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In this paper we investigate the effect of strong electronic interactions on the thermoelectric properties of a
simple generic system, consisting of a single correlated layer sandwiched between two metallic leads. Results
will be given for the linear response regime as well as beyond, for which a full nonequilibrium many-body
calculation is performed, based on nonequilibrium dynamical mean-field theory (DMFT). As impurity solver we
use the auxiliary master equation approach, which addresses the impurity problem within a finite auxiliary system
consisting of a correlated impurity, a small number of uncorrelated bath sites, and Markovian environments. For
the linear response regime, results will be presented for the Seebeck coefficient, the electrical conductance, and
the electronic contribution to the thermal conductance. Beyond linear response, i.e., for finite differences in the
temperatures and/or the bias voltages in the leads, we study the dependence of the current on various model
parameters, such as gate voltage and Hubbard interaction of the central layer. We will give a detailed parameter
study as far as the thermoelectric efficiency is concerned. We find that strong correlations can indeed increase
the thermopower of the device. In addition, some general theoretical requirements for an efficient thermoelectric
device will be given.
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I. INTRODUCTION

Thermoelectric devices on the nanoscale are an interesting
topic and research object, not only from the pure scientific
point of view, but much more so for technological reasons.
All aspects of thermoelectric devices are nicely reviewed by
Benenti et al. [1,2]. In particular, the efficient harvesting of
the thermal energy is of great socioeconomical importance. It
depends on the physical properties of the given material and
in the linear response regime it can be characterized by the
dimensionless quantity, which is called thermoelectric figure
of merit

ZT = S2

L
, (1)

L = κ

σT
, (2)

which is expressed by the Seebeck coefficient S and the
Lorenz number L. Here T is the temperature, σ is the
electrical conductance, and κ is the thermal conductance. Any
inelastic scattering will contribute to the thermal conductivity.
However, for simplicity in the present work we consider
only the electrical contribution κ = κe. A high value of the
figure of merit is required to obtain high efficiency [1,3]. In
spite of the many theoretical and experimental efforts [4–23],
most efficient actual devices still operate at ZT � 1 [1]. In
this paper we will study the impact of strong correlations
on the thermoelectric properties of layered systems. It will
turn out that the Lorenz ratio in these systems is close
to the universal Wiedemann-Franz value L0. Therefore, the
figure of merit is solely governed by the Seebeck coefficient.
The system we studied numerically is composed of a single
correlated layer sandwiched between two metallic leads. We
will present results in and beyond the linear response regime.
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In the linear response regime we study the behavior of the
Seebeck coefficient, electrical conductance, and the electronic
contribution to the thermal conductance, while in the nonlinear
regime we will address the electrical current J and the
corresponding power P = J�, with � being the applied
voltage.

To investigate the behavior of a many-body system out
of equilibrium we use dynamical mean-field theory (DMFT)
[24–26] combined with the nonequilibrium Green’s function
approach originally proposed by Kubo [27], Schwinger [28],
Kadanof and Baym [29,30], and Keldysh [31]. DMFT is a
comprehensive, thermodynamically consistent, and nonpertur-
bative scheme. It is one of the powerful methods to investigate
high-dimensional correlated systems and becomes exact in
infinite dimensions. The sole approximation is the assumption
of a local self-energy. In order to determine it, the original
lattice problem is mapped onto a single impurity Anderson
model (SIAM) [32], which implies a self-consistency cycle. To
solve the impurity problem, particularly in the nonequilibrium
case, we used a recently developed auxiliary master equation
approach (AMEA) [22,33–36]. The latter directly treats the
nonequilibrium steady-state situation. However, AMEA is not
restricted to the nonequilibrium situation, it can very efficiently
be used in the equilibrium case as well. AMEA treats the
impurity problem within an auxiliary system consisting of the
correlated impurity, a small number of uncorrelated bath sites,
and two Markovian environments, which are encoded in a
Lindblad equation.

The paper is organized as follows: In Sec. II A we introduce
the Hamiltonian of the system. In Sec. II B we briefly
discuss the nonequilibrium DMFT approach together with
AMEA, while in Sec. II C we define important thermoelectric
properties which we use in our calculations. Afterwards in Sec.
III we present our results. Section III A is dedicated to the linear
response results, while in Sec. III B we present our results in
the presence of the large temperature difference between the
leads. Finally, in Sec. IV the results are summarized.
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FIG. 1. Schematic representation of the investigated heterostruc-
ture, consisting of a single correlated layer (dark green) sandwiched
between two semi-infinite metallic leads (gray). U, εc, and tc are
local Hubbard interaction, on-site energy, and the hopping amplitudes
between neighboring sites of the correlated layer, correspondingly.
Hybridization between the correlated layer and the left (right) lead is
vl (vr ). The hopping between neighboring sites for the left (right) lead
is tl (tr ). εl (εr ) and μl (μr ) are on-site energy and chemical potential
for the left (right) lead. The temperature of the left and right leads are
correspondingly Tl and Tr .

II. MODEL AND METHOD

A. Model

We consider a model system consisting of a single cor-
related infinite monolayer (z = 0) sandwiched between two
metallic leads (z < 0 and z > 0), which are semi-infinite (see
Fig. 1). The system is translationally invariant in the xy plane
(parallel to the correlated layer). The Hamiltonian reads

H = −
∑

z,〈r⊥,r′
⊥〉,σ

tzc
†
z,r⊥,σ c

z,r′
⊥,σ

−
∑

〈z,z′〉,r⊥,σ

tzz′c†z,r⊥,σ cz′,r⊥,σ

+U
∑
r⊥

(
n0,r⊥,↑ − 1

2

)(
n0,r⊥,↓ − 1

2

)
+

∑
z,r⊥,σ

εznz,r⊥,σ .

