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We examine energy relaxation of nonequilibrium quasiparticles in “dirty” superconductors with the electron
mean free path much shorter than the superconducting coherence length. Relaxation of low-energy nonequilibrium
quasiparticles is dominated by phonon emission. We derive the corresponding collision integral and find the
quasiparticle relaxation rate. The latter is sensitive to the breaking of time reversal symmetry (TRS) by a magnetic
field (or magnetic impurities). As a concrete application of the developed theory, we address quasiparticle trapping
by a vortex and a current-biased constriction. We show that trapping of hot quasiparticles may predominantly
occur at distances from the vortex core, or the constriction, significantly exceeding the superconducting coherence
length.
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I. INTRODUCTION

Current interest in the dynamics of Bogoliubov quasi-
particles in superconductors is motivated in no small part
by the efforts aimed at building a quantum computer. The
actively explored “cavity QED” architecture relies on quantum
coherence of qubits built of conventional superconductors [1].
Realization of the topological quantum computing requires
coherence of devices made of proximitized semiconductor
quantum wires brought into the p-wave superconducting state
by applied magnetic field [2]. In any of the concepts, the pres-
ence of quasiparticles is detrimental to the coherence. The
Q factors of the parts comprising the cavity-QED qubit are
reduced by quasiparticles. They also are able to “poison” the
Majorana states, which are central for the topological quantum
computing.

The development of the qubit technology has advanced
also the ability to monitor the quasiparticles population
and dynamics. Time-resolved measurements performed with
the transmon [3] and fluxonium qubits [4,5] allowed the
experimentalists to measure the rates of quasiparticle trapping
by a single vortex in a superconducting strip, to identify minute
dissipative currents of quasiparticles across a Josephson
junction (thus resolving a longstanding “cos ϕ problem” [6]),
and to monitor the spontaneous temporal variations of the
quasiparticle density.

Measurements [4,5] did confirm that at low temperatures
(less than ∼0.1Tc of Al) the quasiparticle density, albeit
low, far exceeds the equilibrium value. Furthermore, statistics
of temporal variations of the density substantially differs
from thermal noise. Sources of excess quasiparticles remain
unknown, and planting quasiparticle traps [7–9] remains a
viable way of improving the device performance. Trap is a
spatial region with a suppressed value of superconducting
gap. Suppression may be achieved, e.g., through the proximity
effect, or through local violation of time-reversal invariance (as
it naturally happens in and around the core of a vortex). Energy
loss in the trap (mostly due to phonon emission) prevents a
quasiparticle from exiting into the region with the nominal
gap value.

The importance of the quasiparticle energy relaxation in
device applications, and the newly acquired ability of precise
measurements [3–5] of the quasiparticles dynamics, prompts
us to revisit the kinetic theory of quasiparticles interacting
with phonons in a disordered superconductor. We derive the
corresponding collision integrals and relaxation rates which
then may be used in sophisticated phenomenological models
of quasiparticle diffusion and trapping [9,10].

In considering the electron-phonon interaction in disor-
dered metals, we follow the seminal works of Tsuneto [11] and
Schmid [12], who established the correct form of the electron-
phonon interaction in the limit of short electron mean free path,
ql � 1 (here q is the phonon wave vector). We incorporate
the electron-phonon interaction in the general framework of
the Keldysh nonlinear sigma model. It allows us to consider
on equal footing normal metals and superconductors, and it
becomes especially convenient for describing the effect of
breaking the time-reversal symmetry (TRS).

The kernel of the collision integral for electrons in normal
metal which we find in the unified technique agrees with the
earlier results [13,14] obtained diagrammatically; this kernel
depends only on the energy transferred in the collision to a
phonon. Considering the Bogoliubov quasiparticles, we are
able to cast the result for the collision integral in the conven-
tional terms of the quasiparticle energy distribution functions.
In the presence of TRS, the corresponding kernel factorizes
on two terms: the normal-state kernel and a combination of
the Bogoliubov transformation parameters. Factorization takes
place also if TRS is broken; in that case, the second factor is
determined by the proper solution of the Usadel equation. In
either of the two cases, the second factor depends separately
on the initial and final energy of a quasiparticle.

The additional (compared to the normal state) energy de-
pendence of the kernel affects the dependence of the quasiparti-
cle relaxation rate on its energy. These rates, in turn, determine
the effectiveness of trapping. As an example of application of
the developed theory, we consider trapping of a quasiparticle
by an isolated vortex and a current-biased constriction. In both
cases there is a pattern of supercurrents, slowly decaying as
a function of distance, ∼r−1, from the vortex core, or ∼r1−d

from a constriction with d-dimensional superconducting leads.
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These supercurrents lead to a weak breaking of TRS and
thus suppression of the energy gap and modification of the
energy dependence of the density of states (DOS). Such a
suppression allows quasiparticles to be trapped already very
far from the vortex core or the constriction. For low enough
phonon temperature and relatively “hot” quasiparticles this
peripheral shallow trapping proves to be more efficient than the
deep trapping by the core of the vortex, or the constriction. We
discuss possible relation of the theory to experiments [3,15].

The paper is organized as follows: In Sec. II we review the
theory of electron-phonon interactions in disordered normal
metals. We derive the corresponding Keldysh nonlinear sigma
model and use it to obtain the electron-phonon collision inte-
gral in the dirty limit. In Sec. III we generalize the sigma model
on superconductors, including those with broken TRS, and in
Sec. IV we derive the kinetic equation for the quasiparticle
distribution. Section V is devoted to applications of the theory
to trapping by vortex and current-biased constriction as well
as discussion of the existing experiments. We summarize
with a brief discussion in Sec. VI. Two appendices present
an alternative derivation of the sigma model and summarize
results for ultrasound attenuation.

II. ELECTRON-PHONON INTERACTIONS
IN DISORDERED NORMAL METALS

A. Interaction vertex

The theory of electron-phonon interactions in normal disor-
dered metals has had a long and, at times, controversial history.
Early considerations were based on the Fröhlich Hamiltonian
[16], which assumes screened Coulomb interactions between
electron density and induced lattice charge, eρ0 div u, created
by phonon displacement u(r,t). Here eρ0 is the uniform lattice
charge density. Due to global neutrality it is exactly equal to
the electron density:

ρ0 =
∫ pF ddp

(2π )d
=
∫ εF

0
dε ν(ε) = vF pF ν

d
, (1)

where normal metal DOS is ν(ε) = (ε/εF )d/2−1ν and ν =
ν(εF ). While perfectly legitimate in the clean case, the Fröhlich
Hamiltonian misses an important piece of the physics in the
“dirty” limit ql � 1, where q is phonon wave number and l is
electron elastic mean free path.

