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The critical exponent of the phase boundary has been examined on the three-dimensional incommensu-
rate ordering phase in the spin- 1

2 ferromagnetic-leg ladder 3-Br-4-F-V [=3-(3-bromo-4-fluorophenyl)-1,5-
diphenylverdazyl]. Using the temperature-window fitting technique, we obtained the critical exponents which
agreed with the three-dimensional (3D) Bose-Einstein condensation (BEC) universality class at both sides of the
lower critical field and the saturation field. 3-Br-4-F-V thus becomes a new member of the quantum magnets
which prove the universality of the 3D BEC exponent.
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I. INTRODUCTION

Quantum phase transitions (QPTs), arising from quantum
fluctuations, are characterized by critical exponents near
quantum critical points (QCPs): observables such as specific
heat, magnetic susceptibility, and correlation function show
characteristic power laws in the temperature dependencies
with universal critical exponents near QCPs [1,2]. Since the
universality stems only from dimensionality of the system
and symmetries of order parameters, the determination of
the critical exponents is of fundamental importance for
understanding the nature of QPTs.

For the classification of magnetic-field-induced QPTs,
so-called Bose-Einstein condensation (BEC) of magnons has
been an attractive topic in condensed-matter physics for the
past few decades; since the exact mapping between a lattice gas
of hard-core bosons and a spin- 1

2 system was first introduced in
1956 [3], the notion of a BEC has been extended to the quantum
spin systems and its possibility has been investigated in a
large number of model compounds [4,5]. For the realization
of a BEC in quantum magnets, uniaxial [U(1)] symmetry of
the original spin Hamiltonian is required in order to satisfy
a number conservation of bosons. A spontaneous breaking
of the symmetry at a QCP then becomes a BEC QCP. A
promising realization of this situation is a weakly coupled
spin-dimer system that exhibits a three-dimensional (3D) XY

antiferromagnetic (AFM) ordering in a magnetic field [5]. In
such systems, field-induced QCPs exist at two critical fields,
Hc1 and Hc2. A spin gap of a quantum disordered state is
destroyed at Hc1, and a full saturation of the magnetization
occurs at the upper critical field Hc2. Both of these quantum
phase transitions belong to the 3D BEC universality class,
and the critical exponent ν of the phase boundary, defined by
T ∼ |Hc1,2(T ) − Hc1,2(0)|ν , has been predicted to be ν = 2/3
as T → 0 [6,7].

Typical experimental examples in which the 3D BEC
exponent at Hc1 has been confirmed include spin-dimer
systems TlCuCl3 [8] and BaCuSi2O6 [9]. Unfortunately in
these systems, however, the test of BEC at Hc2 has been lacking
because the saturation fields in such systems are usually in
excess of tens of teslas.
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Another interesting spin gapped system, yet less studied
in the context of BEC, is a spin- 1

2 two-leg ladder. The
Hamiltonian of the system, in the simplest form, can be
expressed as

H = J||
∑

i,α

Si,α · Si+1,α + J⊥
∑

i

Si,1 · Si,2

−gμBH
∑

i,α

Sz
i,α, (1)

where J|| is the interaction along each leg (α = 1,2), J⊥ is the
rung interaction between the legs, g is the g factor, and μB is
the Bohr magneton (Fig. 1).

The most frequently studied case is “AFM-AFM” (J||, J⊥ >

0), to which the compounds (Cu7H10N)2CuBr2 (DIMPY) [10]
and (Cu5H12N)2CuBr4 (BPCB) correspond [11]. In this case,
the ground state is a singlet state (S = 0), and there always
exists a spin gap [12]. With increasing the magnetic field, the
lowest branch of triplet states (Sz = 1) degenerates into the
singlet state at Hc1, and Sz = 1 bosons (triplons) are excited.
Consequently, a Tomonaga-Luttinger liquid (TLL) state ap-
pears in the gapless phase between Hc1 and Hc2 due to the one
dimensionality [6,13]. If there exist 3D interactions between
the ladders—as is usual in real magnets—the triplons can
condense into the 3D BEC state [6]. There have been, however,
few experimental tests for the 3D BEC exponent in this case
because of a large spin gap over tens of teslas, e.g., SrCu2O3

[14], or a low 3D ordering temperature less than 100 mK,
e.g., BPCB [11].