(3)

Here c
†
z,r⊥,σ creates an electron at site r⊥ of layer z with

spin σ and nz,r⊥,σ = c
†
z,r⊥,σ cz,r⊥,σ denotes the corresponding

occupation-number operator. 〈z,z′〉 stands for neighboring
layers and 〈r⊥,r′

⊥〉 stands for neighboring sites within a layer.
The first two terms of the Hamiltonian (3) describe nearest-

neighbor intralayer and interlayer hoppings, with hopping am-
plitudes tz and tzz′ , respectively. We consider identical nearest-
neighbor hopping parameters within the leads. tz = tzz′ = tl
for the left lead (z,z′ < 0) and tz = tzz′ = tr for the right
lead (z,z′ > 0). The hopping amplitude inside the correlated
layer is t0 = tc, while the hybridization between left (right)
lead and correlated layer t−1,0 = t0,−1 = vl (t0,1 = t1,0 = vr ).
The third term introduces the local Hubbard interactions U ,
which is nonzero only for the correlated layer (z = 0). The
last term describes the on-site energies. For the correlated
layer εz=0 ≡ εc, and for the left and right lead εz<0 ≡ εl and
εz>0 ≡ εr , respectively.

The nonequilibrium situation is obtained by applying a
bias voltage � and/or temperature difference �T = Tl − Tr ,
between the leads. Here Tl and Tr are the temperatures of the
left and right leads, respectively. The usual way to treat such
steady state situation (see, e.g., [37,38]) is to start at t = −∞

with three decoupled (vl = vr = 0) systems consisting of the
two leads plus the central region which are separately in
equilibrium at different chemical potentials and temperatures.
Then one switches on the hybridization and waits until a steady
state is reached. A bias voltage � is obtained by shifting both
the on-site energies εl/r of the left and right leads as well as
their initial chemical potentials μl/r by ±|e|�/2, respectively,
i.e., εl = μl = |e|�/2, εr = μr = −|e|�/2. Of course this
neglects the long-range Coulomb interaction, which could be
added explicitly, for example, by solving self-consistently the
Poisson equation (see, e.g., [23,39–45]). One major effect of
the long-range Coulomb interaction is a voltage drop across
the central region. The approximation made here is to assume
that the voltage drop takes place only in the central region,
which corresponds to the limit of infinite Coulomb screening.

In the following, we use units in which tc = 1,h̄ = 1,kB =
1,|e| = 1, and a = 1. The latter is the distance between
neighboring sites of the simple cubic lattice. Thus, the current
(density) is expressed in units of

j0 = |e|
h̄a2

. (4)

B. Method

Here we give a brief overview of the nonequilibrium
DMFT approach [37,38,46–50] and the auxiliary master
equation approach (AMEA) [33–36], employed to solve the
intrinsic impurity problem. For more details we refer to
Refs. [33–35,51,52] . To describe the behavior of the steady
state it is convenient to work in the Keldysh Green’s function
formalism [28,30,31,53,54] and introduce 2 × 2 block Green’s
functions

G =
(

GR GK

0 GA

)
, (5)

which we denote by an underscore. GR , GK , and GA are
the retarded, Keldysh, and advanced Green’s functions. GA

and GR are related via GA = (GR)†. While GK can only be
obtained from GR in the equilibrium case via the fluctuation
dissipation theorem [53], out of equilibrium GK is independent
of GR and it needs to be determined separately, which requires
the Keldysh Green’s function formalism.

In the steady state, the two-time Green’s functions only
depend on the time difference and it is convenient to switch
to the frequency domain ω. Furthermore, due to translational
invariance along the xy plane we introduce the momentum
variable k⊥ = (kx,ky). The Green’s function of the correlated
layer is given in terms of Dyson’s equation by

G−1
c (ω,k⊥) = g−1

c
(ω,k⊥) −

∑
α=l,r

v2
αg

α
(ω,k⊥) − 	(ω), (6)

where g
α
(ω,k⊥) denotes the noninteracting, decoupled (vl =

vr = 0) equilibrium Green’s functions for the correlated layer
(α = c) and for the edge layer of the left (l) and the right (r)
lead [55].

The retarded part of the equilibrium Green’s functions can
be expressed by

gR
c (ω,k⊥) = 1

ω+ − εc − tcε(k⊥)
, (7)
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gR
α=l,r (ω,k⊥) = ω − εα − tαε(k⊥)

2t2
α

− i

√
4t2

α − [ω − εα − tαε(k⊥)]2

2t2
α

, (8)

with ε(k⊥) = −2(cos kx + cos ky). The sign of the square root
for negative argument in Eq. (8) must be chosen such that the
Green’s function has the correct 1/ω behavior for |ω| → ∞.
Since the disconnected leads are separately in equilibrium, we
can obtain their Keldysh components from the retarded ones
via the fluctuation dissipation theorem [53,55]

gK
α=l,r (ω,k⊥) = 2i[1 − 2fα(ω)] Im gR

α (ω,k⊥), (9)

where fα(ω) is the Fermi distribution for chemical potential
μα and temperature Tα . For the noninteracting isolated central
layer the inverse Keldysh Green’s function [g

c
(ω,k⊥)]−1 is

proportional to 0+, an infinitesimal imaginary part, and can be
neglected in the final steady state in which the leads and the
layers are connected to each other.

