjugation s(g) at appro-
priate places.

Plugging this new definition of the symmetry action into
the F move in Eq. (5), we see that after symmetry actions, the
F symbols acquire additional phase factors, comparing to the
results in Sec. II B:

g0
[
Fagbhck

d

]
ef

= ω(g0,g,hk)ω(g0g,h,k)

ω(g0,g,h)ω(g0,gh,k)

[
F

agbhck

d

]
ef

. (34)

The phase factor can be rearranged into the following form:

g0
[
Fagbhck

d

]
ef

= dω(1,g,h,k)

dω(g0,g,h,k)

[
F

agbhck

d

]
ef

. (35)

Added to the symmetry transformation in Eq. (31), such
a redefinition changes the cocycle β to βdω. Therefore, a
redefinition of the symmetry action on the surface can change
β by a coboundary term, but cannot alter its cohomology class.
This is consistent with our claim that a symmetry action with
a nontrivial β is anomalous, and thus cannot be realized in a
purely 2D system.

We can now carry through the construction of the fixed-
point wave function for the surface SET. In previous sections,
Eq. (25) ensures that the wave function is invariant under global
symmetry actions. With the anomalous symmetry transforma-
tion, to make sure that the wave function is symmetric, the
extended F symbols g0 [Fagbhck

d ]ef have to acquire an additional
phase factor under symmetry actions:

g0
[
Fagbhck

d

]
ef

= β(g0,g,h,k)1[Fagbhck

d

]s(g0)
ef

. (36)
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The diagrams in Eqs. (15), (18), and (22) commute because
the relative phases for F move in Eq. (36) are exactly canceled
out by the same phase factors from anomalous symmetry
transformations.

Furthermore, we notice that the extra phase factor in
Eq. (32) exactly cancels the phase factor in Eq. (36). Con-
sequently, if we put the 2D SET fixed-point wave function
satisfying the anomalous symmetry transformation in Eq. (36)
on the surface (meaning that the group elements in the SET
state are actually part of the 3D SPT fixed-point state), all phase
factors cancel out and we obtain a symmetric wave function.
This way, we explicitly demonstrate that the anomalous
symmetry transformation discussed in Sec. II B 3 can be used
to study anomalous SET states realized on the surface of the
corresponding 3D SPT state.

Applying the general twisted pentagon equation in Eq. (9),
we obtain the following “obstructed” pentagon equation:

[
F

fghckdl
e

]
mq

[
F

agbhqkl
e

]
fp

= β(g,h,k,l)
∑

nhk∈Chk

[
F

agbhck
m

]
f n

× [
F

agnhkdl
e

]
mp

[
Fbhckdl

p

]s(g)
nq

. (37)

The solution of this equation describes anomalous SET states
that can only be constructed together with a nontrivial 3D bulk
if we demand that the symmetry action is onsite, belonging
to the SPT state corresponding to β ∈ H4[G,U(1)]. It is
worth noticing that at a heuristic level, Eq. (37) resembles
the pentagon equation of symmetry defects in Ref. [34], if
we think of ag’s as representing symmetry defects to some
extent. However, one should not confuse these two equations
since Eq. (37) applies to the input data to our generalized
“string-net” type construction, while [34] discussed the actual
physical defects in a symmetry-enriched topological phase.

We note that it is fairly well established that 3D SPT states
protected by onsite symmetries, either unitary or antiunitary,
are partially classified by H4[G,U(1)]. It has been conjectured
that the classification takes a similar form if G contains mirror-
reflection symmetries [86], where mirror reflections act on the
U(1) coefficients by complex conjugations.

C. Parent Hamiltonians

We now briefly describe how to construct a parent Hamilto-
nian for the fixed-point wave function, generalizing the Levin-
Wen Hamiltonians. The Hamiltonian takes the following form:

H = −
∑

v

Qv −
∑

e

Qe −
∑

p

Bp. (38)

Here, Qv, Qe, and Bp are all commuting projectors.
The vertex terms Qv ensure that fusion rules are obeyed at

each vertex:

Qv

a b

c

= N c
ab

a b

c

. (39)

ss
s

s̄
s̄

s̄

(a) (b) (c)

FH

H

F H

H

F

F

H

F

F

H

FIG. 3. Steps of deforming the right-hand side of Eq. (42) to
its left-hand side. (a) Step 1: the initial configuration containing an
inner loop carrying a topological charge s. The inner loop consists of
counterpropagating segments carrying charges s and s̄, respectively.
The dashed lines are vacuum strings carrying charge 0. The blue color
indicates the locations where the F moves will be applied to obtain
the next configuration. (b) Step 2: the second configuration is obtained
after applying six F moves and H moves (see Appendix B), located
at the links marked by the blue color. The letter denotes whether an
F move or an H move is performed. The red links mark the locations
of the F moves leading to the next configuration. (c) Step 3: the third
configuration is obtained through six F moves and H moves located
at the red links. The letter denotes whether an F move or an H move
is performed. Finally, this configuration is changed into the one on
the left-hand side of Eq. (42), by eliminating the bubbles using the
move in Eq. (4).

The edge terms Qe enforce the G-grading structure:

Qe

ag

g1 g2 = δg,g1g2

ag

g1 g2 . (40)

The vertex and edge projectors are fairly straightforward
to define. The most important part of the construction is the
plaquette terms, which take the following form:

Bp = 1

D2

∑
g∈G

|gpg〉〈gp|
∑
sg∈Cg

dsgB
sg
p . (41)

As in the Levin-Wen construction, here B
sg
p has the following

graphic representation: imagine adding a loop of sg to the
plaquette, and fuse the loop onto the edges using the local
moves defined in

Bs
p = s . (42)

The right-hand side of this equation contains a loop carrying
a topological charge s running inside of the hexagon, and
it is a graphic representation of a superposition of different
configurations on the hexagon. The precise form of this
superposition can be computed by deforming the diagram
using the combination of basic moves, including the F move in
Eq. (5), the H move, which is a variation of F move discussed
in Appendix B, and the elimination of bubbles in Eq. (4), as
shown in Fig. 3.

In summary, in this section, we explicitly construct 2D
SET states using fixed-point wave functions, which are ground
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states of commuting-projector Hamiltonians. The fixed-point
wave function is based on a set of data describing a generalized
G extension of the UFC C1, including the generalized F
symbols.

When the symmetry group G is unitary, the generalized
F symbols reduce to the usual F symbols, and the structure
of the fixed-point wave function is essentially given by the
G extension CG of C1. The parent Hamiltonian can then
be understood as “ungauging” the parent Hamiltonian of the
string-net model with CG as the input data. In other words,
because of the G grading of CG, its quantum double Z(CG)
can be thought as a gauge theory. Strings with labels in the
Cg sectors with g 
= 1 play the role of gauge connections of
G, and in the SET phase they are forced to align with the G

domain walls of the plaquette spins, so in the language of a
gauge theory, the G connections become pure gauges. This
is a generalization of the duality between SPT phases and
Dijkgraaf-Witten topological gauge theories [76].

Using the formalism of anyon models, the ungauging
procedure can be understood in terms of anyon condensation.
Among the quasiparticles in Z(CG), there is a subset whose
fusion rules and braiding statistics are isomorphic to those of
Rep(G), i.e., the category of irreducible linear representations
of G. The bosons in Rep(G) can be condensed, driving a
topological phase transition from the gauged theory to the SET
phase [61]. The effect of the condensation of Rep(G) on the
topological order can be analyzed algebraically [87–90]. Very
roughly speaking, all gauge fluxes become confined by the
condensation. Microscopically, the confinement corresponds
precisely to “ungauging” the strings with nontrivial gradings to
domain walls. Furthermore, because quasiparticles in Rep(G)
are local excitations after the condensation (carrying G

charges), the remaining quasiparticles in Z(CG) are reorga-
nized: for example, those that can be transformed into each
other by fusing with particles in Rep(G) are now identified as
the same type of anyons, and sometimes a quasiparticle needs
to split into several distinct types of quasiparticles. In Sec. IV
we will see very explicitly how the condensation works.

When G contains antiunitary or mirror-reflection symme-
tries, the generalized F symbols satisfy instead the twisted
pentagon equation in Eq. (14). We conjecture that the cor-
responding generalized G extension CG also classifies the
space-time SET phases of Z(C).

In the rest of this paper, the framework presented in
this section will be used to study SET phases of different
topological orders. We begin with a basic example, with a
trivial C1 = Vec. This means that there is no topological order
to begin with, and we are therefore classifying 2D SPT states.
In this case, each sector Cg contains only one simple object
with d = 1, and hence all objects in CG can be labeled simply
by group elements. Therefore, the F symbols can be viewed
as 3-cochain, the pentagon equation in Eq. (14) becomes
the cocycle conditions in group cohomology, and the gauge
equivalence in Eq. (12) becomes the coboundary equivalence.
Therefore, different fixed-point wave functions are classified
by H3[G,U(1)], where the G action on U(1) is specified
by the function s(g) in Eq. (25). For onsite symmetries,
this result reproduces the group-cohomology classification
of 2D SPT states, and for mirror-reflection symmetry, this is
consistent with the conjecture that mirror-SPT states are also

classified by group cohomologies, where mirror reflections act
as antiunitary operations on the U(1) coefficients.