Recently, spin- 1
2 ferromagnetic-leg (FM-leg) ladders (J|| <

0, J⊥ > 0) have been synthesized for the first time, using
verdazyl-radical molecules [15–18]. Theoretically, FM-leg
ladders with an isotropic leg interaction also have a spin gap,
which stems from the rung-singlet state [19], and the ground
state between Hc1 and Hc2 has also been predicted to be a
TLL [20]. A 3D BEC state is thus expected to be induced
in the intermediate field range by weak 3D interactions. An
advantage of the FM-leg ladders over the AFM-AFM ones is
that they provide more opportunities to access the upper QCP at
Hc2; because Hc2 is insensitive to FM interactions [20,21], the
FM-leg case gives smaller Hc2 when the intraladder couplings
are of the same order of magnitude.

Among the three FM-leg ladders synthesized to date, 3-Br-
4-F-V [=3-(3-bromo-4-fluorophenyl)-1,5-diphenylverdazyl]
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FIG. 1. Schematic picture of a two-leg ladder described by Eq. (1).

has the largest rung interaction (J|| = −8.3 K, J⊥ = 12.5 K,
|J⊥/J||| = 1.5) and only this compound has a spin gap (∼5 T)
[16,17]. The other two compounds are antiferromagnetically
ordered in the ground state due to 3D interactions [16].
Compared with BPCB [11], which has a similar rung-coupling
constant (J||/kB = 3.3 K, J⊥/kB = 12.9 K , and μ0Hc2 ∼
14.5 T), 3-Br-4-F-V actually has the smaller saturation field,
μ0Hc2 ∼ 9 T. In the magnetic field range between Hc1 and
Hc2, 3-Br-4-F-V exhibits a 3D incommensurate ordering
due to interladder couplings below ∼0.6 K as revealed by
nuclear magnetic resonance (NMR) measurements [17]. A
TLL region was expected to exist above the 3D ordering
temperatures as is the case for (quasi-)1D gapped spin systems
[10,11,22], but, in reality, most of the anticipated TLL region
is replaced by a partial-ordering phase in 3-Br-4-F-V [17].
Although detailed magnetic structures of these exotic ordering
phases remain to be clarified, a 3D BEC is expected to be
realized in this situation. The 3D ordering phase is indeed
domelike, in close resemblance to the other model compounds
such as BaCuSi2O6 [9]. Moreover, spin couplings between
verdazyl-radical molecules are essentially isotropic [16], in
favor of U(1) symmetry of its spin Hamiltonian.

In this paper, we focus on the critical exponents of
the 3D ordering phase boundary in 3-Br-4-F-V. The phase
boundary near Hc1 and Hc2 is precisely determined by
means of specific-heat and dc magnetization measurements.
Applying the temperature-window technique [8,9,23], the
critical exponents consistent with the 3D BEC scenario are
obtained at both sides of Hc1 and Hc2 at low temperatures.

II. EXPERIMENT

Single-crystal samples of 3-Br-4-F-V were synthesized
as described in Ref. [16]. Specific-heat measurements were
carried out by the standard quasiadiabatic heat-pulse and
relaxation methods on a 1.46-mg sample (#1). Direct-current
magnetization measurements were performed by a force
magnetometer [24] on a 7.42-mg sample (#2), taken from
the same batch. In both measurements, a 3He-4He dilution
refrigerator was used in the temperature ranges 0.1 K � T � 1
K. In all the measurements, magnetic fields up to 9 T were
applied perpendicular to the a axis (perpendicular to the leg
direction).

III. RESULTS AND DISCUSSION

A. Temperature dependence of the specific heat

In Figs. 2(a) and 2(b), we show the heat capacity divided
by temperature, C/T , in several magnetic fields near Hc1 and
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FIG. 2. Temperature dependence of the magnetic heat capacity
in several magnetic fields near (a) the lower critical field Hc1 and
(b) the upper critical (saturation) field Hc2. Each curve is shifted by
+1.2 J/mol K2 for clarity. Open triangles denote the peak positions
indicating the 3D ordering temperatures, Tc. The open arrow denotes
the partial-ordering temperature at 7 T.