	(ω) in Eq. (6) stands for the self-energy, which in DMFT
is approximated by a local and therefore momentum (k)
independent quantity. It will be determined self-consistently
by solving the SIAM problem with the same local parameters
U and εc as the original model. More specifically we employ
the auxiliary master equation approach (AMEA) [33–36]
to determine the self-energy 	(ω) in the equilibrium and
nonequilibrium case. The key point of AMEA is to map the
infinite SIAM problem to an auxiliary one with a finite number
of bath sites Nb and two Markovian environments (sink and
reservoir), which are crucial to achieve a steady state in a
finite system. The resulting open quantum system is described
by a Lindblad equation. Its parameters are, however, not taken
from a Born-Markov approximation [56–58] but are used as fit
parameters to optimally reproduce the physical hybridization
function

�ph(ω) = g−1
0

(ω) − G−1
loc(ω) − 	(ω) (10)

by the hybridization function �aux(ω), obtained in the auxiliary
system. Here g−1

0
(ω) is the noninteracting Green’s function of

the disconnected impurity and the local Green’s function is
obtained by

Gloc(ω) =
∫

BZ

dk⊥
(2π )2

Gc(ω,k⊥). (11)

Clearly the accuracy of our impurity solver increases ex-
ponentially with the number of bath sites Nb and becomes
exponentially exact in the limit Nb → ∞ [36,59]. In practice
Nb = 4,6 is sufficient to obtain reliable results for the current.
The self-consistence cycle proceeds as follows: Starting out
with an initial guess for the self-energy, we determine the
physical hybridization function in Eq. (10). Next the Lindblad
parameters of the auxiliary system without interaction are
adjusted by minimizing the misfit between the hybridization
function of the auxiliary system and that of the physical system.
Once the Lindblad parameters are determined, the auxiliary
nonequilibrium many-body system is solved by standard
numerical techniques, which defines the self-energy for the

next iteration. This procedure is repeated until convergence is
reached. For more details see Refs. [33–35,51].

C. Thermoelectric properties

Once the Green’s function for the central layer is deter-
mined, one can calculate the desired thermoelectric properties.
Here we shortly overview the corresponding expressions,
which we need in the present work and discuss some of their
generic features.

The electrical current density (Jc) and the energy-current
density (Jen) through the central layer in case of the linear
response regime or zero bias voltage � = 0 but with finite
temperature difference between leads are given by [53,60]
(see the Appendix)

Jc/en = −2
∫ ∞

−∞

dω

2π
T (ω)[fl(ω) − fr (ω)]ζc/en(ω). (12)

This expression is valid if Im gR
l (ω,k⊥) = λ Im gR

r (ω,k⊥),
where λ does not depend on ω and k⊥. Otherwise one has
to use a more general expression given by the Meir-Wingreen
formula (see e.g., Refs. [35,53,60–62]).

For the electric current density (energy current density) we
have ζc = 1 (ζen = ω). The transmission function is given by

T (ω) = 1

N⊥

BZ∑
k

T (ω,k⊥), (13)

T (ω,k⊥) = 2πγl(ω,k⊥)γr (ω,k⊥)

γl(ω,k⊥) + γr (ω,k⊥)
A(ω,k⊥). (14)

The sum runs over the k⊥ vectors of the first Brillouin zone of
the 2D central layer and N⊥ is the number of the corresponding
vectors. The transmission function depends on the spectral
density of the central layer

A(ω,k⊥) = − 1

π
Im GR

c (ω,k⊥), (15)

and the imaginary part of the surface Green’s functions of the
leads via

γα(ω,k⊥) = −2v2
α Im gR

α (ω,k⊥). (16)

Obviously the k⊥ dependence of both quantities enters through

ε(k⊥) = −2(cos kx + cos ky), (17)

with γα(ω,k⊥) = γ̃α[ω,tαε(k⊥)] and A(ω,k⊥) =
Ã[ω,tcε(k⊥)]. Therefore, by replacing γα(ω,k⊥) and
A(ω,k⊥) in Eq. (14) by γ̃α(ω,tαε) and t̃A(ω,tcε), respectively,
we obtain

T (ω) =
∫ ∞

−∞
ρ2D(ε)T̃ (ω,ε) dε,

where ρ2D is the 2D density of states corresponding to the
dispersion relation ε(k⊥), which can be expressed in terms of
the complete elliptic integral of the first kind K(x) [63] as

ρ2D(ε) = θ (4 − |ε|)
2π2

K
[

1 −
(ε

4

)2
]
. (18)

As outlined before, the bias voltage enters the chemical
potential of the leads and the on-site energies, both are given
by �/2 (−�/2) for the left (right) lead. However, the change
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of the on-site energies enters only in second order and does not
contribute to the linear response expressions. Straightforward
Taylor expansion then yields [1,3,62]

Jel = σ� + σS�T, (19)

Jen = ST Jel + κe�T . (20)

The linear response coefficients are the electric conductivity

σ = ∂J

∂�

∣∣∣∣
�T =0

= I0, (21)

the Seebeck coefficient

S = − ∂�

∂�T

∣∣∣∣
Jel=0

= −I1

I0
β, (22)

and the electronic contribution to the thermal conductance

κe = ∂Jen

∂�T

∣∣∣∣
Jel=0

= σ

[
I2

I0
− I 2

1

I 2
0

]
β. (23)

These expressions are based on the Lorenz integral

Im = 2
∫ ∞

−∞

dω

2π
T (ω)|f ′(ω)| ωm, (24)

with f (ω) = 1/[exp(βω) + 1].
In addition, we also calculated the Lorenz ratio [see Eq. (2)],

which in the linear response regime can be expressed as

L = κe

σT
=

[
I2

I0
− I 2

1

I 2
0

]
β2.