III. SYMMETRY-ENRICHED GAUGE THEORIES

In this section we will study symmetry-enriched (untwisted)
discrete gauge theories D(N ), where the gauge group N is
Abelian. Applying the formalism in Sec. II, we first outline
how to construct general SETs in D(N ) in which symmetries
do not permute charges with fluxes. Then, for the cases where
symmetries do not permute any anyons (except that space-
time symmetry operations that reverse orientation, such as
time-reversal and mirror-reflection symmetries, have to map
anyons to ones with opposite topological spins), we explicitly
write all the data necessary for the construction and show that
all nonanomalous symmetry fractionalization classes can be
realized. We further derive a sufficient and necessary condition
for a symmetry fractionalization class to be nonanomalous.

We first review briefly the topological order in D(N ) =
Z(VecN ). The underlying UFC VecN is defined as follows: the
labels are group elements of N and the fusion rules are given
by group multiplications. In particular, the F symbols are all
trivial: [

Fabc
a×b×c

]
a×b,b×c

= 1 a,b,c ∈ N. (43)

Anyons in the discrete gauge theory are labeled as dyons
([a],πa), where the “magnetic flux” is a conjugacy class [a] of
N , and the “electric charge” is an irreducible representation πa

of the centralizer group Ca . Since N is Abelian, each conjugacy
class is a singleton {a}. The centralizer group Ca is always N ,
whose irreducible one-dimensional representations are given
by the characters λ : N → U(1). So, we can simply label the
dyons as a pair (a,λ). The characters form a group, called the
character group N̂ which is isomorphic to N . So, the anyons
in D(N ) form a fusion group N × N̂ .

We further assume that symmetry operations permute
anyons in a simple way: they can permute different types
of gauge fluxes arbitrarily as long as the fusion rules are
preserved. In other words, the permutations are automorphisms
of the group N . Their actions on gauge charges can then be
deduced since their braiding statistics with gauge fluxes have
to be invariant under the symmetry (complex conjugated when
the symmetry is antiunitary). In particular, we do not consider
the so-called “electromagnetic duality”(EMD) symmetry in
this section, which permutes charges with fluxes. We will,
however, study an example of the EMD symmetry in D(Z2)
in Sec. IV.

This limited form of symmetry actions is sufficient to
include the aforementioned natural action of time-reversal
and mirror-reflection symmetries. In terms of the G extension
of the UFC C described in Sec. II, such SET phases can
be described as extensions in which all objects in CG have
quantum dimensions equal to 1. In the following, we refer to
CG with this property as being Abelian. As it turns out, CG can
be thought as a group G (with multiplication given by fusion),
and importantly N is a normal subgroup ofG. The reason is that
because of the G grading, for any n ∈ N and x ∈ G, xnx−1 has
to be in N regardless of the grading of x, i.e., N is invariant
under conjugation. The problem of determining the fusion
rules of CG becomes the problem of finding group extensions.
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Physically, since symmetries only permute among charges
(fluxes), for Abelian gauge theories such permutations have
to be uniquely induced from a group automorphism in order
to preserve the fusion rules (for non-Abelian gauge groups,
such permutations are induced from outer automorphisms),
and therefore CG must be group extensions. However, one
should notice that we do not need to assume that CG has
Abelian group multiplication; in fact in general they do not.
Lattice models of this kind of symmetry-enriched gauge theory
were considered also in Ref. [57].

A. Group extension

We start with some general remarks on G extensions of a
finite Abelian group N . Such group extensions correspond to
SETs of D(N ) where G does not permute charges with fluxes,
but permutations among fluxes and charges are allowed.

Let us now briefly review mathematically how to classify
group extensions. Given an Abelian group N and another
finite group G, to specify a group extension we first need
to pick a homomorphism ϕ : G → Aut(N ). Here, Aut(N )
is the automorphism group of N , i.e., all permutations of
elements of N preserving the group multiplications. Then,
possible extensions are classified by [ν] ∈ H2

ϕ[G,N ]. More
explicitly, we can parametrize the elements of G as ag where
a ∈ N,g ∈ G, with the group multiplication law given by

ag × bh = [aϕg(b)ν(g,h)]gh. (44)

Associativity of group multiplication in G requires

ϕg[ν(h,k)]ν(g,hk) = ν(g,h)ν(gh,k), (45)

which is, of course, the twisted 2-cocycle condition. In other
words, given ϕ and ν, we have explicitly constructed the
multiplication table of the group G.

Physically, ϕ and ν determine how symmetry acts on anyons
in D(N ). For each g ∈ G, we have an automorphism of N

denoted by ϕg. ϕg induces canonically a permutation action
ρg on the anyons in D(N ), as ρg((a,λ)) = (ϕg(a),λ′), where
the new character λ′ is defined by λ′(b) = λs(g)(ϕg(b)), b ∈ N .
One can check that this transformation preserves all fusion
rules as well anyon braiding statistics. We notice that the factor
s(g) ensures that the anyons (a,λ) and (ϕ(a),λ′) has the same
(opposite) topological spin, if s(g) = 1 or ∗, respectively.

To illustrate, let us consider an example with N =
Zn and G = Z2. We will denote the elements of Zn by
j = 0,1, . . . ,n − 1 and the multiplication is j × k = (j +
k) mod n. Choose the symmetry action on N to be ϕg(j ) = −j

for j ∈ N . The extension of Zn by Z2 with the given action
is actually isomorphic to the dihedral group D2n. We can also
obtain the action of the symmetry on the quantum double
D(Zn). Label the quasiparticles by (j,q) where j is the flux and
q is the charge [corresponding to a character χq(j ) = e

2πiqj

n ].
Under the symmetry, we have

(j,q) → (−j, − q). (46)

This is in fact the charge-conjugation symmetry in D(Zn). On
the other hand, ν accounts for fractionalization of G on the
charges of N . We will come back to this point later.

From now on in this section, for clarity we will focus on
the case of ϕ = 1, i.e., gauge fluxes are not permuted by G at

all, while G acts on gauge charges as λ′ = λs(g), to illustrate
our approach.

B. F symbols and group-cohomology classes

Next, we discuss possible F symbols compatible with the
fusion rule given by the group structure of G. Because all the
objects are Abelian, the F symbol [F

agbhck

ag×bh×ck
]ag×bh,bh×ck only

depends on ag, bh, and ck, and we will write it as ω(ag,bh,ck),
where ag, bh,ck ∈ G. Furthermore, the unitarity condition
implies that ω(ag,bh,ck) is a U(1) phase factor. Therefore,
the F symbol can be viewed as a 3-cochain.

In terms of the 3-cochain ω(ag,bh,ck), the twisted pen-
tagon equation in Eq. (14) becomes the following cocycle
equation:

dω(ag,bh,ck,dl)

= ω(ag,bh,ck)ω(ag,bh × ck,dl)gω(bh,ck,dl)

ω(ag × bh,ck,dl)ω(ag,bh,ck × dl)
= 1. (47)

Similarly, the phase factor [u
agbh

ag×bh
] defined in Eq. (11) only

depends on the first two elements, and can be viewed as
a 2-cochain [u

agbh
c ] = u(ag,bh). Correspondingly, the gauge

equivalence condition in Eq. (12) becomes the following
coboundary equivalence:

ω → ω · du, du(ag,bh,ck) =
gu(bh,ck)u(ag,bh × ck)

u(ag,bh)u(ag × bh,ck)
.

(48)

In the above two equations, gω and gv denote the symmetry
actions discussed in Sec. II B, i.e., time-reversal and mirror-
reflection symmetries act by complex conjugation. Therefore,
the F symbols are classified by the twisted third group
cohomology H3[G,U(1)], with the nontrival group actions on
U(1).

C. Symmetry fractionalization and anomaly

In this section, we have seen that without any anyon
permutations, such extensions are classified by a second
group-cohomology class [ν] ∈ H2[G,N ] specifying the group
extension, and then a third group-cohomology class [ω] ∈
H3[G,U(1)] for the F symbols. Now, we explain how these
two pieces of data together can encode all possible symmetry
fractionalization classes.

Generally speaking, symmetry fractionalization in a topo-
logical phase is classified by H2

ρ[G,A] [61], where A is
the fusion group of the Abelian anyons, and the action of
G on A is indicated explicitly by the subscript ρ. In the
Abelian gauge theory D(N ), A = N × N̂ , where N and N̂

denote gauge fluxes and charges, respectively. According to
our assumptions in Sec. III A, G acts trivially on N , and
acts on N̂ as ρg(λ) = λs(g). Since the actions we consider
also factor through, the second group cohomology H2[G,N ×
N̂ ] can be decomposed to H2[G,N ] × H2

ρ[G,N̂]. In other
words, a symmetry fractionalization class w ∈ H2

ρ[G,N ×
N̂ ] can be separated into two parts, w = we ×wm, where
we ∈ H2[G,N ], and wm ∈ H2

ρ[G,N̂ ]. Physically, we and wm

represent symmetry fractionalization classes of gauge charges
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and fluxes, respectively. As we shall explain below, these two
symmetry fractionalization classes are encoded differently
in the data of CG: we is encoded in the group extension
(hence the same notation), while wm is encoded in the third
group-cohomology class [ω] ∈ H3[G,U(1)].

As introduced in Sec. III A, ν is used to determine the
group extension. Therefore, it appears in the fusion rule of
CG, as shown in Eq. (45). This indicates that, when fusing two
domain walls carrying group elements f and g, respectively,
the gauge flux on the fused domain wall is changed by ν(f,g).
It is well known that such fusion rules reflect the symmetry
fractionalization class of the gauge charges, so we should
identify we ≡ ν.