Hc2, respectively. In these data, nuclear Schottky contributions
from 1H, 19F, and 14N are subtracted. A sharp peak indicative
of the 3D ordering can be observed. On the other hand, the
shoulderlike anomaly inferred in the previous report [17] to be
a partial ordering is weak (only the one at 7 T is indicated by
an open arrow) or even indiscernible within the experimental
resolution. This weakness of the partial-ordering anomaly
might be due to a difference of the sample quality from the
previous one.

B. Temperature dependence of the magnetic susceptibility

Figure 3 shows the temperature dependence of the magnetic
susceptibility χ = M/H in several magnetic fields near the
critical fields Hc1 and Hc2. There exists a nontrivial minimum
(maximum) in Fig. 3(a) [Fig. 3(b)] (solid arrows), and the tem-
perature at which the extremum appears (T = Tex) increases
(decreases) with increasing the magnetic field. Analogous
behavior in χ has been observed in typical spin- 1

2 two-leg spin
ladders such as DIMPY [10]. Theoretically, such extremum
in (quasi-)1D gapped spin systems can be interpreted as a
crossover to the low-temperature TLL region [22]. Then, a 3D
ordering exists slightly below Tex [17]. In a previous report
[17], 3D ordering temperature, Tc, from χ -T was determined
from a kink anomaly of the temperature derivative of χ , and
it was in good agreement with Tc determined from a peak
of the temperature dependence of the specific heat C. This
correspondence is considered to be associated with Fisher’s
relation for antiferromagnets,

C(T ) ∼ a
∂

∂T
(T χ ), (2)

which describes that the specific heat near a second-order
AFM phase transition can be scaled with the temperature
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FIG. 3. Temperature dependence of the magnetic susceptibility
χ = M/H in several magnetic fields (a) from 5 T to 6.1 T and
(b) from 8 T to 9 T in 0.1 T steps. Arrows indicate the temperature
Tex at which χ takes the nontrivial (a) minimum or (b) maximum.

derivative of T χ (the coefficient a is a slowly varying function
near the transition) [25]. This relation has been confirmed
experimentally in several materials, e.g., Ref. [26]. In this
sense, it would be the most plausible way to define Tc of this
material from d(T χ )/dT .

As can be seen from Fig. 4, the temperature derivative of
T χ [d(T χ )/dT ] exhibits a dip [Fig. 4(a)] or peak [Fig. 4(b)]
anomaly below Tex. Here, we define the temperature at which
these anomalies exist as the 3D ordering temperatures (T =
Tc). Note that the most singular part in Eq. (2) arises from the
temperature derivative of χ itself. Therefore, this definition
of Tc is essentially the same as the one used in the previous
experiment [17].
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FIG. 4. Temperature derivative of T χ [d(T χ )/dT ] obtained from
Figs. 3(a) and 3(b). Open arrows indicate the temperature at which
d(T χ )/dT takes the nontrivial (a) minimum or (b) maximum.
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FIG. 5. Phase boundaries of the 3D ordering determined from
the present measurements. Closed circles and squares show Tc from
the peak positions of C/T (Fig. 2) and the dip or peak anomalies
of d(T χ )/dT (Fig. 4), respectively. Open circles and squares denote
previous (Ref. [17]) results of Tc from C/T and dχ/dT , respectively.
Crosses (stars) denote the temperature Tex at which the magnetic
susceptibility χ takes extremum in the present (previous) results, and
solid lines are a linear fit of the present ones at below 5.3 T and above
8.6 T. All the dotted lines are guides for the eye.

C. Phase boundary

The 3D ordering temperatures observed in the present
measurements are summarized in Fig. 5 together with the
results reported previously [17]. A noticeable difference
between the present and the previous results is a disparity in
the phase boundaries determined from the magnetization and
specific-heat measurements; whereas in the previous study
these two measurements yielded nearly the same transition
temperature, the phase boundary defined from d(T χ )/dT in
the present experiment is rather higher in temperature than
the one derived from C/T . We ascribe this disparity to a high
sensitivity of the interladder couplings to a strain in this system;
the larger crystal (sample #2) used in the magnetization
measurements shows slightly stronger interlayer couplings.
The difference from the previous results might also be due to
such sample dependence. We also note that the anomaly in
d(T χ )/dT in Fig. 4(b) is broader than that in dχ/dT reported
in the previous experiment [17]. Considering these, we assess
that the phase boundary determined from C/T is more reliable
in this study. Thus, in the next section, analysis of the critical
exponent mainly focuses on the results from C/T and uses the
d(T χ )/dT data to support the results.