As was first realized by Pippard [17], phonons not only
deform the lattice but also displace impurities, transforming
formerly static impurity potential Uimp(r) into the dynamic
one, Uimp(r) → Uimp(r + u(r,t)). Colloquially, this leads to
the electron density being dragged along with the lattice
displacement and providing a perfect compensation for the
induced lattice charge eρ0 div u. In other words, the displaced
impurity potential provides fast elastic relaxation of the elec-
tron distribution around the Fermi surface locally deformed
by phonons. These ideas were put on a quantitative basis by
Tsuneto [11] and Schmid [12], who showed that in the limit
ql � 1 the Fröhlich Hamiltonian should be substituted by
another effective electron-phonon interaction vertex:

iSe:ph =
∫

dt
∑
p,q

ψ̄

(
p + q

2
,t

)
�μν(p)iqμuν

q,tψ

(
p − q

2
,t

)
,

(2)

where ψ̄ and ψ are electrons creation and annihilation
operators and �μν(p) is the traceless tensor

�μν(p) = pμvν − pF vF

d
δμν. (3)

Notice that, in view of Eq. (1), the last term here represents the
Fröhlich coupling −ν−1(ρ0div u)(ψ̄ψ). Upon averaging over
the Fermi surface it is exactly compensated by the first term in
Eq. (3), i.e.,

∫
d
p�μν(p) = 0. This property is a result of the

perfect screening of the bare Coulomb interactions. The latter
is a good approximation as long as phonon frequencies are
much smaller than electronic plasma frequency. The remaining
coupling is of a quadrupole nature, as seen from Eqs. (2)
and (3). This leads to a significantly weaker electron-phonon
coupling than the one inferred from the Fröhlich term [18]. A
number of subsequent studies [13,14,19] reaffirmed validity
of the Schmid coupling (2), (3) from various perspectives.

The most straightforward way to derive Eqs. (2), (3)
[11,20] is by performing a unitary transformation, which
yields a Hamiltonian in the co-moving reference frame, where
the impurity potential is static. We shall not repeat this
derivation here. Instead, we accept Eqs. (2), (3) as a starting
point and derive an effective nonlinear sigma model which
incorporates electron-phonon interaction in the Schmid form.
In Appendix A we provide an alternative derivation of the
sigma model, which proceeds in the laboratory reference frame
and deals with a dynamic random potential Uimp(r + u(r,t))
and strong Coulomb interactions between electron density and
induced lattice charges. We show that it brings the same
effective sigma model, justifying the use of the effective
electron-phonon vertex in the Schmid form (2), (3).

B. Nonlinear sigma model

We now perform the standard [21,22] averaging over the
static disorder and introduce the nonlocal field Qt,t ′ (r) to
split the emerging four-fermion term. The resulting action,
including electron-phonon coupling, Eqs. (2), (3), is now
quadratic in the fermionic fields which may be integrated out
in the usual way, leading to

iS = −πν

4τ
Tr{Q2} + Tr log

{
G−1

0 + i

2τ
Q + �μν∂

μuν

}
,

(4)

where the inverse bare electron Green function is given by
G−1

0 = i∂t + ∇2/2m + μ ≈ i∂t + ivμ∂μ.
From this point on, one proceeds along the standard root

of deriving Keldysh nonlinear sigma model [21,22]. To this
end one passes to the Keldysh 2 × 2 structure, by splitting the
contour on forward and backward branches and performing
Keldysh rotation. Upon this procedure the fields acquire
the matrix structure, e.g., u → û = uαγ̂ α , where α = cl,q

denotes classical and quantum Keldysh components and γ̂ cl =
σ̂ 0,γ̂ q = σ̂ 1 are the two vertex matrices in the Keldysh space.

One then realizes that the soft diffusive modes of the
action are described by the manifold Q̂2 = 1 and therefore
one can write Q̂ = R̂−1�̂R̂, where �̂ is the Green function in
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coinciding spatial points,

�̂ = i

πν

∑
p

Ĝ0(p,ε) =
(

1 2Fε

0 −1

)
, (5)

and Fε is a distribution function. Rotation matrices, R̂−1,
belong to an appropriate symmetry group. One then introduces

dressed Green function Ĝ = (Ĝ−1
0 + i

2τ
�̂)

−1
and rewrites the

action (4) as

iS = Tr log
{
1+ĜR̂

[
Ĝ−1

0 ,R̂−1
]+ Ĝ R̂�μν ∂μûν R̂−1

}
. (6)

Finally, one expands the logarithm here to the lowest nonva-
nishing orders. This way one obtains the standard nonlinear
sigma-model action (first neglecting the electron-phonon �

term):

iSQ̂ = −πν

4
Tr{D (∂rQ̂)2 − 4∂t Q̂}, (7)

where D = v2
F τ/d is the diffusion constant and d is the

dimensionality of the electron system. We focus now on the
phonon-induced term. It is easy to see that the first order
in � term vanishes due to the fact that the integral over
the Fermi surface

∫
d
p�μν(p) = 0. It is this point, where

the Schmid coupling, Eqs. (2), (3), is qualitatively different
from the Frölich one (the latter would bring the first order
Tr{(ρ0div û)Q̂} term). Going to the second order in �, one
finds:

iSQ̂,u = − 1
2 Tr{Ĝ R̂�μν ∂μûν R̂−1Ĝ R̂�ηλ ∂ηûλ R̂−1}.

(8)

We use now

Ĝp = 1
2 GR

p (1 + �̂) + 1
2 GA

p (1 − �̂), (9)

along with

∑
p

pμvνG
R
p pηvλG

A
p = 2πντp2

F v2
F

d(d + 2)
(δμνδηλ

+ δμηδνλ + δμλδνη) (10)

to find

iSQ̂,u = πνD p2
F

4
Tr{[Q̂ ,∂μûν][Q̂ ,∂ηûλ]} ϒμν,ηλ, (11)

where

ϒμν,ηλ = 1

d + 2

[
δμηδνλ + δμλδνη − 2

d
δμνδηλ

]
. (12)

The local vertex (11) is the leading term describing interac-
tion of phonons with the electronic degrees of freedom in
disordered metals, in the ql � 1 limit. The naive deformation
potential term S ∝ ρ0Tr{Q̂ div û} is absent due to the perfect
screening manifested in the traceless form of the electron-
phonon vertex (3). See also Appendix A for more discussion of
this issue. The second order cross term between the two terms
in the logarithm in Eq. (6) leads to S ∝ ρ0τDTr{∇2Q̂ div û}. It
is of the order (ql) � 1 of the leading term (11) and thus should
not be kept within the accuracy of the adopted approximations.

The effective electron-phonon sigma model, Eqs. (7) and
(11), should be supplemented with the standard phonon action.

In the Keldysh technique it is given by

iSu = i
ρm

2

∑
q,ω,j

ūμ,α
q,ω

[
ω2 − (

ω(j )
q

)2]
σ̂ 1

αβη(j )
μν (q) uν,β

q,ω, (13)

where ρm is the material mass density, j = l,t labels longitu-
dinal and transversal polarizations encoded by the projectors

η(l)
μν(q) = qμqν

q2
; η(t)

μν(q) = δμν − qμqν

q2
, (14)

and ω
(j )
q = vjq is the acoustic phonons dispersion with the

speed of sound vl,t . Indexes α,β = cl,q and Pauli matrix σ̂ 1

act in the 2 × 2 Keldysh space. We will need an imaginary part
of the corresponding retarded propagator:

Im UR
νμ(q,ω) = Re

〈
uν,cl

q,ω ūμ,q
q,ω

〉
=

∑
j

η
(j )
νμ(q)

ρm

π

2ω
(j )
q

× [
δ
(
ω −ω(j )

q

)− δ
(
ω + ω(j )

q

)]
. (15)

The corresponding Keldysh component is given by
the fluctuation-dissipation relation: UK

νμ = Bω(UR
νμ − UA

νμ),
where Bω = coth(ω/2T ) is the bosonic distribution function.

The effective action, Eqs. (7), (11), and (13) with the
vertices defined in Eqs. (12) and (14) serves as the starting
point for investigating the kinetics of electrons and phonons.
We relegate the evaluation of the ultrasonic attenuation to
Appendix B, where we reaffirm the known results
[12,19,20,23] obtained by different techniques and proceed
to study the electron kinetics.