The symmetry fractionalization of the gauge flux wm is
encoded in the cocycle ω ∈ H3[G,U(1)]. In particular, we
consider 3-cocycles that take the following form:

ω(ag,bh,ck) = χc(g,h)α(g,h,k). (49)

As shown in Appendix D, the 3-cocycle condition dω = 1
implies the following properties of χ : (1) χ is a character on N ,
i.e., χa(g,h)χb(g,h) = χa×b(g,h). (2) χa satisfies the cocycle
condition χa(g,h)χa(gh,k) = χ

s(g)
a (h,k)χa(g,hk). Therefore,

χ can be viewed as a cocycle in H2
ρ[G,N̂], as wm is. When G

is unitary, we can give a further argument for the identification
of χ with the fractionalization class of gauge fluxes, by gauging
the symmetry group G and analyzing the anyon content of the
gauged theory. The details of the argument can be found in
Appendix E. We believe this is true for antiunitary and mirror
symmetries as well.

To construct a 2D SET, the twisted pentagon equation (14)
should be satisfied, which reduces to the 3-cocycle condition
dω = 1 in G. For cocycles of the form given in Eq. (49), this
is equivalent to

χν(k,l)(g,h) = dα(g,h,k,l). (50)

The proof of these assertions can be found in Appendix D.
For later reference, we mention that χν(k,l)(g,h) is generally a
4-cocycle, and the above condition says the 4-cocycle belongs
to the trivial cohomology class in H4[G,U(1)].

For onsite unitary symmetries, Eq. (50) is equivalent to
the obstruction-vanishing condition obtained in [61] and [34]
applied to D(N ). To see this, recall that the gauge anomaly
for a symmetry fractionalization class is captured by the
so-called obstruction class O [34,61], which is a 4-cocycle:
[O] ∈ H4[G,U(1)]. For D(N ), O is given by

O(g,h,k,l) = Rw(g,h),w(k,l). (51)

Here, R is the R symbol of the anyon theory for D(N ) [80] (see
below for an explicit expression). As shown in Refs. [34,61],
the symmetry can be gauged (hence the SET is free of gauge
anomaly) if and only if O belongs to a trivial cohomology class
inH4[G,U(1)]. For D(N ), one can choose R(a,λ),(a′,λ′) = λ(a′).
Using w = we ×wm we can write

Rw(g,h),w(k,l) = [wm(g,h)](we(k,l)) = χν(k,l)(g,h). (52)

Therefore, Eq. (50) is exactly the same condition as the
vanishing of the obstruction class (51).

On the contrary, when the 4-cocycle on the left-hand side
of Eq. (50) is a nontrivial cohomology class in H4[G,U(1)],

Eq. (50) has no solutions. Thus, our construction can not
represent such a fractionalization class parametrized by ν and
χ . In fact, for such fractionalization classes, one can use the
obstructed pentagon equation in Eq. (37), which takes the
following form for the 3-cocyles in Eq. (49):

χν(k,l)(g,h) = β(g,h,k,l)dα(g,h,k,l), (53)

to get a consistent SET state if we choose β(g,h,k,l) to
be in the same cohomology class as χν(k,l)(g,h). The SET
state then lives on the boundary of a nontrivial 3D SPT
state characterized by β, which shows that the symmetry
fractionalization class is anomalous. This result generalizes
the obstruction-vanishing condition (51), which was obtained
for onsite unitary symmetries, to antiunitary symmetries for
D(N ). We notice that Ref. [34] conjectured that the same
formula of the obstruction class should apply to antiunitary
symmetries as well, and we give a strong evidence for the
conjecture by proving it for D(N ). Furthermore, our approach
establishes directly the bulk-boundary correspondence for this
class of SET: the group cohomology class for the bulk SPT
phase is given by O(g,h,k,l) = χν(k,l)(g,h).

IV. Z2 TORIC CODE WITH UNITARY
ONSITE Z2 SYMMETRY

A. Classification

As a concrete example, let us consider the Z2 toric code
with a global Z2 symmetry [52,61]. We shall carry out the
classification explicitly and compare with the known results.

We need to determine Z2 extensions of the C = VecZ2 =
{I,e} category. To classify the extensions, we recall that the
total quantum dimension of Cg must be equal to that of C1,
which is 2. So there are two scenarios: (1) There are two
labels in Cg both with dimension 1, denoted by σ+ and σ− =
σ+ × e. Furthermore, depending on whether σ+ × σ+ = I or
e, the fusion rules can be regarded as group multiplications
of Z2 × Z2 or Z4. (2) There is a single label σ with quantum
dimension

√
2, and the fusion rule has to be σ × σ = 1 + e.

This is the famous Ising fusion rules. We now consider the
three possibilities:

(1) CZ2 = VecZ2×Z2 . The F symbols of VecZ2×Z2 are
classified by H3[Z2 × Z2,U(1)] = Z3

2. One of the Z2 fac-
tors corresponds to ω(e,e,e) = −1, i.e., a double-semion
topological order. The other two Z2 factors correspond
to κσ+ = ω(σ+,σ+,σ+) = [Fσ+σ+σ+

σ+ ]II = ±1 and κσ− =
ω(σ−,σ−,σ−) = ±1. Notice that the labeling in the Cg sector
is arbitrary; one is free to relabel σ± → σ∓. So, there are only
two nontrivial distinct extensions. One of them is (κσ+,κσ−) =
(1,−1), and physically it can be thought as a “trivial” SET
with an additional layer of a Z2 SPT phase. The other one
(κσ+,κσ−) = (−1,−1) describes a SET where the e (or m)
particle carries a “half” charge under the Z2 symmetry. We
notice that such SETs have been previously constructed in
commuting-projector models [91,92].

(2) CZ2 = VecZ4 . F symbols are classified by H3[Z4,

U(1)] = Z4. Representative 3-cocycles are ω(a,b,c) =
e

πin
8 a(b+c−[b+c]4) [93], where we denote [0] = 1, [1] =

σ+, [2] = e, [3] = σ−, and [a + b]4 means (a + b) mod 4.
Requiring ω([2],[2],[2]) = 1 we find n = 0 or 2. The n = 0
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extension also yields a SET where e/m carries a halfZ2 charge,
while in the n = 2 SET both e and m carry half Z2 charges,
corresponding to w(g,g) = ψ .

(3) CZ2 = Ising. As we shall see explicitly below, this
extension corresponds to a SET where the Z2 symmetry
permutes e and m. This is known as the electromagnetic duality
symmetry. There are two gauge-inequivalent F symbols,
distinguished by [Fσσσ

σ ]II = ±1.
The resulting classification agrees completely with the one

obtained in [61] based on G-crossed braided tensor category,
as well as the Chern-Simons field theory analysis in [52].

B. Z2 symmetry fractionalization

First, let us consider the example of CG = VecZ4 and a
trivial F symbol. The gauged model is simply the Z4 toric
code, so we will formulate the ungauged model on a square
lattice. There is a Z4 spin on each edge of the lattice, and a Z2

spin in each plaquette. We define Ue|n〉e = in|n〉e, Ve|n〉e =
|n + 1〉e, where n ∈ Z4 and |n〉e represents the basis states on
an edge e.

The following edge projectors are added to the Hamiltonian:

Qe = 1 + U 2
e

2

1 + τ z
pτ z

q

2
+ 1 − U 2

e

2

1 − τ z
pτ z

q

2
, (54)

where p and q denote plaquettes adjacent to the edge e. The
projector imposes the Z2 grading on the edges.

We also have the vertex and plaquette terms

H = −
∑

v

(Ar + A†
r) −

∑
r

τ x
r (Br + B†

r ) −
∑

e

Qe. (55)

Here, the vertex operator Ar is given by Ar =
Ur,xUr,yU

†
r−x̂,xU

†
r−ŷ,y , and the plaquette operator Br =

Vr,xVr+x̂,yV
†

r+ŷ,xV
†

r,y . We label the edges as r,e, i.e., the edge
connecting r and r + e, where e = x̂,ŷ are the two basis
vectors of the square lattice. Correspondingly, we assign a
direction to the edge pointing from r to r + e. The global
Z2 symmetry in the model is defined as X = ∏

p τ x
p . For

comparison, the Hamiltonian of the original Z4 toric code,
which can be thought as the gauged SET, reads as

HZ4 = −
∑

r

(Ar + A†
r) −

∑
r

(Br + B†
r ). (56)

We first prove that if we break the Z2 symmetry, the
Hamiltonian (55) is adiabatically connected to a Z2 toric code.
We add to the Hamiltonian a “Zeeman” term:

H ′ = H − Jz

∑
r

τ z
r . (57)

Imagine Jz is turned on adiabatically. The τ z
r term commutes

with the vertex and edge terms in Eq. (55), as well as plaquette
operators except the one at r. So, to study the spectrum of the
model, we can fix a single plaquette, and define

hr = −τ x
r (Br + B†

r ) − Jzτ
z
r . (58)

To solve for the spectrum of hr, we notice that

h2
r = B2

r + (B†
r )2 + 2 + J 2

z . (59)

B2
r commutes with all terms in the Hamiltonian H ′, so it is

a conserved quantity. Since when Jz = 0 we have B2
r = 1,

we can set the value of B2
r to 1 in Eq. (59). Therefore, the

eigenvalues of hr are ±√
J 2

z + 4. In particular, the gap between
the ground state and the excited state of hr never closes
regardless of the value of Jz. Therefore, we have constructed an
adiabatic path between the Jz = 0 and Jz → ∞ states. When
Jz → ∞, all spins are polarized τ z

r = 1, thus only labels from
the identity sector C1 are allowed on the lattice. In this limit,
our construction apparently reduces to the usual Z2 toric code.
This calculation shows that once we break the symmetry, the
model (55) is adiabatically connected to a Z2 toric code.