We will check the validity of the Wiedemann-Franz law

L = L0 = π2

3
(25)

in the presence of van Hove singularities and interacting
electrons. The Wiedemann-Franz law is assumed to be valid
for a free electron gas with elastic scattering. By definition,
the transmission function T (ω) is non-negative and so is

|f ′(ω)| = β

4 cosh2
(

βω

2

) . (26)

The quantities Im/I0 can therefore be considered as the mth
moment

〈ωm〉 =
∫

dωρ(ω) ωm (27)

of the probability distribution function

ρ(ω) = 1

Z

T (ω)

cosh2
(

βω

2

) ,

with the proper normalization constant Z. Then the Seebeck
coefficient is given by the mean

S = −〈ω〉 β (28)

and the Lorenz ratio

L = 〈(�ω)2〉β2 (29)

by the variance of ρ(ω) and, consequently, the electronic part
of the thermal conductance by

κe = σ 〈(�ω)2〉β. (30)

For low temperatures (degenerate electrons gas), the vari-
ance of ρ(ω) is governed by the factor |f ′(ω)|, which is
strongly localized in the interval IT := [−T ,T ], in which
T (ω) is commonly assumed to be slowly varying. Then we
obtain

β2〈(�ω)2〉 = π2

3
, (31)

which corresponds to the Wiedemann-Franz law. We also
realize that deviations are to be expected in the case when
T (ω) is strongly varying in the interval ω ∈ IT , which is the
case, e.g., for the 2D tight-binding density of states, that has
a van Hove singularity at ω = 0. We see that the electrical
conductivity according to Eq. (21) is always positive. The
same holds true, based on Eq. (29), for the Lorenz ratio. Then,
due to Eq. (2) also the electronic part of the heat conductivity
is positive. Equation (19) then guarantees that, given a bias
voltage and no temperature difference, the electrical current
flows from the side of higher to the lower potential energy. In
the opposite case, of zero bias voltage but finite �T , inserting
Eq. (19) into Eq. (20) yields

Jen = (T S2σ + κe)�T,

and, since the bracketed expression is positive, the energy
current flows from the side of higher temperature to that of
lower temperature. The same is valid for the heat current,
which is given by κe�T . A sign change can, however, occur
in the Seebeck coefficient, which according to Eq. (28) is a
measure of the asymmetry of the transmission function. In
the present model T (ω) is symmetric about ω = 0 for εc =
0. Qualitatively, T (ω) is shifted to positive frequencies by
positive values of εc and vice versa. Moreover, by definition,
S is an antisymmetric function in εc.

The key element of the thermoelectric figure of merit is
the Seebeck coefficient in Eq. (28) that increases with the
asymmetry of the probability distribution function ρ(ω) ∝
|f ′(ω)|T (ω). The first factor is a narrow symmetric peak
with exponential tails e−β|ω]. The asymmetry enters via the
transmission function. If the latter is smooth, the mean 〈ω〉 is
restricted by |f ′| and the asymmetry is at most |kBT |, resulting
in S � 1. In order to have a figure of merit greater than 1, the
transmission function has to overcome the peak |f ′(ω)|. This
can be achieved by a transmission function that is zero up
to some energy ω1 > T and has a sharp onset at ω1. In the
extreme case that T is a box function in the interval (ω1,ω2),
with ω2 
 ω1 
 T then

ρ(ω) ≈ 1

Z
�(ω − ω1)e−βω.

In this case S = 1 + βω1. This is actually the case in the high
ZT materials reported in [64].

For noninteracting electrons in the model under
consideration, the transmission function is nonzero in the
interval I0 := [−2 − γ (0) + εc,2 + γ (0) + εc] with
Lorentzian edges, whose locations are shifted with εc

(see Fig. 2). Due to the van Hove singularity the transport
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(a) 2D tight-binding DOS.

(b) DOS of a Bethe lattice.

FIG. 2. Transmission function T (ω) for U = 0 and different
values of εc contrasted with |f ′(ω)|. (a) The results obtained by a 2D
tight-binding DOS, while the results in (b) are produced by the Bethe
lattice DOS. Both models have the same bandwidth. The asymmetry
within the transport window, which determines the Seebeck coeffi-
cient, is most pronounced when the van Hove singularity or the edge
of the transmission function passes the edge of the transport window,
defined by |f ′(ω)|.

function T (ω) has sharper peaks compared to the transport
function for a system without van Hove singularity, e.g., with
a Bethe lattice DOS [compare Figs. 2(a) and 2(b)]. It leads
to the different behavior of S when the maximum passes
the peak of |f ′(ω)|. Moving the edges of the transmission
function via εc across the peak of |f ′(ω)| will increase S but
only until the edge is out of the energy window ±T , then
it will decease again and consequently, S has a pronounced
peak but the height will be S � 1 for reasons outlined before.

III. RESULTS

The emphases of the present paper are on the influence of
strong electronic correlations on the thermoelectric properties,
which will be studied in the framework of the device displayed
in Fig. 1, consisting of a correlated layer, with local Hubbard
interaction U and on-site energy εc, coupled to two metallic
leads. Of particular interest is the impact of the various model
parameters. We will first study the linear response behavior
of the system, for which only equilibrium calculations are
necessary, before we move on to full nonequilibrium studies

for strong temperature or potential differences between the
leads.