C. Electron-phonon collision integral

To derive the collision integral for electron-phonon interac-
tions one first integrates over the phonon displacements u(r,t)
with the help of Eq. (15) to obtain the collision action from
Eq. (11):

Scoll = πνDp2
F

4
Tr{Q̂ε−ω,ε′−ωγ̂ αQ̂ε′,ε γ̂

β} U
αβ

νλ qμqηϒμν,ηλ,

(16)

where U
αβ

νλ = U
αβ

νλ (q,ω) and summation over ε,ε′,ω,q are
understood. One now looks for the stationary point equation for
the action SQ + Scoll. Its Keldysh (1,2) component constitutes
the kinetic equation [21,22] for the distribution function Fε in
Eq. (5),

∂tFε − ∇r[D∇rFε] = −2Icoll[Fε(r,t)], (17)

where the collision integral is given by

Icoll[Fε(r,t)] = − 1

2πν

〈(
δiScoll

δQ̂εε(r)

)(1,2)
〉

Q̂

. (18)

The variational derivative here ought to be restricted to the
sigma-model target space, Q̂2 = 1. A way to ensure this is to
use parametrization Q̂ → e−Ŵ/2Q̂eŴ/2 ≈ Q̂ + 1

2 [Q̂,Ŵ ] and
expand the action (16) to the linear order in Ŵεε . Here Ŵ ’s
are infinitesimal generators of the symmetry transformations.
Because of the local nature of the vertex in Eq. (16), the Q̂
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integration may be substituted by the stationary point: Q̂ → �̂.
This way one obtains:

Icoll[Fε] = i
Dp2

F

8

∑
q,ε′

[γ̂ β�̂ε′ γ̂ α�̂ε − �̂εγ̂
β�̂ε′ γ̂ α](1,2)

×U
αβ

νλ (q,ε − ε′)qμqηϒμν,ηλ = 1

4

∑
ε′

Mε,ε′ I[F ];

I[F ] = −1 + FεFε′ + Bε−ε′[Fε − Fε′]. (19)

The phonon matrix element in the collision integral (19) in
normal metal is found to depend only on the energy difference,
Mε,ε′ = MN

ε−ε′ , where

MN
ω = 2Dp2

F

∑
q

Im
[
UR

νλ(q,ω)
]
qμqηϒμν,ηλ =M (l)

ω + M (t)
ω ,

(20)

and the superscripts j = l,t stand for longitudinal and trans-
verse modes, respectively. Expressing the fermion and boson
distributions in terms of the respective occupation numbers,
Fε = 1 − 2fε and Bω = 1 + 2Nω, we may bring Icoll[Fε] to
the standard “in minus out” form,

Icoll[fε] =
∫

dε′

2π
MN

ω [Nωfε′(1 − fε) − (1 + Nω)fε(1 − fε′)] ,

(21)

where ω = ε − ε′ and Icoll[fε] = 0 in equilibrium.
Employing Eqs. (12), (15), and (20) one finds:

M (j )
ω = bjπDp2

F

ρm

∑
q

q2

ω
(j )
q

δ
(
ω − ω(j )

q

)

= bjπ
d

(2π )d
Dp2

F ωd

ρmvd+2
j

, (22)

where 
d = 2πd/2/�(d/2) is the area of Sd−1 unit sphere and
d is the effective phonon dimensionality. The coefficients are
given bt = (d − 1)/(d + 2); bl = 2bt/d (in these instances d

is the dimensionality of the electron system).
In fact, Eqs. (20), (22) should include a dressed phonon

propagator rather than the bare one. Such dressing leads to:
(i) a renormalization of sound velocities, (ii) a finite lifetime
of the phonon modes given by the ultrasound attenuation
coefficient, reviewed in Appendix B. The former effect is
accommodated by using the correct (i.e., renormalized) values
of vl and vt in the phonon propagator. The latter leads to the
broadening of the delta function in Eq. (22) into the Lorentzian
of the width γq (see Appendix B), which has a negligible effect
as long as γq � ωq.

These results for the normal metal were derived in
Refs. [12–14] using diagrammatic techniques. Here we re-
produced them through the sigma-model technique, which is
much more suitable for treating the superconducting case,
considered below. We notice that M (l)

ω of Eq. (22) is factor
(vl/vF )2 � 1 smaller than that of Ref. [18] for ω < v2

l /D.
The latter was obtained with the Fröhlich coupling (i.e.,
disregarding impurities shifting with the lattice deforma-
tions). The two approaches give comparable results for the
longitudinal phonons at ω ≈ vl/ l where they both match

with the clean limit expectation M (l)
ω ∝ vF p2

F ωd−1/(ρmvd+1
l ).

The transversal phonons give the dominant contribution to
the collision integral in the disordered limit ω < vt/ l, since
typically vt < vl . However, in the opposite clean limit, the
transversal matrix element is M (t)

ω ∝ Dp2
F ω/(ρmv3

t l
2) [14] and

is less important than the longitudinal one.
For comparison, the electron-electron collision integral may

be written in the form of Eq. (21), with the bosonic occupation
number Nω = ω−1

∫
dε′′fε′′(1 − fε′′−ω) and a different matrix

element given by: MN
ω → Me:e

ω ∝ ωd/2−1D−d/2/ν [24]. As
a result the ratio of electron-electron and phonon matrix
elements in normal metals is

Me:e
ω

MN
ω

∝ M

m

(
v2

j

Dω

)d/2+1

∝
(m

M

)d/2
(

1

ωτ

)d/2+1

, (23)

where M is the ion mass and we used that ρm ∝ Mνp2
F /m

and v2
j ∝ v2

F m/M . Therefore electron-electron relaxation
in normal metals dominates for the energy transfer ω <

τ−1(m/M)d/(d+2).

III. DISORDERED SUPERCONDUCTORS

A. Sigma model

The nonlinear sigma model is readily extended to disor-
dered superconductors [22,25]. It is written in terms of the local
pair correlation function Q̌t,t ′ (r) ∝ 〈�(r,t)�†(r,t ′)〉, where
�(r,t) is the four component spinor in the Nambu and Keldysh
subspaces. As a result Q̌t,t ′ (r) is a 4 × 4 matrix, as well as the
matrix in the time t,t ′ space. It satisfies the nonlinear condition
Q̌2 = 1. Its dynamics is governed by the action:

iSQ̌:�̌ = −πν

8
Tr{D (∂rQ̌)2 − 4Ť3∂t Q̌ + 4i�̌Q̌}, (24)

where �̌(r,t) = �(r,t)γ cl ⊗ τ̂+ − �(r,t)γ cl ⊗ τ̂− is the or-
der parameter matrix. To discuss broken TRS later on, we have
also included a vector potential through the long derivative:

∂rQ̌ = ∇rQ̌ + i[AŤ3,Q̌]. (25)

Hereafter τ̂ 0,1,2,3 are Pauli matrices in the Nambu space and
Ť3 = γ̂ cl ⊗ τ̂ 3. Here the operation Tr involves trace in 4 × 4
Nambu-Keldysh space, as well as trace in time (or equivalently
energy) space and the spatial integration.

The electron-phonon interactions are given by Eq. (11)
(with factor 1/2 to compensate for the Nambu doubling
of the degrees of freedom), where the displacement field
ǔ is proportional to τ̂ 0 matrix in the Nambu space. The
corresponding collision action, obtained by integrating out
the phonon degrees of freedom, is given by Eq. (16) (again
with factor 1/2). Its variation over Q̌ leads to the collision
integral in the form of Eq. (19). The major difference of the
superconducting case is that the �̌ε matrices in Eq. (19) are
rotated in Nambu space, as explained below.