We now describe the quasiparticles in the SET phase. It is
actually quite instructive to start from the quasiparticle string
operators in theZ4 toric code, and see how they are modified in
the SET phase. In the Z4 toric code, there are two elementary
types of string operators: “electric” strings can be written for
a path P on the lattice:

Wẽ(P ) =
∏
e∈P

V se

e . (60)

Here, se = +1 (−1) if the direction of the string is parallel
(antiparallel) to the direction of the edge.

The “magnetic” strings are defined on a path P ∗ in the dual
lattice. To illustrate, let us consider a path P ∗ parallel to the x

direction:

Wm̃(P ∗) =
∏
e∈P ∗

Ue. (61)

In the SET phase, we first notice that there do not exist
any open Wẽ(P ) strings. The reason is that V ’s have to be
accompanied with spin flips to stay within the low-energy
subspace defined by Qe, so the path P in the definition (60)
must be aligned with domain walls of the Z2 spins, which are
always closed. However,

Wẽ2 ≡ W 2
ẽ (62)

remains as a deconfined string since V 2 do not change the
G-graded sectors of the edge labels, and should be identified
with the e particle in the SET: ẽ2 ∼ e.

On the other hand, we observe that W 2
m̃ becomes a “trivial”

string. This is because the edge projectors Qe identify U 2
e with

τ z
pτ z

q , where p and q denote the two plaquettes adjacent to the
edge e, and as a result an open W 2

m̃(P ∗) string acting on the
ground state is identical to the product of the two τ z at the two
ends of the string P ∗. Thus, m̃2 is now a local excitation. More
precisely, m̃2 becomes the charge of the global Z2 symmetry,
so that moving m̃2 detects the Z2 symmetry domain walls
along the way. Wm̃ ∼ W 3

m̃ is still a nontrivial string, but now
with Z2 fusion rules. Therefore, in a very precise sense the m̃2

particles are condensed, which has the effect of confining ẽ

and ẽ3 while identifying m̃ with m̃3.
To summarize, we have found the following relations

between the string operators in the SET model and those of
the gauged model:

W1 ∼ Wm̃2 , We ∼ Wẽ2 , Wm ∼ Wm̃. (63)

Of course, this is what we expect from anyon condensation:
when m̃2 condenses, the remaining deconfined anyons all
have the form ẽ2am̃b where a,b = 0,1. All the other particles,
such as ẽ, are confined because they have nontrivial braiding
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statistics with m̃2. In our picture, it is simply because ẽ string
has to be accompanied by spin flips and is therefore forced to
align with the domain walls, as already explained above.

To extract the symmetry quantum numbers of anyons, we
need to find the localized form of the symmetry transformation
X [18,57,61]. Let us consider locally flipping a Z2 spin in
the plaquette r. In order to stay in the restricted Hilbert
space defined by the projector Qe = 1, one also needs to
change the spins on the edges of the plaquette by V or V †. We
choose the local symmetry action projected to the low-energy
subspace to take the form

UX = τ x
r Vr,xVr+x̂,yV

†
r+ŷ,xV

†
r,y, (64)

which is simply a single plaquette operator τxBr of the SET
model. The reason to choose this particular combination of V ’s
is that they commute with the vertex terms. However, UX fails
to be an exact Z2 operator since U2

X = (Vr,xVr+x̂,yV
†

r+ŷ,xV
†

r,y)2

is nothing but a ẽ2 = e string around the plaquette [notice
V 2 = (V †)2], which implies (U (e)

X )2 = 1, (U (m)
X )2 = −1, here

U (a)
X refers to UX acting on a region containing a quasiparticle

of type a. Therefore, the fractionalization class is w(g,g) = e.
The example illustrates some general features of the

construction for a unitary symmetry group. We see that one
can build up the quasiparticles of the SET model from those of
the “parent” gauged model, corresponding to the condensation
of G charges in the gauged model, as we discussed in Sec. II C.
Furthermore, the local symmetry actions can be found exactly
due to the fixed-point nature of the wave function, which are
basically the plaquette operators in the parent Hamiltonian.
Physically, this is because for unitary symmetries the localized
symmetry transformation on a region can be implemented by
transporting a symmetry defect around the region, which is
precisely the plaquette operator fusing a string of “gauge flux”
to the edges of a plaquette in this model.

As we mentioned in Sec. IV A, for the Z4 fusion rule there
is another extension U(1)4. We will not go into details into the
construction, but a similar analysis can be done to confirm that
the extension realizes a Z2 toric code where both e and m carry
half Z2 charge, which has eluded previous constructions.

C. Electromagnetic duality symmetry

We now turn to the Ising extension. In the following, we
draw the three types of strings:

I :

σ :

ψ :
.

(65)

Notice that we rename the label e as ψ , to be consistent with the
usual labeling of the Ising category. The nontrivial F symbols
are given by [

F
σψσ

ψ

]
σσ

= [
Fψσψ

σ

]
σσ

= −1,

[
Fσσσ

σ

]
ab

= κσ√
2

(
1 1
1 −1

)
. (66)

All other F symbols are 1 as long as the fusions involved are
allowed.

There are two gauge-inequivalent F symbols, distinguished
by κσ = ±1. The UFC corresponding to κσ = −1 is also
known as the SU(2)2 category. We will focus on the κσ = 1
case in this section. The F symbols of the Ising category have
tetrahedral symmetry, so in drawing the pictures one can freely
bend lines or rotate vertices.

Before we write the SET model, it is convenient to first have
the Hamiltonian of the Levin-Wen model for Z(Ising). On a
trivalent lattice, we associate each edge with three types of
strings labeled as I,σ,ψ , and the Hamiltonian consists of the
vertex and plaquette terms following the standard construction:

Hgauged = −
∑

v

Qv −
∑

p

Bp. (67)

Here, Bp = 1
4

∑
p(1 + B

ψ
p + √

2Bσ
p ).

In the SET phase, we also have Z2 spins in the plaquettes.
Again, we have edge projectors to enforce Z2 grading:

Qe = |σ 〉e〈σ |e
1 − τ z

pe
τ z
qe

2
+ (1 − |σ 〉e〈σ |e)

1 + τ z
pe

τ z
qe

2
. (68)

So, the σ strings comfort to the domain walls of the spins.
We also need to modify the plaquette terms accordingly,

and the final Hamiltonian becomes

H = −
∑

v

Qv − 1

4

∑
p

(
1 + Bψ

p +
√

2τ x
pBσ

p

) −
∑

e

Qe.

(69)

It is straightforward to check that all the terms in Eq. (69)
commute with each other. The Hamiltonian has a global Ising
symmetry: X = ∏

p τ x
p .

Simiar to the analysis of Eq. (55), one can show that the
Hamiltonian is adiabatically connected to a Z2 toric code if
the Z2 symmetry is broken. Again, we add a Zeeman term
−Jz

∑
p τ z

p to the Hamiltonian, and focus on one plaquette:

hp = − Bσ
p

2
√

2
τ x
p − Jzτ

z
p. (70)

Using (Bσ
p )2 = 1 + B

ψ
p , we have

h2
p = 1 + B

ψ
p

8
+ J 2

z . (71)

Because B
ψ
p commutes with every other term in the Hamilto-

nian, the value is fixed. Further, because (Bψ
p )2 = 1, it can only

take ±1. We see that the spectrum of hp remains gapped when
Jz is increased. So, the ground state of the SET Hamiltonian
(69) and the ground state of a plain Levin-Wen Hamiltonian is
adiabatically connected once the symmetry is broken.

1. Symmetry action on quasiparticles

We now analyze the SET order in the model (69). Since
we obtain this model by “ungauging” the parent Z(Ising)
Hamiltonian, one can expect that if we gauge the Z2 symmetry
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e m

FIG. 4. Illustration of an open string operator W ↓ and closed
string operator W ↑.

we will get back the parent state. This is consistent with Z2

symmetry permuting e and m anyons [55,61]. Below, we will
explicitly construct the quasiparticle states in the model and
determine the symmetry action directly.

Quasiparticles in Levin-Wen models are associated with
string operators. For example, an open string operator acting
on the ground state creates a particle-antiparticle pair at the
end of the string. We will briefly review the definition of
string operators [69]. A string operator Wa is represented by
a directed string acting along an open or closed path on the
lattice (in fact, on the fattened lattice), as shown in Fig. 4.
Graphically, we draw a string lying on top of the graph state to
represent the string operator. Its action on a given basis state is
defined using the following rule to resolve each overcrossing:

i

a
=

jst

Ωj
a,ist ij

i

s

t

,

i

a

=
jst

Ω̄j
a,ist

i
ji

s

t

.

(72)

We then join the string tails between adjacent overcrossings,
discarding the diagrams where these joined strings do not
match, and finally using the local moves to reduce the diagrams
to the lattice state. The coefficients �

j

a,sti need to satisfy a set
of consistency equations (basically to make sure that the string
operator is path independent) [69], so that Wa commutes with
the Levin-Wen Hamiltonian away from the ends of the string.

We can easily generalize the construction to the SET model,
with some important differences:

(1) The coefficients are allowed to also depend on the
group elements on the two sides of the i string:

i

a g
=

jst

gΩj
a,ist ij

i

s

t

,

i

a g
=

jst

gΩ̄j
a,ist

i
ji

s

t

.

(73)

(2) j and i must have the same grading (so s,t ∈ C0).
Otherwise, the string has to be accompanied by a spin flip
in the adjacent plaquettes to change the grading, and therefore
the path of the string is forced to align with a domain wall of
the spin configurations, which forbids open strings.

(3) Certain seemingly nontrivial string operators actually
represent local excitations which transform nontrivially under
the global symmetry group. Therefore, one needs to consider
equivalence classes of string operators moding out those local
symmetry charges.