In all our calculations the hopping between neighboring
sites inside the correlated layer is considered as energy unit
(tc = 1), while the hopping between neighboring sites of the
leads is always chosen as tl = tr = 2. As far as the other
parameters are concerned, we have distinguished between
the linear response and the full nonequilibrium calculation.
In the first case we have chosen for the hopping into and out
of the central region vl = vr = 0.25 and for the temperature in
the leads Tl = Tr = 0.025, while in the second case we have
used vl = vr = 1 and Tl = 0.9 and Tr = 0.7, respectively, in
order to enhance the effect of the temperature difference.

A. Linear response

We start out with the results for the linear response regime.
The temperature in the left and right lead is T = 0.025 and the
hopping in and out of the central layer is vl = vr = 0.25. Due
to the particle-hole symmetry for εc = 0, the electrical and
thermal conductance are even functions of the on-site energy
εc, while the Seebeck coefficient is an odd function of εc.
Therefore, we restrict our results to εc � 0, which corresponds
to fillings n � 1 in the central layer.

1. Noninteracting particles

In order to single out the impact of correlations on the
thermoelectric properties, we will first study the present model
for U = 0. In this case the self-energy 	(ω) vanishes and
all required quantities for the integral Eq. (24) are given
analytically and we can easily determine the integral by
numerical means. The results for the electrical and thermal
conductance are presented in Fig. 3. We find that both have
a maximum at εc = 0 (half-filling), decrease monotonically
with increasing |εc|, and vanish rapidly beyond |εc| = 2. As
pointed out before, both quantities only depend on |εc|.

Furthermore, we have examined the validity of the
Wiedemann-Franz law [see Eq. (25)]. In the inset of Fig. 3
we present L/L0 as a function of the on-site energy. We
observe deviations from the Wiedemann-Franz law only for
values |εc| ≈ 0.1 and |εc| ≈ 2.0. The first deviation is due
to a pronounced peak in the transmission function T (ω) that
stems from the van Hove singularity of the 2D tight-binding
density of states [see Eq. (18)] and the second deviation is
due to a sharp edge in T (ω) that stems from the finite width
of γl/r (ω,tαε). The latter is given by the imaginary part of
the Green’s function of the leads. In the wide band limit it is
proportional to

γ̃l/r (ω,ε) ∝
√

1 −
(ε

2

)2
.

On the other hand, the Seebeck coefficient S(εc), which is
depicted in Fig. 4, is a nonmonotonic function and has two
maxima: the first maximum is close to half-filling εc � −0.1,
and the second at εc � −2. As pointed out in Sec. II C, maxima
in S occur, when sharp edges or maxima in the transmission
function are moved through the energy window IT defined
by |f ′|. The situation is illustrated in Fig. 2, where |f ′(ω)|
and the transmission function T (ω) are shown for different
values of εc. Obviously, the first maximum is due the van
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FIG. 3. Electrical and thermal conductance [σ (εc)/σ (0) and
κe(εc)/κe(0)] as a function of on-site energy εc for the noninteracting
system. The other parameters are tc = 1, tl/r = 2, vl/r = 0.25, T =
0.025. Dotted lines correspond to the results obtained for the Bethe
lattice density of states with the same bandwidth (see main text). In
case of the Bethe lattice, the two type of conductance differ mainly in
the vicinity of εc = −2, therefore it is hard to distinguish them from
each other. Inset: Lorenz number L/L0 [see Eq. (2)]. Deviations from
the Wiedemann-Franz law occur only at ε0 → 0, due to a van Hove
singularity and at |ε0| = 2, due to a sharp edge in the transmission
function T (ω).

Hove singularity, which for εc � −0.1 crosses the boundary
of IT . The second maximum occurs at εc � −2, when the edge
of the transmission function crosses the boundary. The second
maximum of the Seebeck coefficient is higher, because the
edge of T is more pronounced than the van Hove singularity,
resulting in a greater mean 〈ω〉.

In order to underpin the impact of the van Hove singularity,
we have also performed calculations for the density of states
ρB(ε) of the Bethe lattice, which has no singularity at ω = 0.
ρB(ε) is chosen such that it has the same bandwidth as the

-4.5-4.0-3.5-3.0-2.5-2.0-1.5-1.0-0.50.0
εc
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2.0
2.5
3.0 v=0.0625

v=0.125
v=0.25

FIG. 4. Seebeck coefficient for the noninteracting system. Param-
eters as in Fig. 3. The dotted lines correspond to the results obtained by
the Bethe lattice density of states, where the initial hump is missing.
The inset depicts the Seebeck coefficient versus εc for different values
of the coupling to the leads v = vl/r . Obviously the peaks increase
with decreasing v.

0.0

0.2

0.4

0.6

0.8

1.0

σ(
ε c,U

)/σ
(0

,0
) U=0
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U=4
U=8
U=12

-8-7-6-5-4-3-2-10
εc

0.9

1.0

1.1

1.2

L/
L 0

FIG. 5. Electrical conductance σ (upper panel) and Lorenz
number (lower panel) as a function of εc for different values of U .
Calculations are performed with Nb = 6. Other parameters see Fig. 3.

original density of state. We find that both low-frequency
features, the maximum of the Seebeck coefficient and the
discrepancy from the Wiedemann-Franz law, disappear. The
features at εc = −2 survive as they are due to band edge effects.

Finally, still for the noninteracting model, we also present
the dependence of the the Seebeck coefficient on the hybridiza-
tion vl = vr = v in the inset of Fig. 4. Clearly the Seebeck
coefficient increases with decreasing hybridization v.