Taking variation of the effective action (24), (11) with
respect to the Q̌ as explained after Eq. (18), one obtains the
saddle point Usadel equation [22,26]

{Ť3∂t ,Q̌}+ − ∂̂r(DQ̌ ∂̂rQ̌) − i[�̌,Q̌] = 1

πν

δScoll

δQ̌
. (26)

104510-4



QUASIPARTICLE RELAXATION IN SUPERCONDUCTING . . . PHYSICAL REVIEW B 96, 104510 (2017)

We look for a solution of this equation Q̌ = �̌ in the standard
form respecting causality:

�̌ =
(

�̂R �̂K

0 �̂A

)
K

, (27)

with retarded, advanced, and Keldysh components being
matrices in the Nambu subspace. The nonlinear constraint
�̌2 = 1 is resolved as

�̂R�̂R = �̂A�̂A = 1̂, �̂K = �̂RF̂ − F̂ �̂A , (28)

where F̂ is a distribution matrix in the Nambu space, which
may be written as [27] F̂ = FL

εε′(r)τ̂ 0 + FT
εε′(r)τ̂ 3. Here FL,T

are longitudinal (odd with respect to energy permutation) and
transverse (even in energy permutation) components of the
quasiparticle distribution function. These two are responsible
for the transport of energy and charge correspondingly. [The
conventional distribution functions FL,T

ε (r,t)) are obtained by
Wigner transformation with (ε + ε′)/2 → ε and ε − ε′ → t .]
Since the transversal component usually decays fast to zero,
we shall primarily focus only on the long-lived longitudinal
component of the nonequilibrium quasiparticle distribution
and often omit the superscript for brevity FL

ε (r,t) = Fε(r,t).
In thermal equilibrium FL

ε = tanh ε/2T , while FT
ε = 0.

The nonlinear constraints (�̂R(A))2 = 1̂, Eq. (28), may
be explicitly resolved in the Nambu space by the angular
parametrization [22,28]:

�̂R(r,ε)=
(

cosh ϑ sinh ϑ eiχ

− sinh ϑ e−iχ − cosh ϑ

)
N

= V̂ −1τ̂ 3V̂ ;

�̂A(r,ε)=
( − cosh ϑ − sinh ϑ eiχ

sinh ϑ e−iχ cosh ϑ

)
N

=−V̂
−1

τ̂ 3V̂ ,

(29)

where ϑ(r,ε) and χ (r,ε) are complex, coordinate-, and energy-
dependent angles. Here

V̂ε(r) = e
ϑ
2 τ̂ 1

e−i
χ

2 τ̂ 3
; V̂ε(r) = e

ϑ
2 τ̂ 1

e−i
χ

2 τ̂ 3
. (30)

Notice that in the presence of the phase χ the matrix V̂ε is not a
complex conjugate of V̂ε . The full saddle point �̌ matrix (27),
(28) then acquires the form

�̌(r,ε) = Ǔ−1
ε (r) τ̂ 3 ⊗ σ̂ 3 Ǔε(r), (31)

where σ̂ 3 is the Keldysh space matrix and

Ǔ =
(

V̂ V̂ F̂

0 −V̂

)
K

; Ǔ−1 =
⎛
⎝V̂ −1 F̂ V̂

−1

0 −V̂
−1

⎞
⎠

K

. (32)

The expectation value of the order parameter satisfies the
self-consistency equation, obtained by variation of SQ̌,�̌ −
iν
2λ

Tr{�̌σ̂ 1 ⊗ τ̂ 0�̌} over the quantum component �q . This
leads to (we assume FT = 0):

� = λ

4

∫ ωD

−ωD

dε FL
ε [sinh ϑ + sinh ϑ], (33)

where λ is the BCS interaction constant and ωD is the Debye
frequency cutoff.

In the absence of the vector potential, i.e., with unbroken
TRS, substituting Eqs. (29) into the retarded and advanced

components of the Usadel equation (26) one finds for the
Nambu angle:

ε = � coth ϑ = � coth ϑ̄ . (34)

For |ε| > � one thus finds that ϑ(ε) is real and

cosh ϑ = ε

ξε

; sinh ϑ = �

ξε

; ξε ≡ sgn(ε)
√

ε2 − �2.

(35)

Within the energy gap, |ε| < �, the angle is ϑ = −iπ/2 + θ ,
with real θ . For all energies the following symmetry relation
holds ϑ(−ε) = −ϑ̄(ε). The local DOS is expressed through
the Nambu angle as

ν(ε) = ν

2
Re tr{τ̂ 3�̂R} = νRe cosh ϑ(ε) = ν

ε

ξε

�(|ε| − �),

(36)

where � is the step function.

B. Superconductors with broken TRS

In many cases of the practical interest the vector potential
(and hence the phase χ ) changes slowly on the scale of the
superconducting coherence length. In these cases one may
disregard the gradient terms in the action (24) and write it as:

iS
(0)
Q̌,�̌

= −πν

8
Tr

{
− γ

2
[Ť3,Q̌]2 + 4iεŤ3Q̌ + 4i�̌Q̌

}
,

(37)
where γ = 2DA2 is the energy scale associated with the local
breaking of TRS. For a vortex A = 1/(2r), where r is distance
from the core, and thus γ = 1

2�(ξ/r)2, where ξ = √
D/�

is the coherence length. For a thin film of width d < ξ in a
parallel magnetic field H‖ one finds γ = 1

6D(H‖d)2.
Taking retarded and advanced components of the Usadel

equation (26) without gradients [or equivalently, substituting
the saddle point ansatz (27)–(30) into the action (37) and taking
variation over the complex Nambu angles ϑ , ϑ̄], one finds the
saddle point condition:

ε = � coth ϑ − iγ cosh ϑ = � coth ϑ̄ + iγ cosh ϑ̄ . (38)

Its solution is depicted in Fig. 1 and admits an important
symmetry relation:

ϑ(−ε) = −ϑ̄(ε) . (39)

The local DOS is expressed through the Nambu angle as

ν(ε) = ν

4
tr{τ̂ 3�̂R − �̂Aτ̂ 3} = ν

2
[cosh ϑ(ε) + cosh ϑ̄(ε)];

(40)

it is shown in Fig. 2. Within the energy gap, |ε| < εg , DOS is
zero, i.e., Re[cosh ϑ] = 0 and thus the angle is ϑ = −iπ/2 +
θ , with real θ . This brings ε = � tanh θ − γ sinh θ . The right
hand side of the latter condition reaches maximum at cosh θ =
(�/γ )1/3. Substituting this back into Eq. (34) one finds for the
energy gap [29]

εg = (�2/3 − γ 2/3)3/2 ≈ �

(
1 − 3

2

(
γ

�

)2/3)
, (41)
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0.0 0.5 1.0 1.5 2.0

−1.5

−1.0

−0.5

0.0

Re

Im

FIG. 1. Complex plane of ϑ(ε) for γ /�0 =
0.01; 0.05; 0.2; 0.456; 0.49 from right to left. In the gapped
case (i.e., γ /�0 < 0.456) ϑ(0) = −iπ/2 and there is a cusp at
ε = εg; eventually ϑ(∞) → 0. Full dots indicate ε = �, notice
Imϑ(�) → −iπ/6 as γ → 0.

where the last approximate relation holds for γ � �. The gap
closes at γ = �. Immediately above the gap, ε � εg , DOS
takes the form:

ν(ε) = ν

√
2

3

(
�

γ

)2/3√
ε − εg

�
. (42)

At ε ≈ � it reaches its maximum value ν(�) ≈√
3

4 ν(4�/γ )1/3 and merges with the BCS result ν(ε) =
νε/

√
ε2 − �2 at ε − � ∝ �1/3γ 2/3, see Fig. 2.