Once the (irreducible) string operators are obtained, one
can compute the braiding and exchange statistics of the
corresponding quasiparticle excitations. The topological twist
is given by the following formula, generalizing the results of
Ref. [69]:

θa =
∑

i∈C1

1�0
a,iī ī

di∑
i∈C1

1�i
a,0iidi

. (74)

Notice that �i
a,0ii = 0,1. The topological S matrix can be

evaluated using the following formula:

Sa,b = 1

D
∑
ijk

1�k
a,ijj

1�k
b,j iididj . (75)

We can directly solve for the string operators in the SET
model. For pedagogical purposes, we will do it in a slightly
different way. There are nine string operators in the Ising
Levin-Wen model [94]. Since Z(Ising) = Ising × Ising, the
string operators can be labeled as (a1,a2) where a1 ∈ {I,σ,ψ}.
Using these string operators in the Z(Ising) phase, we will see
how they can be “ungauged” to give string operators in the
SET model.

First, we consider the (ψ,ψ) string:

=

= −

=
.

(76)

Basically, whenever the string operator crosses a σ string
we pick up a −1 phase. One can check that this remains a
string operator in the SET model: ↑�

j
ist = ↓�

j
ist = �

j

(ψ,ψ),ist.
However, due to the edge projectors this is equal to τ z

pτ z
q , which

implies that the (ψ,ψ) quasiparticles become localZ2 charges,
i.e., (ψ,ψ) is “condensed”. As a result, (σ,I ), (σ,ψ), (I,σ ),
and (ψ,σ ) are all “confined”. Looking at the string operators,
all these four need to fuse a σ string to the edges, which are
not allowed in the SET phase.

The (σ,σ ) string in Z(Ising) is defined by the following
rules:

= +

= e
πi
4 + e−

πi
4

=
.

(77)

A noticeable feature of the rules is that if we ignore the diagram
for crossing on σ edge, the rules to resolve crossings essentially
decompose into two sets: one is that we only use the first
diagram on the right-hand side, which will be refereed to as
the m-type diagram, and the other is to use the second diagram,
referred to as the e-type diagram. The types of diagrams are
interchanged whenever there is a σ string. In the theory of
anyon condensation, the (σ,σ ) particle has to split into two
after condensation [87,90].

Motivated by this observation, we find two nontrivial string
operators W↑/↓ in the SET model, and the corresponding
quasiparticles will be denoted by v↑/↓. The nonvanishing �
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symbols for W↑ are given by

↑�
ψ

v↑,Iψψ = ↑�I
v↑,ψψψ = ↑�σ

v↑,σψI = 1,

↓�I
v↑,I II = 1,↓�

ψ

v↑,ψII = −1,↓�σ
v↑,σ Iψ = 1. (78)

Similarly we can define W↓ by interchanging ↑ and ↓ in
Eq. (78).

To have an intuitive understanding of the solutions, let us
imagine freezing all the Ising spins and the bulk breaks into
domains of Ising spins. In each domain, the wave function
is locally the same as the toric code. Within a domain of
↑/↓ spins, the action of W↑ is defined using the e-type /m-
type diagram in Eq. (77). Therefore, when the string crosses
a domain wall, the string changes its type in accordance with
Eq. (77) (see Fig. 4 for an illustration).

Finally, the (ψ,I ) /(I,ψ) quasiparticles are created by the
following string operators:

=

= ±i

= −
.

(79)

They also persist in the SET phase. However, the difference
between them is a (ψ,ψ) string, which as we described
earlier becomes local excitations in the SET phase. So, (ψ,I )
and (I,ψ) belong to the same type of quasiparticle, which
intuitively should be a fermion ψ .

With all the solutions for string operators, we can compute
the braiding statistics of the quasiparticles using Eqs. (74) and
(75). We find θv↑ = θv↓ = 1, θψ = −1, as expected. The S

matrix is also identical to the one of the toric code:

S = 1

2

⎛
⎜⎝

1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 −1

⎞
⎟⎠, (80)

where the row/column is ordered as 1,v↑,v↓,ψ . This justifies
the identification of v↑ and v↓ with the e and m anyons in the
SET phase.

From the definition of W↑/↓, it is obvious that un-
der the global Z2 symmetry transformation, XW↑X−1 =
W↓, XW↓X−1 = W↑. Therefore, we have shown explicitly
using string operators that the Z2 symmetry indeed permutes
e and m.

2. More examples of EMD symmetries

We will discuss a couple of other examples where the
electromagnetic duality symmetry in a discrete gauge theory
is realized by an onsite unitary Z2 symmetry.

ZN : Consider odd N for simplicity. As shown in [55,61],
gauging the e ↔ m symmetry yields the theoryZ(TYN ). Here,

TYN is the Tambara-Yamagami category for ZN [95], with
N + 1 labels [0],[1], . . . ,[N − 1],σ . The first N labels have
ZN fusion rules. The last label σ represents the symmetry
defect:

[a] × σ = σ,

σ × σ = [0] + [1] + · · · + [N − 1]. (81)

The F symbols are given by

[Faσb
σ ]σσ = [

Fσaσ
b

]
σσ

= e
2πiab

N ,

[Fσσσ ]ab = 1√
N

e− 2πiab
N . (82)

The TYN category is Z2 graded: C1 = {[0],[1], . . . ,
[N −1]},Cg = {σ }. Therefore, we can construct a ZN SET
with a Z2 EMD symmetry using the TYN category.

S3: There is also an EMD symmetry in the S3 gauge theory
[96], between the pure gauge charge C corresponding to the
two-dimensional irreducible representation of S3 and the pure
fluxon F corresponding to the two-dimensional conjugacy
class of S3 (see, e.g., Ref. [97] for a complete description of
the S3 gauge theory). The appropriate extension is the fusion
category SU(2)4, whose integer-spin subcategory coincides,
as a fusion category, with the category of irreducible linear
representations of S3. As shown in [61], gauging the Z2 EMD
symmetry one obtains Z[SU(2)4], so one can construct a S3

gauge theory with a Z2 EMD symmetry using the SU(2)4

extension.

V. Z2 TORIC CODE WITH ANTIUNITARY
ONSITE ZT

2 SYMMETRY

A. Classification

In this section, we will study Z2 toric code enriched by the
time-reversal symmetry ZT

2 . Let us classify ZT
2 extensions of

VecZ2 = {1,e}. The classification of possible fusion rules is
the same as the case of the unitary Z2 extension, and we get
three types of fusion rules: Z2 × ZT

2 , ZT
4 , and Ising. For the

first two cases, the solutions of twisted pentagon equations are
classified by the corresponding twisted group cohomology:

Z2 × ZT
2 : It is known that H3[Z2 × ZT

2 ,U(1)] = Z2
2, and

as before one of the Z2 factors corresponds to double-semion
topological order. The other Z2 factor can be understood in the
SPT picture: it describes a Z2 × ZT

2 SPT where the Z2 flux is
a Kramers doublet. After gauging the Z2 symmetry, we obtain
a toric code where the magnetic flux m is a Kramers doublet.

ZT
4 : One can find that H3[ZT

4 ,U(1)] = Z1, i.e., there is
only the trivial 3-cocycle. As we will see in the following, the
physics of this SET is also that e or m is a Kramers doublet.

Ising: Similar to the Ising extension for the unitary Z2

symmetry, this represents a SET with time-reversal transfor-
mation permuting e and m. The F symbols are given by the
familiar ones of the Ising category.

We will now examine the ZT
4 and Ising extensions more

carefully.

B. T 2 = −1 fractionalization

We have two extensions that correspond to T 2 = −1
fractionalization, and we will only consider the ZT

4 extension
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in this section. The Hamiltonian is essentially the same one
as in Eq. (55), and we define T = ∏

p τ x
pK . Notice that in

the chosen basis KUeK
−1 = U ∗

e = U
†
e ,KVeK

−1 = Ve, so the
Hamiltonian is indeed invariant under T . We will not repeat
the analysis of quasiparticle string operators. The ẽ particle
is easily seen to transform trivially under T . The m̃ string,
however, involves ±i factors whenever the string crosses a
domain wall. Therefore, if we have an open m̃ string connect-
ing plaquettes p and q, then under complex conjugation we
have KWmK−1 = Wm3 = Wm · Wm2 = τ z

pτ z
qWm. So, the time-

reversal transformation acting on a state with two m’s becomes

T Wm|0〉 =
(∏

r

τ x
r

)
τ z
pτ z

qWm|0〉 = τ y
p τ y

q

⎛
⎝ ∏

r 
=p,q

τ x
r

⎞
⎠Wm|0〉.

(83)

Therefore, the local time-reversal action on the m located at
the plaquette p can be chosen as U (m)

T = τ
y
p , which satisfies

UT U∗
T = −1.

C. T as the EM duality

We consider the Ising extension, where the time-reversal
symmetry permutes e and m. Because the usual F symbols
of Ising category are real, they are automatically solutions
of the twisted Pentagon equations. One caveat here is
that the (untwisted) Pentagon equations have two gauge-
inequivalent solutions for Ising fusion rules, distinguished by
the Frobenius-Schur indicator κσ = [Fσσσ

σ ]II

|[Fσσσ
σ ]II | = ±1. However,

with the twisted Pentagon equations and the gauge transfor-
mations, these two solutions become identical under the gauge
transformation uσσ

I = uσσ
ψ = i.

As a result, we can just take the same Hamiltonian Eq. (69)
in the unitary Z2 case, but now define T = ∏

p τ x
pK where

K is the complex conjugation. Notice that microscopically
T 2 = 1. It follows immediately that T exchanges e and m.