2. Linear response for finite interaction

Next we discuss the results for the interacting system. In
the interacting case, we first have to solve the self-consistent
impurity problem and calculate the self-energy 	(ω), before
we can calculate thermoelectric properties introduced in Sec.
II C. In Fig. 5 we show the electrical conductance σ and the
Lorenz number as a function of εc for different values of
the local interaction U . For small to moderate interactions
(U � 5.5) we find, like in the noninteracting case, a decreas-
ing conductance with increasing εc, which vanishes rapidly
beyond |εc| = 2 + U/2. As a new aspect, the maximum at
εc = 0 decreases with increasing U . For strong interactions
(U � 5.5), on the other hand, σ behaves differently. A local
minimum develops at εc = 0 and a maximum at some finite
value ε∗

c . Interestingly (not depicted in the plot), the filling
corresponding to ε∗

c is in all cases roughly the same n � 1.3.
Qualitatively, such nonmonotonic behavior can be explained
by the fact that there are two competing effects. On the one
hand, like in the noninteracting case, with increasing |εc| and
correspondingly n the conductance should decrease due to
the decreasing overlap of the spectral function of the central
layer with the imaginary part of the leads Green’s functions.
On the other hand, close to half-filling (εc = 0) correlation
effects are most dominant and therefore due to backscattering,
the conductance should be reduced or even suppressed. The
latter is actually the case for very strong interactions (U � 12),
indicating that the isolated correlated interface would be in the
Mott insulator phase, but the system always remains metallic
when the correlated layer is coupled to the leads. In the limit
of strong interaction the conductance is strongly suppressed,
but it never becomes equal to zero. The Mott transition is
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FIG. 6. Seebeck coefficient S as a function of εc for different
values of U . (Other parameters as in Fig. 3.) The hump close to
half-filling is due to the van Hove singularity at ω = 0 of the 2D
tight-binding density of the state and the peak close to n = 1.6 is due
to the sharp drop of the transmission function T (ω).

nicely visible in the transmission function, which is shown in
Fig. 7, where a gap is found at U = 12 [65]. As far as the
Lorenz number is concerned, which is depicted in the lower
half of Fig. 5, the deviation from the Wiedemann-Franz law,
which we found in the noninteracting case at εc ≈ 0, decreases
with increasing interaction strength, because the van Hove
singularity is smeared out by the interaction.

As a final point on linear response, we turn to the Seebeck
coefficient (see Fig. 6). We find that for U � 5.5 the Seebeck
coefficient is positive, as in the noninteracting case. With
increasing interaction the maxima are shifted to higher εc

values and are suppressed. Along the same line of reasoning
we gave in the noninteracting case, this behavior can easily
be explained by the smearing of the transmission function due
to interactions. However, a qualitatively new aspect comes
into play for strong interactions (U � 5.5). Now we find that
for small on-site energies ε�

c � εc � 0 the Seebeck coefficient
becomes negative, before it turns positive again for some value
ε�
c . This is in particular the case for U = 8 and U = 12 in

Fig. 6, while U = 4 still exhibits a purely positive Seebeck
coefficient. To understand the qualitative difference in the
Seebeck coefficient corresponding to these U values, we
consider the corresponding transmission functions in Fig. 7.
We observe that the central peak (van Hove singularity) in the
transmission function, which is still predominant for U = 4,
decreases with increasing U and the lower and upper Hubbard
band grow, until eventually the Mott-Hubbard gap opens up
(see Fig. 7). At the same time, for U � 5.5, spectral weight is
transferred from the lower to the upper Hubbard band, when
εc < 0. Consequently, based on Eq. (27), the mean 〈ω〉 moves
to positive energies, resulting in a negative Seebeck coefficient,
absolute value of which increases with increasing U . The
detailed dependence of the transmission function on εc for the
case U = 8 is given in Fig. 8. It is obvious why the Seebeck
coefficient S = −β〈ω〉 is increasingly negative for increasing
εc. In addition to the transfer of spectral weight from the lower
to the upper Hubbard band, the entire transmission function
shifts to the left with increasing εc, like in the noninteracting
case. This shift eventually, for εc < ε�

c < 0, results in a positive
Seebeck coefficient. As we can clearly see in Fig. 8 for the

-10 -8 -6 -4 -2 0 2 4 6 8 10
ω

0.00

0.01

0.02

0.03

0.04
U=4

U=8

U=12

FIG. 7. Transmission function for different Hubbard parameters
U . Solid line is for half-filling εc = 0 and dashed line represents
εc = −0.5. Other parameters as in Fig. 3.

U = 8 case, the edge close to ω = 0 becomes increasingly
pronounced with increasing εc values. At the same time the
Seebeck coefficient increases. This is in nice agreement with
our general discussion that the Seebeck coefficient is large if
a sharp edge or peak is shifted (by changing some parameter)
across the energy window, defined by |f ′|. It is particularly
interesting to note that the absolute height of the first peak
in the Seebeck coefficient is greater for U = 12 than in the
noninteracting case. According to Eq. (1) the thermoelectric
figure of merit depends quadratically on S, therefore we find
that strong correlations would increase the figure of merit,
taking into account that the Lorenz number even slightly
supports this effect.

The behavior of ZT is completely determined by the
behavior of the Seebeck coefficient S and the Lorentz number
L. Even more, based on the sign of the Seebeck coefficient
one can determine whether the conductance is electronlike
or holelike, which is impossible to do based on the figure
of merit. Therefore, we prefer to present the results for the
Seebeck coefficient S and the Lorentz number L separately.