At T = 0 the self-consistency relation (33) takes the form:

� = λ

2
Re
∫ ωD

0
dε sinh ϑ = λ

2
Re

∫
dϑ

dε

dϑ
sinh ϑ, (43)

where according to Eq. (34) dε/dϑ = −� sinh−2 ϑ −
iγ sinh ϑ and the last integral runs along the contour de-
picted in Fig. 1. Performing the elementary integration one

0.5 1.0 1.5 2.0
/ 0

0.5

1.0

1.5

2.0

2.5

3.0

( )/

FIG. 2. DOS as a function of energy for the same values of TRS
breaking parameter γ as in Fig 1.
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1.0

FIG. 3. Order parameter �/�0 (green) and gap energy εg/�0

(red) as functions of TRS breaking parameter γ /�0. The blue line is
the supercurrent density js(γ ) (in arbitrary units), given by Eq. (63).

finds [29]

ln
�0

�
=
{
πγ/(4�); γ � �,

g(γ /�); γ > �,
(44)

g(x) = ln(x +
√

x2 − 1) − 1

2x

√
x2 − 1 + x

2
arcsin x−1,

where �0 is the order parameter at γ = 0. Since g(x) →
ln(2x) at x → ∞, the self-consistency condition looses
a nontrivial solution at γ � �0/2. On the other hand,
the gap closes at γ = � = e−π/4�0 ≈ 0.456�0. There-
fore in the narrow range 0.456 < γ/�0 < 0.5 the or-
der parameter is finite, while where is no gap in
DOS, Fig. 3. This is the phenomenon of gapless
superconductivity.

For γ � � one finds from Eq. (44) � ≈ �0 − π
4 γ . The

linear in γ suppression of the order parameter may be also
found from Ginzburg-Landau equation for T � Tc. Notice
that this suppression of the order parameter is parametrically
weaker than suppression of the gap, Eq. (41). Therefore for the
weak breaking of TRS, γ � �0, one may drop the distinction
between � and �0.

IV. KINETICS OF QUASIPARTICLES

A. Kinetic equation

The kinetic equations are given by the (1, 2) Keldysh
component of the Usadel equation (26). Employing Wigner
representation and projecting onto τ̂ 0 and τ̂ 3 Nambu compo-
nents, one obtains equations for the longitudinal FL

ε (r,t) =
−FL

−ε(r,t) and the transversal FT
ε (r,t) = FT

−ε(r,t) distribution
functions:

ν(ε)

ν
∂tF

L
ε − ∇r

[
DL(ε)∇rF

L
ε

] = −2IL
coll, (45)

ν(ε)

ν
∂tF

T
ε − ∇r

[
DT (ε)∇rF

T
ε

]+ MT (ε)FT
ε = −2I T

coll,

(46)
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where local DOS is given by Eq. (36) and other parameters are
defined as [22,27,28]:

DL(ε) = D

4
tr{τ̂ 0 − Q̂RQ̂A} = D cosh2

(
ϑ − ϑ̄

2

)
, (47)

DT (ε) = D

4
tr{τ̂ 0 − τ̂ 3Q̂Rτ̂ 3Q̂A} = D cosh2

(
ϑ + ϑ̄

2

)
;

(48)

MT (ε) = 1

2
tr{Q̂R�̂ + �̂Q̂A} = i�

(
sinh ϑ − sinh ϑ̄

)
= 2γ cosh2

(
ϑ + ϑ̄

2

)
| sinh ϑ |2. (49)

The mass, MT (ε), exists only in the absence of TRS. It goes
to zero at large energy as MT → 2γ�2/ε2, but acquires a
large value MT (εg) = 2�4/3γ −1/3 near the gap. Such a mass
provides a rapid decay of the transversal component of the
distribution function to zero. We thus focus here only on the
slow longitudinal relaxation.

The corresponding collision integral is given by Eq. (19)
(with factor 1/2 to compensate for Nambu doubling of the
degrees of freedom), where one should use the Nambu-rotated
�ε matrices, Eq. (31). This yields, e.g.:

trN
{
τ̂ 0[γ̂ cl�̂ε′ γ̂ cl�̂ε − �̂εγ̂

cl�̂ε′ γ̂ cl](1,2)
K

}
= 2

(
FL

ε − FL
ε′
)

Re[cosh(ϑ − ϑ ′) + cosh(ϑ − ϑ̄ ′)], (50)

where ϑ = ϑ(ε) and ϑ ′ = ϑ(ε′). As a result, the kinetic
equation for the quasiparticles occupation number fε = (1 −
FL

ε )/2 acquires a form:

ν(ε)

ν
∂tfε −∇r[DL(ε)∇rfε]= IL

coll[fε],

IL
coll[fε]=

∫
dε′

2π
MS

ε,ε′[Nωfε′(1 − fε)−(1 + Nω)fε(1 − fε′)],

(51)

where the superconducting phonon matrix element is:

MS
ε,ε′ = 1

2
Re[cosh(ϑ − ϑ ′) + cosh(ϑ − ϑ̄ ′)]MN

ε−ε′

= ν(ε)

ν

ν(ε′)
ν

[1 − 4uεvεuε′vε′]MN
ε−ε′, (52)

where ω = ε − ε′, the normal state matrix element MN
ω is

given by Eqs. (20), (22) and DOS ν(ε) is given by Eqs. (36),
(42). Motivated by standard TRS notations, we introduced

2uεvε ≡ Re[sinh ϑ]

Re[cosh ϑ]
, (53)

which is only defined for |ε| > εg , see Fig. 4. Employing
Eqs. (34)–(42), one may show that

2uεvε ≈
{

�/|ε|; ε − � � �1/3γ 2/3;√
1 − (γ /�)2/3; |ε − �| � �1/3γ 2/3

.

(54)

Since ν(ε′) = 0 for |ε′| < εg , while [1 − 4uεvεuε′vε′] tends to
a constant, one finds MS

ε,ε′<εg
= 0: as expected the final energy

0.0 0.5 1.0 1.5 2.0
/ 00.0

0.2

0.4

0.6

0.8

1.0

2u v

FIG. 4. 2uεvε as a function of energy for the same values of TRS
breaking parameter γ as in Fig 1.

ε′ has to be outside the spectral gap. For TRS superconductors
these results appeared in Ref. [13].