Another remarkable feature in Fig. 5 is the linear behavior of
Tex against the magnetic field near Hc1 and Hc2. This behavior
is reminiscent of a crossover to the TLL region in (quasi-)1D
gapped spin systems [22]. Close to the critical field H = Hc,
the crossover temperature Tex, at which the magnetization takes
an extremum, is asymptotically expressed in the universal form

Tex(H ) = c
gμB

kB
|H − Hc1,2|, (3)

where the coefficient c = 0.762 38, and kB is the Boltzmann
constant. This linear relation has actually been observed on
DIMPY [10] for the lower critical field, and the ideal spin- 1

2
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one-dimensional AFM chain CuPzN [27] for the saturation
field. In the present case of 3-Br-4-F-V, a linear fit of
the Tex vs H plot yields the absolute value of the linear
coefficient 0.73 ± 0.01 at fields below 5.3 T and 0.78 ± 0.02
at fields above 8.6 T, both of which are smaller than the
value determined from Eq. (3), cgμB/kB = 1.0246, assuming
g = 2. Considering the fact that Tex is relatively close to Tc

compared with the above example compounds, it seems that
the temperature region at which Eq. (3) can be applied is
largely overlapped with the 3D ordering phase in 3-Br-4-F-V,
although the linear relation between Tex and H can be ascribed
to the quasi-one-dimensionality of this compound. In fact,
such behavior has been observed in other quasi-1D quantum
magnets [28,29].

D. Fitting method to extract the critical fields and exponents
of the phase boundary and its results

To extract the critical exponent ν of the 3D ordering phase
boundary, we employ the temperature-window technique
[8,9,23] in fitting the data by the power-law function T ∼
|Hc1,2(T ) − Hc1,2(0)|ν . Fortunately, the almost symmetric
domelike phase diagram—in the boson language, this implies
that the effect of quantum fluctuations on the boson effective
mass at fields below Hc1 is weak in this material [5]—enables
us to replace the function with a quadratic form,

T (h) = a(1 − h2)ν, (4)

by which the critical field can be determined more accurately
[9]. In Eq. (4), a is a fitting coefficient, which is approximated
as a constant, and the normalized field is defined as h =
[Hc1,2(T ) − Hm]/|Hm − Hc1,2(0)|, where Hm is the magnetic
field centered in the 3D ordering dome (in this case, μ0Hm ∼
7 T).

We first fit Eq. (4) to the data within the temperature window
0 � T � tmax for several fixed ν’s, where tmax is the maximum
temperature of the window. The lowest value of tmax used
is 0.27 K and 0.28 K near Hc1(h = −1) and Hc2(h = 1),
respectively, so that at least three data points are available
for the fitting. For the given tmax, the fitting parameters
Hc1,2(0) are determined [referred to as Hc1,2(tmax)]. Iterating
this procedure with increasing tmax, we obtain Hc1,2(tmax) as
a function of tmax [30]. The results of Hc1(tmax) and Hc2(tmax)
determined from C/T are shown in Figs. 6(a) and 6(b). The
zero-temperature limit Hc1,2(0) for each ν can be obtained by a
linear extrapolation of the lowest few data points of Hc1,2(tmax).
As shown in Figs. 6(a) and 6(b), the linear fitting lines on
each panel (dashed lines) converge on the narrow field region
for a range of the ν values, analogous to the results of other
compounds to which the same technique has been applied
[9,23,31]. Thus, the critical fields Hc1,2(0) can be estimated to
be μ0Hc1 = 4.784(8) T for Fig. 6(a), and Hc2(tmax) = 9.193(8)
T for Fig. 6(b), irrespective for the particular ν value. The same
analysis is also applied to the d(T χ )/dT results and yields
μ0Hc1 = 4.906(4) T for Fig. 6(c) and μ0Hc2 = 9.215(9) T for
Fig. 6(d). Slight differences of the critical fields are attributed
to a difference in the sample quality used for the magnetization
measurements.