B. Finite temperature difference

Following the discussion of linear response results, we
investigate the effect of a finite temperature difference between

-12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12
ω

0.00

0.00

0.00

0.01

0.01

εc=0
εc=-0.05
εc=-0.25
εc=-0.5

FIG. 8. Transmission function for U = 8 and different values of
εc. Other parameters as in Fig. 3.
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FIG. 9. Current density J as a function of filling n for Tl = 0.9,
Tr = 0.7, and different values of U . The other parameters are as
before tl = tr = 2, vl = vr = 1, and (� = 0). All calculations are
performed with Nb = 4, except for U = 8 we have also used Nb = 6
to test convergence.

the leads. We start out with zero bias voltage (� = 0),
where the nonequilibrium situation is driven merely by the
temperature difference (�T > 0). To emphasize the effect of
�T on the the behavior of the system, in our calculations
the large temperature difference. Therefore, the temperature
values in the leads are Tl = 0.9 and Tr = 0.7, respectively. It
should be stressed that the average temperature is much higher
(nonphysical) than the one we used in the linear response
calculations, which was T = 0.025. To obtain more smooth
results we consider the hopping into and out of the central
region is now vl = vr = 1 instead of 0.25, which we used in
the linear regime. In Fig. 9 we present the current density J

as a function of the filling n for different Hubbard interactions
U . Due to particle-hole symmetry J (n) = −J (2 − n).

Again, in the noninteracting case, U = 0, the self-energy
is zero and all expressions are analytically available. In this
case, the current is positive above the half-filling (n > 1) and
negative in the opposite case. We find that the current has a bell
shape n dependence, with a maximum at n � 1.375, which
corresponds to an on-site energy εc � −1.3. The direction
of the current can be explained by the two factors �f :=
fl(ω) − fr (ω), which is an antisymmetric function about
ω = μ (positive above and negative below μ) and T (ω) in
Eq. (12). Above half-filling (n > 1), the transmission function
T (ω) has negative slope at the chemical potential (see, e.g.,
Fig. 3 for εc < 0) and therefore the integral

∫
�f (ω)T (ω)dω

is dominated by the negative part of the integrand. Or in more
physical terms: electrons move from the cold right lead to the
warm left lead, which can also be described by holes moving
from the warm left lead to the cold right lead and J > 0.
Below half-filling, the opposite is the case. The slope of T (ω)
at the chemical is positive and, therefore, the current integral
is dominated by the positive parts, which can be described by
electrons moving from the warm left lead to the cold right lead
and J < 0.

Next we turn to the interacting case. For U = 8, we have
first tested the convergence of our numerical scheme with
respect to the number of bath sites in our impurity solver.
In Fig. 9 the corresponding results are depicted for Nb = 4

0 0.01 0.02 0.03 0.04 0.05
Φ

-1e-05

0e+00

1e-05

P

-2e-03

-1e-03

0e+00

1e-03

2e-03

J

n≈1.028
n≈1.060
n≈1.094
n≈1.138

FIG. 10. Current density J (upper panel) and power P (lower
panel) as a function of the bias voltage � for U = 8 and different
filling n � 1.028, 1.060, 1.094, 1.138. Other parameters are the same
as in Fig. 9. Calculations are performed with Nb = 6. The lines in the
upper panel are obtained by a straight line fit and the solid lines in
the lower panel then follow from P = J�.

and Nb = 6. We find that the resulting curves can hardly
be distinguished. Therefore, we restrict all further results to
Nb = 4.

For the weak to intermediate interactions (U � 5.5), as
might be expected, the behavior of the current J as a
function of the on-site energy εc is qualitatively similar to
the noninteracting case.

The impact of U is a shift of the current maximum to
higher εc values, or rather higher fillings, and the value of the
maximum decreases slightly. This behavior can qualitatively
be explained by our previous findings in the linear response
case. Accordingly the expression for the current, driven by
the temperature difference, is J ∝ σS. Taking into account
the much higher average temperature in the present case, the
bell shaped structure, the shift of the maximum to higher εc

values, and the reduction of the maximum, can be inferred
from Figs. 5 and 6. The linear response expression would
predict, due to the features of S, that for stronger interaction
the current is negative for εc below a certain threshold ε�

c and
positive above. This is indeed the result, found in the full
nonequilibrium many-body calculation, depicted in Fig. 9.
We obtain also that for strong coupling, the absolute value
of the current increases with increasing interaction strength.
In the vicinity of half-filling (1 < n � 1.05) the current is
larger as compared to the noninteracting system with the
same filling. With further increase of the filling n, correlation
effects become less relevant, therefore the current decreases
and changes sign. The change of sign of the current takes place
for the higher fillings with increasing the interaction. Finally,
for even higher fillings, close to the full filling (n � 1.6),
interaction plays even less important role in the behavior of the
system and correspondingly the current is nearly independent
from it.

Finally, we consider the case, when in addition to the
finite temperature difference mentioned above also a finite
bias voltage � is applied, and investigate the current-voltage
characteristics. In this case Eq. (12) is not valid anymore,
therefore we used the more general Meir-Wingreen formula
[35,53,60–62]. In the upper panel of Fig. 10 the current density
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is plotted versus applied voltage for different fillings, which
are tuned by εc. The fillings are chosen such that the current
without bias voltage is negative. We find a linear increase,
which agrees with the linear response result, obtained by
Eq. (19).

From the current-voltage curve, we can directly com-
pute the power P = J�. Obviously it is negative for
0 < � < �0(εc,U ) [see Fig. 10 (lower panel)], which means
that energy conversion from the system takes place. The maxi-
mum efficiency of the device is reached for that bias voltage for
which the absolute value of the power P reaches its maximum.
One can readily see that this is the case for � � 1

2�0(εc,U ).
The corresponding power is P � 1

2J0(εc,U )�0(εc,U ). Our
calculations have shown that for U � 5.5 the maximum
value of |J0(εc,U )| as well as �0(εc,U ) increases with
increasing interaction and the optimal filling varies between
1.04 < n < 1.08. So, similar to what we have found in the
linear response case, the efficiency of the thermoelectric device
can be increased in strongly correlated materials close to
half-filling.