It is known from general consideration [61] that if e and
m are interchanged under T , their fermionic bound state
ψ should be a Kramers doublet with T 2 = −1. We now
explicitly verify this result in our model. We have explained the
construction of quasiparticle string operators in Sec. IV C 1. In
particular, the ψ particles are created by the string operator
defined in Eq. (79). Denote the one with ±i as W±

ψ (P ),
where P is the path of the string with end points in the
dual lattice p and q. Under complex conjugation, we have
KW±

ψ (P )K−1 = W∓
ψ (P ) = τ z

pτ z
qW±

ψ (P ). Now, consider the
time-reversal transformation acting on a state with two ψ

quasiparticles created by W+
ψ (P ):

T W+
ψ (P )|�〉 = τ x

p τ x
p

⎛
⎝ ∏

r 
=p,q

τ x
r

⎞
⎠τ z

pτ z
qW+

ψ (P )|�〉

= τ y
p τ y

q

⎛
⎝ ∏

r 
=p,q

τ x
r

⎞
⎠W+

ψ (P )|�〉. (84)

Therefore, we identify the local T action as being given by
UT = τ y . So, the local T 2 value is UT U∗

T = −1.

D. eT mT state

According to the group-cohomology classification of SPT
phases [85], there exists a nontrivial SPT phase protected by
ZT

2 symmetry in 3 + 1 dimensions since H4[ZT
2 ,U(1)] = Z2.

Therefore, it should be possible to construct an anomalous
SET living on the surface of this bosonic SPT phase, using
the obstructed pentagon equation given in Eq. (37), with the
nontrivial 4-cocyle β ∈ H4[ZT

2 ,U(1)]. One choice of β is

β(g,h,k,l) =
{−1, g = h = k = l = T

1, otherwise. (85)

We can now solve for antiunitary extensions for the three types
of fusion rules listed in Sec. V A. We find that only the ZT

4
fusion rules allow solutions, while Z2 × ZT

2 and Ising do not.
In fact, the solution can be parametrized using Eq. (49) with
χe(T ,T ) = −1. According to the argument in Sec. III C, both
the e and m particles in the resulting SET have T 2 = −1. This
SET is referred to “eT mT ” in literature, and has been known
to exist on the surface of 3D ZT

2 SPT state via very different
arguments [32,33]. We notice that another exactly solvable
model for this anomalous SET was found in [98].

VI. CONCLUSIONS

In this work, we construct exactly solvable models to
realize SET phases. Starting from the topological phase of
the quantum double Z(C) of a UFC C and a symmetry
group G, such SET models are described by a generalized
form of the G extension of C, denoted by CG, where the F

symbols satisfy the generalized pentagon equation in Eq. (14),
with a nontrivial symmetry action. When G is onsite and
unitary, the symmetry action is trivial, and our models can
be considered as “ungauging” the quantum double of G

extensions of C, which fully classify the G-enriched phases
of Z(C). When G contains antiunitary and/or mirror-reflection
symmetry operations, CG obeys a twisted pentagon equation,
where the antiunitary and mirror-reflection symmetries act on
one of the F symbols by complex conjugation. Finally, our
models can also describe anomalous SET states realized on
the surface of a 3D nontrivial SPT bulk, using solutions of the
“obstructed” pentagon equation in Eq. (37).

When C describes an untwisted Abelian gauge theory, we
explicitly construct solutions of the twisted pentagon equation
describing all possible patterns of symmetry fractionalization,
when symmetries do not permute anyons. We also demonstrate
the bulk-boundary correspondence between the surface sym-
metry fractionalization and the bulk SPT state directly in this
construction. The results can be straightforwardly generalized
to twisted gauge theories.

As a concrete example of our general framework, we
explicitly construct all SET phases of the Z2 toric code
topological order, enriched by either an onsite unitary Z2

symmetry or the time-reversal symmetryZT
2 . Our construction

yields an onsite realization of the EMD symmetry using
commuting-projector Hamiltonians.

There are several potential directions for further investi-
gation. In this work, we have focused on finite symmetry
groups. It would be interesting to generalize the construction
to continuous symmetries. For spatial symmetries, we only
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consider mirror symmetries, and it is certainly desirable to have
a more systematical treatment of space-group symmetries.
Finally, it is also an interesting direction to use the concept of
equivalent classes of symmetric local unitary transformations
to classify fermionic SET phases and three-dimensional
SETs [99].

Note added in proof. Recently, we became aware of a related
work [100] which also constructed commuting-projector
Hamiltonians for SET phases using the idea of unitary G

extensions of UFCs.
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APPENDIX A: REVIEW OF GROUP COHOMOLOGY

This Appendix provides a brief review of group cohomol-
ogy, which is used throughout the main text of the paper.
Here, we only discuss properties of group cohomology that
are relevant to our paper, and for more details, we refer the
readers to Ref. [85].

Given a finite group G, the group cohomology Hn
ρ[G,M] is

defined for a G module (M,ρ), which is an Abelian group M

(sometimes called the coefficient of the group cohomology)
equipped with a G action ρ. The action ρ : G × M → M

specifies how the group G acts on M . In particular, a group
element g ∈ G maps m ∈ M to ρg(m). For example, when
computing the classification of SPT states, we choose M to
be the U(1) group and G to be the symmetry group, and
antiunitary symmetry operations have a nontrivial action on
M: if g ∈ G is antiunitary, then ρg(φ) = φ∗, for any φ ∈ U(1).
Mathematically, the definition of a G module requires that the
action ρ is compatible with group multiplications

ρg(ρh(a)) = ρgh(a), ρg(a)ρg(b) = ρg(ab). (A1)

Given a finite group G and a G module, the group
cohomology can be defined and computed using cochains and
the coboundary mappings. In this Appendix, we construct
the group cohomology using the so-called inhomogeneous
cochains. An n-cochain can be viewed as a function ω :
Gn → M . In other words, for any n group elements g1, . . . gn,
ω(g1, . . . gn) is an element of M . We denote the collection

of all n-cochains by Cn
ρ [G,M]. Cn

ρ [G,M] naturally forms a
group, using the multiplication of M .

Next, we define the coboundary mapping d : Cn
ρ [G,M] →

Cn+1
ρ [G,M],

dω(g1, . . . gn+1) = ρ(g1)[ω(g2, . . . gn+1)]

×
n∏

i=1

ω(−1)i (g1, . . . ,gigi+1, . . . ,gn+1)

×ω(−1)n+1
(g1, . . . gn). (A2)

One can directly verify that ddω = 1 for any ω ∈
Cn(G,M), where 1 is the trivial cochain in Cn+2(G,M). This
is why d is considered a “boundary operator”.

With the coboundary map, we next define ω ∈ Cn(G,M) to
be an n-cocycle if it satisfies the condition dω = 1. We denote
the set of all n-cocycles by

Zn
ρ(G,M) = ker[d : Cn(G,M) → Cn+1(G,M)]

= {ω ∈ Cn(G,M)|dω = 1}. (A3)

We also define ω ∈ Cn(G,M) to be an n-coboundary if it
satisfies the condition ω = dμ for some (n − 1)-cochain μ ∈
Cn−1(G,M). We denote the set of all n-coboundaries by

Bn
ρ (G,M) = im[d : Cn−1(G,M) → Cn(G,M)]

= {ω ∈ Cn(G,M)|∃ μ ∈ Cn−1(G,M) : ω = dμ}.
(A4)

Clearly, Bn
ρ (G,M) ⊂ Zn

ρ(G,M) ⊂ Cn(G,M). In fact, Cn,
Zn, and Bn are all groups and the coboundary maps are
homomorphisms. It is easy to see that Bn

ρ (G,M) is a normal
subgroup of Zn

ρ(G,M). Since d is a boundary map, we think of
the n-coboundaries as being trivial n-cocycles, and it is natural
to consider the quotient group

Hn
ρ(G,M) = Zn

ρ(G,M)

Bn
ρ (G,M)

, (A5)

which is called the nth cohomology group. In other words,
Hn

ρ(G,M) collects the equivalence classes of n-cocycles that
only differ by n-coboundaries.

It is instructive to look at the lowest several cohomology
groups. Let us first consider H1

ρ(G,M):

Z1
ρ(G,M) = {ω|ω(g1)ρg[ω(g2)] = ω(g1g2)},

B1
ρ(G,M) = {ω|ω(g) = ρg(μ)μ−1}. (A6)

If the G action on M is trivial, then B1
ρ(G,M) = {1} and

Z1
ρ(G,M) is the group homomorphism from G to M . In

general,H1
ρ(G,M) classifies “crossed group homomorphisms”

from G to M .
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For the second cohomology, we have

Z2
ρ(G,M) =

{
ω

∣∣∣∣ ρg1 [ω(g2,g3)]ω(g1,g2g3)

ω(g1,g2)ω(g1g2,g3)
= 1

}
,

B2
ρ(G,M) =

{
ω|ω(g1,g2) = ε(g1)ρg1 [ε(g2)]

ε(g1g2)

}
. (A7)

If M = U(1), it is well known that Z2[G,U(1)] is exactly the
factor sets (also known as the Schur multipliers) of projective
representations of G, with the cocycle condition coming from
the requirement of associativity. H2[G,U(1)] classifies all
inequivalent projective representations of G.