The factor ν(ε)/ν on the right hand side of Eq. (52) is
canceled against the same on the left hand side of Eq. (51).
As a result, one finds for the “out” electron-phonon relaxation
rate:

1

τe:ph

=
∫

|ε′|>εg

dε′ν(ε′)
2πν

(1 + Nω)(1 − fε′)

× [1 − 4uεvεuε′vε′]MN
ω . (55)

The energy integral here may be further subdivided onto
positive ε′ > εg and negative ε′ < −εg regions, representing
the inelastic scattering and recombination processes corre-
spondingly:

1

τe:ph(ε)
= 1

τ sc
e:ph(ε)

+ 1

τ rec
e:ph(ε)

, (56)

where

1

τ sc
e:ph

=
∫ ∞

εg

dε′ν(ε′)
2πν

(1 + Nε−ε′)(1 − fε′)

× [1 − 4uεvεuε′vε′]MN
|ε−ε′|;

1

τ rec
e:ph

=
∫ ∞

εg

dε′ν(ε′)
2πν

(1 + Nε+ε′)fε′

× [1 − 4uεvεuε′vε′]MN
|ε+ε′|. (57)

To obtain recombination time we changed integration variable
ε′ → −ε′ and used that FL

−ε′ = −FL
ε′ and therefore (1 −

f−ε′) = fε′ . We also employed Eq. (39), which insures that
both ν(ε′) and 2uε′vε′ are even functions. For low concentration
of nonequilibrium quasiparticles fε′ � 1 the recombination
processes may be disregarded, even though their matrix
element tends to be larger.

V. KINETICS OF QUASIPARTICLES TRAPPING

A. Trapping rate

We now focus on trapping of nonequilibrium quasiparticles
within the regions with the locally suppressed energy gap. Such
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suppression is often achieved by breaking TRS, resulting in a
spatially dependent TRS breaking parameter γ (r). For exam-
ple, an isolated Abrikosov vortex brings γ (r) = 1

2�(ξ/r)2.
Quasiparticles with an initial energy ε > � diffuse to

the regions with the suppressed gap εg(r) < �. There they
can inelastically scatter to a final energy ε′ within the
window εg(r) < ε′ < � by emitting an acoustic phonon. As
a result, they end up being trapped within the spatial region
εg(r) < ε′, due to Andreev reflections from its boundaries.
We evaluate the corresponding trapping rate, assuming very
low phonon temperature, Nω � 1, and small concentration of
nonequilibrium quasiparticles, i.e., fε′ � 1. As a result the
trapping rate is found as:

1

τtr
= bjπ
d

(2π )d
Dp2

F

ρmvd+2
j

∫ �

εg

dε′ν(ε′)
2πν

[1 − 4uεvεuε′vε′](ε−ε′)d,

(58)

where the coefficients bj are defined after Eq. (22).
There are two distinct limits for the trapping rate dis-

tinguished by the comparison of the relative excess energy
of nonequilibrium quasiparticles, δε ≡ (ε − �)/�, and the
relative energy range affected by breaking of TRS, (γ /�)2/3.
Carrying out the integration in Eq. (58) with the help of
Eqs. (42), (54), one finds

1

τtr
∝ Dp2

F �d+1

ρmvd+2
j

( γ

�

)1
3

{
(γ /�)

2
3 (d+1); δε < (γ /�)

2
3 ,

δd+1
ε ; (γ /�)

2
3 < δε � 1.

(59)

In most metals the longitudinal sound velocity is about
twice that of the transversal one. As a result, the transversal
phonons are about an order of magnitude more efficient in
trapping the nonequilibrium quasiparticles than the longitudi-
nal ones. Hereafter we thus restrict ourselves exclusively to
the transversal waves. Notice that the transversal phonons are
coupled to electrons due to impurity displacement mechanism,
which is only present in the disordered limit ql = ωl/vt � 1.
The characteristic length scale vt/ω is typically in the range
10–100 nm. We shall assume that the characteristic thickness
of superconducting films is larger than that and put d = 3 in
the subsequent estimates.

B. Trapping power of a single vortex

We now evaluate the total trapping power of a vortex in a
superconducting film, defined as a spatial integral of the local
trapping rate (58), P = ∫

d2r/τtr(r). This quantity may then be
used as a sink term in the macroscopic 2D diffusion equation
for the density of nonequilibrium quasiparticles, n(r,t),

∂tn − ∇[D∇n] = −P δ(2)(r) n, (60)

where the vortex is placed at r = 0. The form of the right-hand
side of Eq. (60) assumes the vortex core being a perfect
sink. This is adequate, if (i) the density of nonequilibrium
quasiparticles exceeds substantially the density of equilibrium
excitations with energy ε > � in the core region, and (ii)
relaxation of nonequilibrium quasiparticles occurs due to
“deeply inelastic” processes. The former condition is met in
low-temperature experiments, see, e.g., Ref. [3]. Condition (ii)

is satisfied for the relaxation by phonon emission (we note in
passing that tunneling processes in S-I-N structures [9] provide
a counterexample to (ii), resulting in a measurable backflow
from a trap).

For an isolated vortex the TRS breaking parameter is a
function of the distance r from the core γ = 1

2�(ξ/r)2. The
trapping rate at small γ scales as γ 1/3 ∼ r−2/3, and thus the
integral in the definition of the trapping power is dominated
by large distances from the vortex core. Employing Eq. (58),
one finds:

P = D(pF ξ )2�4

10πρmv5
t

[(
rc

2ξ

)2(
(1 + δε)4 − δ4

ε

)+(R

ξ

)4/3

δ4
ε

]
. (61)

The first term in the square brackets here is the contribution
of the vortex core, which we model as a normal cylinder
with the radius rc. The second term is coming from the outer
periphery of the vortex core with R being its effective outer
radius. It is determined by either a distance between vortices, a
penetration depth, or the condition that � − εg(R) ≈ T , where
T is the phonon temperature. Indeed, beyond such a radius
the trap is too shallow and trapping is not effective because
of the activation escape. This leads to (R/ξ )4/3 ≈ �/T and
allows us to rewrite the last term in the brackets of Eq. (61)
as (δε�

1/4/T 1/4)4. The peripheral trapping may dominate, if
the typical quasiparticles excess energy grossly exceeds the
phonon temperature.

We now use the parameters of devices investigated in
experiment [3] to estimate P with the help of Eq. (61) and
compare it with the experimental findings. In Ref. [3] the
trapping power of individual vortices in an aluminum film was
measured to be P = 6.7 × 10−2 cm2/s at the base temperature
of T = 20 mK. The relevant parameters of the film were
[3] D = 18 cm2/s; vt = 3.0 × 105 cm/s; ρm = 2.7 g/cm3;
EF = 11.7 eV; � = 1.8 × 10−4 eV. With these parameters one
finds D(pF ξ )2�4/(ρmv5

t ) = 6.8 × 10−3 cm2/s. As a result,
the core contribution to the trapping power in Eq. (61) is about
two orders of magnitude smaller than the observed value for
a reasonable estimate of rc and δε . At the base temperature,
(R/ξ )4/3 ≈ �/T = 102, the peripheral contribution may pro-
vide trapping of the right order of magnitude only if δε ∼ 1.
For the geometry of devices in Ref. [3], there are no reasons to
expect that the quasiparticles are so “hot” in the vicinity of the
vortices. Therefore, albeit the peripheral contribution adds to
the trapping power, it is not sufficient to explain the observed
value of P .

C. Trapping by a current-carrying constriction

Trapping rate was also measured [15] in a nanobridge
closed by a flux-biased superconducting loop. The flux bias
was creating a supercurrent flowing through the constriction.
The supercurrent breaks TRS and thus suppresses the energy
gap in the nanobridge itself as well as in the adjacent leads,
carrying the stray currents. Assuming 3D leads, the stray
current density may be estimated as js(r) = Is/(2πr2), where r

is distance from the constriction and Is is the total supercurrent
through the constriction.