IV. CONCLUSIONS

In this work we have investigated linear response and
steady state properties of a device, consisting of a corre-
lated monolayer attached to two metallic leads. In the full
many-body nonequilibrium calculation the nonequilibrium
properties were driven by a temperature difference in the leads
and a bias voltage. The key quantity, as far as the thermoelectric
efficiency is concerned, is the thermoelectric figure of merit,
which is proportional to the square of the Seebeck coefficient
and inverse proportional to the Lorenz number. As the latter
is very well described by the Wiedemann-Franz law, the
efficiency is governed solely by the Seebeck coefficient. We
have given some general arguments that a large Seebeck
number requires sharp structures in the transmission function,
which indeed occurred for strong interaction strength U . We
have shown that the efficiency of the thermoelectric device can
furthermore be increased by increasing the overall temperature
and/or decreasing the coupling strength between device and
leads. But more importantly, we have demonstrated, both in
the linear response regime and beyond, that the efficiency of
the device can be increased by strong correlations close to
half-filling.

ACKNOWLEDGMENTS

This work was supported by the Austrian Science Fund
(FWF): P26508, as well as SFB-ViCoM Project No. F04103,
and NaWi Graz. The calculations were partly performed on
the D-Cluster Graz and on the VSC-3 cluster Vienna.

APPENDIX: GENERALIZATION OF THE
MEIR-WINGREEN FORMULA FOR A LAYERED SYSTEM

Here we generalize the Meir-Wingreen formula to the case
of a layered system and derive Eq. (12).

We start out from the expression [37,66] for the current from
layer z to layer z + 1, for which the hopping matrix element

in the second term of Eq. (3) is tz,z+1,

I = etz,z+1

h̄

∫
(dk||)2dω

(2π )3

{
GK

z+1,z − GK
z,z+1

}

= 2etz,z+1

h̄

∫
(dk||)2dω

(2π )3
ReGK

z+1,z

= −2etz,z+1

h̄

∫
(dk||)2dω

(2π )3
ReGK

z,z+1. (A1)

We have exploited the fact that the Keldish Green’s function
GK is anti-Hermitian [GK

z+1,z = −(GK
z,z+1)∗]. Due to the

conserved current the results are independent of z. Then we
find for the current Ir/l , which flows from the right/ left lead
into the central layer, the expression

Ir/l = 2evr/l

h̄

∫
(dk||)2dω

(2π )3
ReGK

±1,0. (A2)

Next we will express the off-diagonal elements GK
±1,0 by

diagonal elements of suitable Green’s functions.
Since the first index of the Green’s function (z = ±1)

belongs to sites of the left or right lead where there is no
Hubbard interaction, the equation of motion [67] simply yields

GK
∓1,0 = −vl/r

(
GR

0,0 gK
l/r + GK

0,0 gA
l/r

)
,

where we have used that g
γ

∓1,∓1 = g
γ

l/r is the surface Green’s
function of the isolated left/right lead. Based on the general
property of Green’s functions GA = (GR)† and on definition
in Eq. (16) we find

vl/rReGK
∓1,0 = −1

2
v2

l/r

[(
GR

c − GA
c

)
gK

l/r − GK
c

(
gR

l/r − gA
l/r

)]

= −1

2
v2

l/r

[(
GR

c − GA
c

)
2i(1 − 2fl/r )ImgR

l/r

−GK
c 2iImgR

l/r

]

= − i

2

[
2
(
GR

c − GA
c

)
fl/r+GK

c − (
GR

c −GA
c

)]
γl/r

= −i
[(

GR
c − GA

c

)
fl/r + G<

c

]
γl/r ,

where we have introduced the lesser Green’s function G<, for
which the general relation G< = GK

c − (GR
c − GA

c ) applies.
Here fl/r is Fermi functions for the left and right lead,
respectively. Inserting the above expressions for GK

∓1,0 into
the Meir-Wingreen formula for the current Il/r [Eq. (A2)] we
obtain

Il/r = ie

2h̄

∫
(dk||)2dω

(2π )3
γl/r

[
G<

c + fl/r

(
GR

c − GA
c

)]
.

Due to the current conservation we have I = Il = −Ir and for
arbitrary x we can also express the current as I = xIl − (1 −
x)Ir . Following the restricting assumption of Jauho [60] that

115104-9



TITVINIDZE, DORDA, VON DER LINDEN, AND ARRIGONI PHYSICAL REVIEW B 96, 115104 (2017)

γl = λ′γr , we obtain

I = ie

2h̄

∫
(dk||)2dω

(2π )3
γr

{[
λ′x − (1 − x)

]
G<

c

+[
λ′xfl − (1 − x)fr

](
GR

c − GA
c

)}
.

Now if we fix the arbitrary parameter by x = 1/(1 + λ′), so
that the term containing G< vanishes, and taking into account

the relation GR
c − GA

c = −2iA, we obtain

I = e

h̄

∫
(dk||)2dω

(2π )3
(fl − fr )

2πγl(ω,k⊥)γr (ω,k⊥)

γl(ω,k⊥) + γr (ω,k⊥)
A.

In the units, used in this paper, this is nothing else but Eq. (12)
along with Eq. (14), if the k|| integration is replaced by the
energy integration.
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