For the third cohomology, we have

Z3
ρ(G,M) = {ω|ω(g1g2,g3,g4)ω(g1,g2,g3g4)

= ρg1 [ω(g2,g3,g4)]ω(g1,g2g3,g4)ω(g1,g2,g3)}.
(A8)

For M = U(1) and trivial G action, Z3[G,U(1)] is the set of
F symbols for the fusion category VecG, with the 3-cocycle
condition being the Pentagon identity. B3[G,U(1)] is identified
with all the F symbols that are gauge-equivalent to the trivial
one. H3[G,U(1)] then classifies the gauge-equivalent classes
of F symbols on VecG.

Throughout the paper, we adopt a canonical gauge fixing
for the cocycles: for a n-cocycle ω(g1,g2, . . . ,gn), as long as
any of the gi with 1 � i � n is the identity element 1, the
cocycle is set to 1.

APPENDIX B: FIXED-POINT WAVE FUNCTIONS AND
SYMMETRIC LOCAL UNITARY TRANSFORMATIONS

In this Appendix, we provide more details of the derivation
of fixed-point wave functions, based on the idea that different
SET orders are classified as the equivalence classes of many-
body wave functions under symmetric local unitary (SLU)
transformations. We use generalized symmetric local unitary
transformations to define a wave-function renormalization
procedure [62,63]. The wave-function renormalization can
remove the nonuniversal short-range entanglement and make
generic complicated wave functions flow to simple fixed-point
wave functions.

1. Quantum state on a graph

The basic setup of the quantum states on a graph has been
described in Sec. II. We start with a trivalent graph with a
branching structure. In each plaquette of the graph, we put
an element of the symmetry group. Then, on each edge of
the graph, we have states labeled as ag. The label set has a
G-graded structure.

Our fixed-point state is a superposition of the basis states

|Ψ =
all conf.

Ψ . (B1)

In this Appendix, for simplicity, we limit ourselves to the case
where N

cgh

agbh
is either 0 or 1. However, our results can be easily

generalized to accommodate the more general case, where
N

cgh

agbh
can be greater than one. In that case, each vertex can

also have physical states, the number of which depends on the
fusion multiplicity N

cgh

agbh
.

In the rest of this Appendix, we describe basic elements of
the gSLU transformations (or moves) that relates wave func-
tion amplitudes on different configurations in Appendix B 2.
We then list consistency conditions that constrain the forms of
these moves, in Appendix B 4.

2. Generalized SLU transformations as local relations

In this section, we list the basic types of the gSLU
transformations, which are known as the “moves” in this paper.
They are applied to a local patch of the wave function to
remove unwanted short-range entanglement. We begin with
the F moves, which are introduced in Eq. (5) in the main text.
Next, we introduce several variants of the F moves. Finally,
we study the O moves, which are introduced in Eq. (4) in the
main text.

a. F move

The F move is defined as

(B2)

Here, we require that g0 [Fagbhck

dghk
] to be a unitary matrix

∑
fhk

g0
[
Fagbhck

dghk

]
e′

gh,fhk

g0
[
Fagbhck

dghk

]∗
egh,fhk

= δegh,e′
gh
.

The F move (B2) can be viewed as a relation between
wave functions on different v graphs that only differ by a local
transformation. Since we can locally transform one v graph
to another v graph through different paths, the F move (B2)
must satisfy certain self-consistent conditions. For example,

the v-graph can be transformed to , through
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two different paths; the first path is given by

(B3)

The second path is

(B4)

The consistency of the above two relations leads the following
condition on the generalized F symbol:

∑
nhk

g0
[
Fagbhck

mghk

]
fgh,nhk

g0
[
Fagnhkdl

eghkl

]
mghk,phkl

g0g[Fbhckdl
phkl

]
nhk,qkl

= g0
[
Ffghckdl

eghkl

]
mghk,qkl

g0
[
Fagbhqkl

eghkl

]
fgh,phkl

, (B5)

which is the symmetry-enriched form of the famous pentagon
identity.

b. Y move

The following relation defines the Y move:

(B6)

c. O move

The O move allows one to shrink a “bubble” in the diagram.
First, we must have

(B7)

We define the O move as

(B8)

The O move should satisfy∑
ag,bh

g0
[
Oagbh

cgh

](g0
[
Oagbh

cgh

])∗ = 1. (B9)

We notice that despite the similarity in appearance, the
O moves defined here are different from the moves defined in
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Eq. (4). As mentioned in the main text, the moves defined there
“eliminate” bubbles by changing labels on some bonds to zero,
but they neither change the lattice structure nor eliminate the
degrees of the freedom on the bonds. On the contrary, the O

moves defined here eliminate the bubble by actually removing
the bonds, and therefore changing the lattice structure. As a
result, these two types of moves differ by a normalization
factor. This will be further explained in Appendix B 4 a, where
the form of the O moves will be fixed.

3. Gauge freedom

We note that the following transformation changes the wave
function, but does not change fixed-point property and the
phase described by the wave function:

(B10)

where g0 [v
agbh
cgh ] is a phase factor. This equation is identical to

Eq. (11) in the main text.
Similarly, we can have phase factors g0 [v

cgh

agbh
] for vertices

with two incoming edges and one outgoing edge. Such

transformations correspond to a choice of basis state, and two
wave functions related to each other via such redefinitions of
vertices should be regarded as being equivalent. The vertex
basis redefinitions induce the following transformation on
g0 [Fagbhck

dghk
]egh,fhk , g0 [Oagbh

cgh ],g0 [Yagbh
cgh ]:

g0
[
Oagbh

cgh

] → g0
[
v

cgh

agbh

] g0
[
v

agbh
cgh

] g0
[
Oagbh

cgh

]
,

g0
[
Yagbh

cgh

] → (g0
[
v

agbh
cgh

])∗ (g0
[
v

cgh

agbh

])∗ g0
[
Yagbh

cgh

]
, (B11)

and
g0

[
Fagbhck

dghk

]
egh,fhk

→ g0
[
v

agbh
egh

] g0
[
v

eghck

dghk

](g0
[
v

bhck
fhk

])∗

× (g0
[
v

agfhk

dghk

])∗ g0
[
Fagbhck

dghk

]
egh,fhk

. (B12)

We can use the above “gauge” degree of freedom to set

g0
[
Oagbh

cgh

]
> 0. (B13)

4. Consistency relations

a. Dual F move and a relation between O move and F move

First, we discuss constraints on the O moves and argue
that a particular choice of O moves satisfies the consistency
equations. We notice that a fixed-point wave function can have
two ways of reduction:

, (B14)

(B15)

This allows us to obtain the following condition:

g0
[
F̃agbhck

dghk

]
egh,fhk

= g0
[
Fagbhck

dghk

]
egh,fhk

g0
[
Obhck

fhk

] g0
[
Oagfhk

dghk

] g0
[
Oagbh,μ

egh

]−1g0
[
Oeghck

dghk

]−1
. (B16)
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We require g0 [F̃agbhck

dghk
]egh,fhk to be unitary, which leads to

∑
egh

g0
[
Fagbhck

dghk

]∗
egh,f ′

hk

g0
[
Fagbhck

dghk

]
egh,fhk(

g0
[
Oagbh,μ

egh

]
g0

[
Oeghck

dghk

])2 = δfhkf ′
hk(

g0
[
Obhck

fhk

]
g0

[
Oagfhk

dghk

])2 . (B17)

The above condition and the unitary condition in Eq. (B9) can be satisfied by the following ansatz:

g0
[
Oagbh

cgh

] = 1[Oagbh,α
cgh

] ≡ [
Oagbh

cgh

] = 1

D

√
dagdbh

dcgh

δ
agbh
cgh , (B18)

where δ
agbh
cgh = 1 for N

agbh
cgh > 0 and δ

agbh
cgh = 0 for N

agbh
cgh = 0, and D =

√∑
ag∈CG

d2
ag

is the total quantum dimension of CG. From
Eq. (B9), we find that dag satisfy ∑

agbh

N
agbh
cgh dagdbh = D2dcgh . (B19)

The solution of such an equation gives rise to the so-called quantum dimension dag .
Although Eq. (B19) may look unfamiliar, it can in fact be derived from the more familiar relation dadb = ∑

c Nab
c dc (we will

omit the group labels since they do not play any roles in this derivation):

D2dc =
∑

a

d2
adc =

∑
a

dadādc =
∑

a

da

∑
b

Nāc
b db =

∑
a,b

Nab
c dadb. (B20)

Here, we have used da = dā, Nab
c = Nāc

b .
We notice that the form of the O moves in Eq. (B18) differs from Eq. (4) by a factor of D−1. As mentioned before, this is due

to the different Hilbert spaces the two moves map to. The moves in Eq. (4) are between two states on the same lattice, while the
O moves in Eq. (B8) map between wave functions defined on two different graphs. The right-hand side of Eq. (B8) has fewer
degrees of freedom since the bubble containing two edges, along with the physical states on them, is removed from the Hilbert
space. Hence, the amplitudes of the wave function on the right need to be scaled by a factor of D, in order to keep the total
amplitude normalized. Such a scaling factor is not needed in Eq. (4). In fact, this result in the main text can be derived from the
O moves, by relating both sides of Eq. (4) to the right-hand side of Eq. (B8) using the O moves.

b. A relation between O move and Y move

We find that the following wave function has two ways of reduction:

. (B21)

The two reductions should agree, which leads to the condition

g0
[
Yagbh

cgh,βγ

] = g0
[
Oagbh

cgh

]−1
. (B22)
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c. H move and an additional constraint between O move and F move

Let us consider a new type of move, the H move:

.

(B23)

In the following, we will show how to compute the coefficients g0 [Haghbk

cgdhk
]eh,fghk .