To apply our theory we need to find a relation between the
local supercurrent density js(r) and the local TRS breaking
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parameter γ (r). Assuming an applied vector potential A(r),
the supercurrent density is obtained by variation of the action
(24) over the (quantum component of the) vector potential and
is given by

− js = AeνDIm
∫ ∞

0
dε FL

ε sinh2 ϑ

= AeνDIm
∫ 0

ϑ(0)
dϑ

dε

dϑ
sinh2ϑ, (62)

where in the second equation we put T = 0 and changed the
integration variable to ϑ . We will also assume that the vector
potential A, which creates the supercurrent is the sole source of
the breaking TRS symmetry (i.e., no additional magnetic field
is present) and thus γ = 2DA2. Performing the integration
one finds (we traded here A for γ ):

js = eνγ 3/2

√
D

2
Re h

(
�

γ

)
;

h(x) = x sin−1 x − 2

3

(
1 −

√
1 − x2

(
1 + 1

2
x2

))
. (63)

Notice that � = �(γ ) according to Eq. (44). The resulting
critical current js(γ ) is plotted in Fig. 3. For small js the
effective TRS breaking parameter γ is found from Eq. (63) as

γ (r) = 8

π2
�

(
js(r)

eνξ�2

)2

= 2�

π4

(
Is

eνξ 3�2

)2(
ξ

r

)4

. (64)

According to Eq. (59) the trapping rate far from the constric-
tion (i.e., for small γ ) scales as τ−1

tr (r) ∼ γ 1/3 ∼ I
2/3
s r−4/3.

To calculate the total trapping rate τ−1
T of the constriction,

measured in Ref. [15], one integrates this expression over
the volume of the leads and multiplies by nqp—concentration
of nonequilibrium quasiparticles (in notations of Ref. [15]
nqp = xqpν�, where xqp is the dimensionless fraction of
broken Cooper pairs). The aforementioned volume integral
is coming from large distances R and thus τ−1

T ∼ I
2/3
s R5/3.

As explained above, the outer radius R is limited by thermally
activated escape and is estimated from (γ (R)/�)2/3 = T/�.
This leads to R ∼ I

1/2
s T −3/8. As a result, the trapping rate of

the constriction, coming from its outer periphery, is given by:

1

τT

∝ Dp2
F (�δε)4

ρmv5
t

nqpξ 3

(
Is

eνξ 3�2

)2/3(
�

T

)5/8

. (65)

(For a 2D pattern of stray currents one finds τ−1
T ∼ I 2

s T −1.)
Both dependencies on current and temperature are in a
qualitative agreement with the data of Ref. [15]. The “core”
contribution, due to trapping on localized Andreev bound
states, was calculated in Ref. [15] and found to be about
two orders of magnitude less than the observed value. The
peripheral trapping, discussed here, may well account for this
discrepancy, though quantitative comparison is impeded by
the uncertainty in δε and nqp.

VI. DISCUSSION OF THE RESULTS

We have developed a unified theory for treating electron-
phonon kinetics in disordered normal metals and superconduc-
tors, including superconductors with broken TRS. The latter

case is particularly important for evaluation of the trapping
rate of nonequilibrium quasiparticles in the regions, where
the energy gap is suppressed by a local magnetic field or a
supercurrent. Quasiparticle traps are proven to be useful for
increasing coherence time of superconducting qubits.

Our theory shows that the trapping rate τ−1
tr is a very

sensitive function of the TRS breaking parameter γ , which
at low temperature scales as τ−1

tr ∝ γ 1/3. As a result, even the
regions with a weak breaking of TRS, such as a far periphery
of a vortex or a constriction, may provide a significant
contribution to the overall trapping power of “hot” quasipar-
ticles. The quantitative comparison with the experiment [15]
requires detailed knowledge of nonequilibrium quasiparticles
energy distribution, which is not available at the moment.
Our estimates show that in order to account for the observed
trapping rates, the nonequilibrium quasiparticles excess energy
should be ε − � ∼ � � T , where T is the phonon bath
temperature.
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APPENDIX A: ALTERNATIVE DERIVATION
OF THE ELECTRON-PHONON ACTION

Here we provide an alternative derivation of Eqs. (11),
which is based on first principles Coulomb interactions
between the electrons and the lattice as well as impurity drag
by the lattice displacements. The first of these effects leads to
the standard Coulomb action

SC =
∫

dt

[
1

2

∑
q

ϕq,tU
−1
C ϕ−q,t +

∑
r

ϕr,t (ρ0div u − ρe)r,t

]
,

(A1)

where ϕr,t is the fluctuating scalar potential, UC = 4πe2/q2 is
the bare Coulomb interaction, ρe(r,t) = ψ̄(r,t)ψ(r,t) − ρ0 is
the excess electron density, while ρ0div u is the excess lattice
density.

The second effect is more subtle and pertains to the
disordered limit ql � 1, where l = vF τ is the elastic mean
free path and τ is the elastic mean free time. It originates
from the fact that the impurities are frozen into the crystal
lattice and therefore are also subject to the displacement u(r,t)
[11–14,17,19]. Therefore hitherto static random disorder po-
tential becomes a dynamic object Vdis(r) → Vdis(r + u(r,t)).
It is convenient to shift r to write the interaction of the electron
density with the disorder potential as

Hdis =
∑

r

Vdis(r)ρe(r − u(r,t),t). (A2)

Performing averaging over the Gaussian distribution of short-
ranged disorder, one finds the following action

iSdis = − 1

4πντ

∫∫
dtdt ′

∑
r

ψ̄r−u,tψr−u,t ψ̄r−u′,t ′ψr−u′,t ′ ,

(A3)
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where u = u(r,t) and u′ = u(r,t ′). One can now rearrange the
fermionic fields and decouple the four-fermion action with
the help of the nonlocal in time field Qt,t ′(r). This leads to the
following term:

ψ̄r−u,tQt,t ′ (r)ψr−u′,t ′ ≈ ψ̄r,t
[
Qt,t ′(r) − L̂1 + 1

2 L̂2
]
ψr,t ′ .

(A4)

We have expanded fermionic fields to the second order in the
displacement u, which brings the two operators:

L̂1 = ←
∇ ·u Qt,t ′ (r) + Qt,t ′ (r)u′· →

∇;

L̂2 = ←
∇

←
∇ ·· uu Q+ ←

∇ ·u 2Qu′· →
∇ +Q u′u′ ·· →

∇
→
∇ , (A5)

where the arrows above the gradient operators show direction
of the differentiation in the context of Eq. (A4). The action is
now quadratic in the unshifted fermionic fields which may be
integrated out in the standard way, leading to the determinant:

Tr log

{
G−1

0 − ϕ + i

2τ

[
Q − L̂1 + 1

2
L̂2

]}
, (A6)

where ϕ = ϕr,t is the scalar potential coming from the
Coulomb interactions, Eq. (A1).

From this point on, one proceeds along the standard root
of deriving the Keldysh nonlinear sigma model [22]. To this
end one passes to the Keldysh 2 × 2 structure, by splitting the
contour on forward and backward branches and performing
the Keldysh rotation. One then realizes that the soft diffusive
modes of the action are described by the manifold Q̂2 = 1
and therefore one can write Q̂ = R̂−1�̂R̂, where �̂ is the
Green function in coinciding spatial points, Eq. (5). This way
Eq. (A6) may be rewritten as:

Tr log

{
1 + ĜR̂

[
G−1

0 ,R̂−1
]

−ĜR̂
[
ϕ̂ + i

2τ
L̂1 − i

4τ
L̂2

]
R̂−1

}
. (A7)

Finally, one expands the logarithm here to the lowest nonva-
nishing orders. This way one obtains the standard nonlinear
sigma-model action (first neglecting L̂1,2 terms):

iS0 = iν

2
Tr{ϕ̂σ̂ 1ϕ̂} − πν

4
Tr{D(∂rQ̂)2 − 4∂t Q̂ − 4iϕ̂Q̂}.

(A8)

The first term on the right hand side here represents static
polarizability (i.e., screening) of the electronic band. It comes
from the so-called retarded-retarded and advanced-advanced
loops. The dynamic screening is encoded in πνTr{ϕ̂Q̂} term
along with fluctuations of the Q̂ field around its stationary
point �̂.