Fixing Hc1,2(0) to the values given above, the fitting of
Eq. (4) to the data, in a similar manner but now ν being the
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FIG. 6. Fitting results of the temperature-window technique with
Eq. (4), applied to the 3D ordering phase boundary. As a function
of the maximum temperature of the window, tmax, for several fixed
ν’s, (a) Hc1 and (b) Hc2 from C/T and (c) Hc1 and (d) Hc2 from
d(T χ )/dT are shown. The dotted lines are linear fitting lines to a
part of the data on each ν, used to determine Hc1,2(0) (see text).

fitting parameter, yields the critical exponent as a function of
tmax (Fig. 7). As can be seen in Fig. 7, the ν(tmax) plots of
the C/T results thus obtained approach the value ν = 2/3
of the 3D XY-AFM QCP at low temperatures on both sides
of the critical fields, Hc1 and Hc2, being definitely different
from the 2D case ν = 1 and the 3D Ising case ν = 0.5 [5]. The
ν(tmax) plots of the d(T χ )/dT results in Fig. 7 support that
this behavior of the critical exponent is intrinsic to this system;
they also approach the value ν = 2/3 at low temperatures
in spite of the disparity of the phase boundaries caused by
sample dependence. In the boson language, the result indicates
that the field-induced QCPs of 3-Br-4-F-V belong to the 3D
BEC universality class in the temperature range of the present
measurements. This is the first observation of the 3D BEC
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FIG. 7. Critical exponent ν as a function of tmax with fixed Hc1,2(0)
determined from Fig. 6. Down and up triangles denote the results from
C/T near Hc1 and Hc2, respectively. Left and right triangles denote
the results from d(T χ )/dT near Hc1 and Hc2, respectively. The dotted
line shows the critical exponent at the QCP that belongs to the 3D
BEC universality class (ν = 2/3). All the error bars represent fitting
errors.
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exponent in a spin- 1
2 ferro-leg ladder, and we reemphasize

that there exist few tests of the critical exponent near Hc2

in gapped systems, most of which require more than tens of
teslas to reach the saturation field and is difficult to examine
the critical exponent.

Finally, some remarks are made concerning the relevance
of the present study to a BEC in easy-plane ferromagnets in a
longitudinal field [21,32], which has been an attractive topic
but less studied experimentally. In the case of strong rung
coupling (|J||/J⊥| � 1) as in 3-Br-4-F-V, the Hamiltonian
(1) can be mapped onto a spin- 1

2 ferromagnetic chain with
an easy-plane anisotropy in an effective magnetic field [20].
According to the theoretical study of quasi-one-dimensional
ferromagnets with an easy-plane anisotropy (EPFs) [21], it is
shown that quasi-one-dimensional EPFs can give a crossover
of the critical exponent from the conventional 3D BEC one
(ν = 2/3) to ν = 1 as moving away from a field-induced QCP.
To observe this crossover, however, interchain couplings must
be small enough to satisfy a certain parameter condition to
maintain strong one dimensionality. In this regard, the coupling
parameters of 3-Br-4-F-V might not satisfy the condition
to observe this crossover, but the ν = 2/3 behavior at low
temperatures agrees with the theory. Since the other two
verdazyl-radical-based FM-leg ladders mentioned above are
strong-leg type (|J||/J⊥| > 1) [15,16,18], they might be the
candidates to observe the nontrivial crossover.

IV. CONCLUSION

We determined the critical exponents ν near the field-
induced QCPs of the 3D ordering phase boundary on the spin- 1

2
ferromagnetic-leg ladder 3-Br-4-F-V, using specific-heat and
direct-current magnetization measurements. Near the lower
critical field Hc1 and the saturation field Hc2, the exponents
obtained from the temperature-window fitting technique ap-
proach the value which belongs to the 3D BEC universality
class, ν = 2/3, at low temperatures. Although there is a small
sample-dependent difference between the phase boundaries
determined from the specific heat and the magnetization, the
critical exponents at Hc1 and Hc2 seem to be unchanged.
This fact supports that the 3D BEC exponent is universal in
the ordering phase of 3-Br-4-F-V. The verdazyl-radical-based
FM-leg ladders have proven to be a model system to study
BEC physics.
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