First, by applying the Y move, we have

(B24)

Next, by applying an inverse F move, we obtain

(B25)

Finally, by applying the O move, we end up with

(B26)

All together, we find

g0
[
Haghbk

cgdhk

]
eh,fghk

= g0
[
Ycgdhk

fghk

] g0
[
F cgehbk

fghk

]∗
agh,dhk

g0
[
Ocgeh

agh

]
. (B27)

With the ansatz (B18), we can further simplify the above expressions as

g0
[
Haghbk

cgdhk

]
eh,fghk

=
√

dfghkdeh

ddhkdagh

g0
[
F cgehbk

fghk

]∗
agh;dhk

(B28)

and ∑
fghk

dfghk
g0

[
F cge

′
hbk

fghk

]
agh,dhk

g0
[
F cgehbk

fghk

]∗
agh,dhk

= daghddhk

deh

δehe′
h
. (B29)
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5. Summary

To summarize, all the conditions form a set of nonlinear equations whose variables are N
agbh
cgh , g0 [Fagbhck

dghk
]egh,fhk , dag , let us

collect those conditions and list them below:∑
egh

N
agbh
egh N

eghck

dghk
=

∑
fhk

N
bhck
fhk

N
agfhk

dghk
,

∑
fhk

g0
[
Fagbhck

dghk

]
e′

gh,fhk

g0
[
Fagbhck

dghk

]∗
egh,fhk

= δegh,e′
gh
,

∑
nhk

g0
[
Fagbhck

mghk

]
fgh,nhk

g0
[
Fagnhkdl

eghkl

]
mghk,phkl

g0g[Fbhckdl
phkl

]
nhk,qkl

= g0
[
Ffghckdl

eghkl

]
mghk,qkl

g0
[
Fagbhqkl

eghkl

]
fgh,phkl

,

∑
agbh

dagdbhN
agbh
cgh = D2dcgh ,

∑
fghk

dfghk
g0

[
F cge

′
hbk

fghk

]
agh,dhk

g0
[
F cgehbk

fghk

]∗
agh,dhk

= daghddhk

deh

δehe′
h
. (B30)

APPENDIX C: CLASSIFICATION OF GROUP
EXTENSIONS OF FUSION CATEGORIES

We summarize the categorical classification of (unitary)
group extensions of fusion categories. The materials below
are distilled from Ref. [77]. Given a fusion category C,
Ref. [77] defined the Brauer-Picard 3-group BrPic(C) as the

following: there is a single object, the fusion category C,
1-morphisms are the C-bimodule categories, 2-morphisms are
equivalences of such bimodule categories, and 3-morphisms
are the isomorphisms of such equivalences. It can be truncated
to a 2-group BrPic(C), by forgetting the 3-morphisms, and
further down to a group BrPic(C), i.e., the group of equivalence
classes of such bimodule categories. A central result of [77] is
the following theorem:

Theorem 1.1. BrPic(C) is equivalent to EqBr[Z(C)].
EqBr(Z(C)) is the braided tensor autoequivalence of the

Drinfeld center of C. Consequently, BrPic(C) is isomorphic to
EqBr(C). The latter is called Aut[Z(C)] using the notation of
Ref. [61]. An explicit description of braided autoequivalences
for a modular tensor category in terms of concrete algebraic
data can also be found in [61].

BrPic(C) plays an important rule in the classification of

extensions of C, due to the following theorem:
Theorem 7.7. The equivalence classes of G extensions of

C are in bijection with homotopy classes of maps from the
classifying space BG to the classifying space of BrPic(C).

DefineA as the group of Abelian anyons inZ(C). Reference
[77] gave an explicit description of the extension:

Theorem 1.3. Equivalence classes of extensions of C by G

are parametrized by triplets (ρ,w,α). Here, ρ is a group ho-
momorphism ρ : G → BrPic(C), with vanishing obstruction
class in H3[G,A]. Then, w belongs to a certain torsor over
H2

ρ[G,A]. Notice that the action on A is naturally induced
from ρ by the group homomorphism between BrPic(C) and
Aut[Z(C)].wmust satisfy an obstruction-vanishing condition,
where the obstruction class belongs to H4[G,U(1)]. Lastly, α

belongs to a torsor over H3[G,U(1)].
According to [77], the same triplets also classify equiva-

lence classes of G-crossed braided extensions of the modular

tensor categoryZ(C). As elaborated in Ref. [61], G-symmetry-
enriched phases of Z(C) are exactly described by such G-
crossed braided extensions. We therefore conclude that the
classification of G extension of C is basically the classification
of G-enriched phases of Z(C).

APPENDIX D: PARAMETRIZATION OF 3-COCYCLES
IN GROUP EXTENSIONS

The 3-cocycle condition of G reads as

ω(ag × bh,ck,dl)ω(ag,bh,ck × dl)

ω(ag,bh,ck)ω(ag,bh × ck,dl)ωs(g)(bh,ck,dl)
= 1. (D1)

Plugging in the explicit parametrization 3

χd (gh,k)χcdν(k,l)(g,h)

χc(g,h)χd (g,hk)χs(g)
d (h,k)

= αs(g)(h,k,l)α(g,h,k)α(g,hk,l)
α(gh,k,l)α(g,h,kl)

. (D2)

First, set l = 1. The right-hand side vanishes because
of our normalization α(1, ∗ ,∗) = α(∗,1,∗) = α(∗, ∗ ,1) = 1.
The left-hand side becomes

χd (gh,k)χcd (g,h) = χc(g,h)χd (g,hk)χs(g)
d (h,k). (D3)

If we further set c = 1 and use the normalization χ1 = 1, we
find χd satisfies the 2-cocycle condition of G:

χd (gh,k)χd (g,h) = χd (g,hk)χs(g)
d (h,k). (D4)

Equation (D3) then implies that χcd (g,h) = χc(g,h)χd (g,h).
Finally, Eq. (D2) is reduced to

χν(k,l)(g,h) = αs(g)(h,k,l)α(g,h,k)α(g,hk,l)
α(gh,k,l)α(g,h,kl)

. (D5)

APPENDIX E: FRACTIONALIZATION IN
SYMMETRY-ENRICHED GAUGE THEORIES

In the main text, we construct a large family of G-
symmetry-enriched Abelian gauge theories D(N ), by first
specifying a central extension G of N by G, and a 3-cocycle
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ω of the form Eq. (49). In this Appendix, we determine the
symmetry fractionalization class for unitary G, by gauging the
symmetry G.

By construction, gauging the symmetry group G yields
the Dijkgraaf-Witten gauge theory Dω(G) (also known as
the twisted quantum double of G). We will first review the
anyon content of Dω(G) [61,67]. The quasiparticles in the
quantum double are labeled by ([g],πg) where [g] denotes a
conjugacy class of G with a representative element g, and πg

is an irreducible representation of the centralizer group Cg .
However, πg is not necessarily a linear representation; they
are generally projective, with the factor sets given by

ηg(h,k) = ω(h,k,g)ω(g,h,k)

ω(h,g,k)
for h,k ∈ Cg. (E1)

Now, we specialize to the case whereG is a central extension
of N by G, and parametrize the group elements as in Sec. III A.
The form of 3-cocycles given in Eq. (49) reads as

ω(ag,bh,ck) = χc(g,h)α(g,h,k). (E2)

For our purpose, a particularly important conjugacy class
is [a1] for a ∈ N , and the centralizer group is just G since a is
a central element. The factor set is given by

ηa1 (bh,ck) = χa(h,k). (E3)

We now explicitly construct all such projective representations
π . By definition, π (bh)π (ck) = χa(h,k)π ([bcν(h,k)]hk). Set-
ting b = 1 ,k = 1, we get

π (1h)π (c1) = π (ch) (E4)

Notice that π (c1) gives a linear representation of N , so π (c1)
must be a character of N . We will denote π (c1) = λ(c). From

Eq. (E4) we obtain

π (bh)π (ck) = π (1h)π (1k)λ(b)λ(c)

= χa(h,k)π (1hk)λ(bcν(h,k)), (E5)

which gives

π (1h)π (1k) = χa(h,k)λ(ν(h,k))π (1hk). (E6)

In other words, π (1g) is a projective representation of G.
Therefore, we can construct all irreducible projective

representations of G with factor set ηa1 in the following
way: choose a character λ of N , and find all the irreducible
projective representations of G, denoted by π̃ [which will be
π (1h)], with the factor set η̃(h,k) = χa(h,k)λ(ν(h,k)). Then,
π (bh) = π̃ (h)λ(b) is an irreducible representation of G. We
will label such a quasiparticle by a tuple ([a],λ,π̃). The set of
these quasiparticles can be regarded as “charges” in the gauged
theory since they do not carry any G fluxes.

We can also understand how anyons in the SET are
promoted into quasiparticles in the gauged theory. Mathemat-
ically, this is done by a procedure called equivariantization
(for a more detailed account, see [61]). If an anyon type a

is not permuted by the symmetry group G, after equivari-
antization, we attach to a a projective representation of G,
with the factor set the same as the projective phases of G

actions on a. Given the fractionalization [w] ∈ H2[G,A], the
projective phases are given by ηa(g,h) = Ma,w(g,h). For the
Abelian gauge theory D(N ), we have A = N × N̂ . We can
represent the fractionalization class as w = (we,wm) where
we ∈ H2[G,N ], wm ∈ H2[G,N̂ ]. For a quasiparticle (a,λ) in
D(N ), we can then easily compute the projective phases

η(a,λ)(g,h) = M(a,λ),w(g,h) = λ(we(g,h))[wm(g,h)](a). (E7)

Comparing with Eq. (E6), we should identify

ν(g,h) ≡ we(g,h), χa(g,h) ≡ [wm(g,h)](a). (E8)
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