We focus now onto the phonon-induced L̂1,2 terms, which
originate from the motion of the impurities relative to the
electronic liquid. It is easy to see that the first order in L̂1

vanishes. One is thus left with the three terms: (i) first order

in L̂1 and in iR̂vF · →
∇ R̂−1; (ii) first order in L̂2, and (iii)

second order in L̂1. A straightforward, but somewhat lengthy

evaluation of these three terms results in

iS(i) = −iπν
vF pF

d
Tr{û · ∇Q̂} = iπρ0Tr{divû Q̂}; (A9)

iS(ii) = −i
πν

2τ

p2
F

d
Tr{û · û − û Q̂û Q̂}; (A10)

iS(iii) = i
πν

2τ

p2
F

d
Tr{û · û − û Q̂û Q̂}

+ πνD p2
F

4
Tr
{
[Q̂ ,∂μûν][Q̂ ,∂ηûλ]

}
ϒμν,ηλ,

(A11)

where ϒμν,ηλ is given by Eq. (12). Notice that the leading
orders in S(ii) and S(iii) exactly cancel each other. The
second subleading term in Eq. (A11) originates from gradient
operators in L̂1 acting on displacements û, as opposed to the
Green functions G.

The scalar linear coupling S(i) may be combined with
the potential term in Eq. (A8) by shifting the potential
ϕ̂ → φ̂ = ϕ̂ + ρ0

ν
divû. In the limit of the strong Coulomb

interactions, UC → ∞ in Eq. (A1), this allows us to eliminate
Fröhlich deformation potential electron-phonon coupling.
Indeed, the static screening ν

2 Tr{ϕ̂σ̂ 1ϕ̂} in Eq. (A8) along
with the interaction term ϕ̂σ̂ 1ρ0div û in Eq. (A1) upon the

aforementioned shift results in ν
2 Tr{φ̂σ̂ 1φ̂} − ρ2

0
2ν

divû σ̂ 1divû.
The first term here stays for the screened electron-electron
interactions, unaffected by lattice displacement, while the
second one serves to renormalize upward the longitudinal
sound velocity. This latter effect is already accommodated
by using the correct value of vl and thus no other effects of the
scalar electron-phonon coupling S(i) remain.

The only remaining term thus is the second quadrupole term
in Eq. (A11), which coincides exactly with Eq. (11). The latter
was derived using phenomenological Schmid form, Eq. (2),
of the electron-phonon coupling. The present first principles
derivation provides thus an independent justification for the
Schmid theory [12].

APPENDIX B: ULTRASONIC ATTENUATION

1. Normal metals

For the sake of completeness we outline calculation of the
ultrasonic attenuation. It is found by integrating out electronic
degrees of freedom, Q̂, and focusing on modification of the
phonon propagator (15) due to electron-phonon coupling. In
the leading approximation it is given by the action (11), where
one puts Q̂ = �̂, cf. Eq. (5), and integrates over the energy:

iS�̂,u =−νp2
F

∑
q,ω

ūμ,α
q,ω K̂αβ(ω)

Dq2

d + 2

[
δμν + d−2

d

qμqν

q2

]
uν,β

q,ω,

(B1)

where the kernel is

K̂αβ(ω) = 1

4

∫
dε Tr{γ̂ αγ̂ β − �̂ε−ωγ̂ α�̂εγ̂

β}. (B2)
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For normal metals one finds, cf. Eq. (5), the dissipative
Caldeira-Leggett kernel:

K̂(ω) =
(

0 −ω

ω 2ωBω

)
(B3)

and Bω = ∫
dε (1 − Fε−ωFε)/(2ω) is the bosonic distribution

function. It provides damping to the phonon action, Eq. (13):

(ω ± i0)2 − (ω(j )
q )

2 → ω2 ± iγ
(j )
q ω − (ω(j )

q )
2

(along with the
fluctuation-dissipation related noise), where the damping
factors are [19,20,23]:

γ (j )
q = cj

νp2
F

ρm

Dq2, (B4)

where ct = 2/(d + 2) and cl = ct [1 + (d − 2)/d].

2. Superconductors

In the superconducting case the K̂(ω) kernel, Eq. (B2),
depends on the rotation angle in the Nambu space. For its
retarded, i.e., α = q and β = cl, component one finds:

KR(ω) = −1

4

∫
dε
[

cosh(ϑ − ϑ ′)FL
ε′ − cosh(ϑ̄ − ϑ̄ ′)FL

ε

+ cosh(ϑ − ϑ̄ ′)
(
FL

ε′ − FL
ε

)]
, (B5)

where ε′ = ε − ω. Since for ε < εg , Imϑ(ε) = −π/2 there is
no contribution to the integral from the region ε,ε′ < εg . The
imaginary part of this expression, coming from the two energy
intervals ±εg < ε < ±εg + ω, is ∼ω2 at small ω, which gives
a small renormalization to the sound velocity. The real part,
responsible for the attenuation, takes the following form:

ReKR(ω) =
∫

dε
ν(ε)

ν

ν(ε′)
ν

[1 − 4uεvεuε′vε′](fε′ − fε),

(B6)

where 2uεvε is given by Eq. (53), fε = (1 − FL
ε )/2 is the

quasiparticle occupation number, and the integral runs over

the two intervals ε < −εg and ε > εg + ω, where both DOS
are nonzero.

For TRS superconductors the above expression takes the
form:

ReKR(ω) =
∫

dε
εε′ − �2

√
ε2 − �2

√
ε′2 − �2

(fε′ − fε). (B7)

In the case ω � �,T one may expand over ω and use
the fact that the fraction in Eq. (B7) tends to 1 as ω → 0.
As a result, ReKR(ω) = −2ω

∫∞
�

dε (dfε/dε) = 2ωf�. This
way the ultrasound attenuation coefficient in equilibrium
disordered TRS superconductors is found to be [11,23,30]:

γ S
q = 2f

(
�(T )

T

)
γ N

q , (B8)

where f (�/T ) is the Fermi function. (The same relation
holds in the clean case as well [31].)

It is worth noticing that the celebrated Eq. (B8) does
not hold in the TRS broken case. Indeed, in the limit
ω → 0, the factor ( ν(ε)

ν
)
2
[1 − (2uεvε)2] = (Re cosh ϑ)2 −

(Re sinh ϑ)2 �= 1 for complex ϑ(ε). In the small temperature
case, T < γ 2/3�1/3 < εg , Eqs. (42), (54) lead to:

ReKR(ω) = −4ω

3γ 2/3�1/3

∫ ∞

εg

dε(ε − εg)
dfε

dε

= 4ω

3γ 2/3�1/3

∫ ∞

εg

dεfε. (B9)

In equilibrium this brings:

γ S
q = 4T

3γ 2/3�1/3
e−εg/T γ N

q , (B10)

i.e., there is an additional small factor ∼T/(γ 2/3�1/3) in
comparison with the TRS case (it may be overcompensated,
though, by the fact that εg < �).
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