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One of the most important signatures of Weyl materials is the chiral anomaly. So far, there has been little
study of chiral anomaly of Weyl magnons, featured by nontrivial band crossings at paired Weyl nodes of opposite
chirality, while the anomaly for its electronic counterpart can routinely be observed in experiments. Here a road
map for realizing and detecting the chiral anomaly of Weyl magnons in stacked honeycomb ferromagnets that are
shown to be a Weyl magnetic material is provided. Using the Aharonov-Casher effect that is about the interaction
between magnetic moments and electric fields, the magnon motion in honeycomb ferromagnetic layers can be
quantized into magnonic Landau levels by a proper inhomogeneous electric field. The zeroth magnonic Landau
level is chiral so that, under a magnetic field gradient, Weyl magnons propagate unidirectionally from one Weyl
node to the other and reverse their chiralities, resulting in the magnonic chiral anomaly. A net magnon current
carrying spin and heat through the zeroth magnonic Landau level depends linearly on the magnetic field gradient
and the electric field gradient in the linear transport region. The linear spin and heat conductance can serve as the
signatures of magnonic chiral anomaly. Furthermore, an experimental realization is proposed.

DOI: 10.1103/PhysRevB.96.104437

I. INTRODUCTION

Topological magnetic states have attracted enormous at-
tention in recent years [1–23], because of their fundamental
involvement and importance in magnonics, which is about
the generation, detection, and manipulation of magnons and
magnon current [24–27]. Magnons, the quanta of low-energy
excitations of magnetic materials, can carry, process, and
transmit information [28,29] like electrons besides being a
control knob of magnetization dynamics [30–32]. So far,
almost all studies on Weyl magnons (WMs) focus on the
nontrivial band topology of Weyl nodes (WNs) and magnonic
surface states in pyrochlore magnetic materials [19–21].
There has been little study of the magnonic chiral anomaly
(MCA) because of its intrinsic difficulties. The realization and
detection of the MCA is the main theme of this work.

In order to realize the MCA, one needs three-dimensional
Weyl magnetic materials and a way to quantize magnon motion
into magnonic Landau levels (MLLs) so that the zeroth MLL
connecting two paired WNs exists. Then WMs can be pumped
from one WN to the other through the zeroth MLLs under
driving forces, resulting in the MCA. Because magnons are
charge neutral particles and magnonic WNs appear usually
at high energy [19–21], it is nontrivial to realize MLLs, as
well as to inject magnons into the high-energy WNs. In this
paper, we provide a road map for realizing the MCA. We
show that stacked honeycomb ferromagnets can be a Weyl
magnetic material of both type-I and type-II WMs with either
one pair or two pairs of WNs. Magnons can interact with
electric fields through the Aharonov-Casher (AC) effect [33]
that can quantize the magnon motion into MLLs by using a
proper inhomogeneous electric field. A net magnon current
carrying spin and heat through the zeroth magnonic Landau
level depends linearly on the magnetic field gradient and the
electric field gradient in the linear transport region. The linear
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spin and heat conductance can serve as the signatures of the
MCA. Furthermore, an experimental realization is proposed.

II. MODEL: STACKED HONEYCOMB FERROMAGNETS

We consider stacked honeycomb ferromagnets as shown in
Fig. 1(a). The honeycomb lattices (in the xy plane) are aligned
in the z direction. The in-plane vectors aα (red arrows) and
bα (green arrows) (α = 1,2,3) defined in honeycomb layers
connect the nearest-neighbor (NN) and next-nearest-neighbor
(NNN) lattice sites [34], respectively. A and B denote two
sublattices of honeycomb layers. The layer separation is
the same as the distance between two NN intralayer lattice
sites that is set as unity. The spin Hamiltonian of a stacked
honeycomb ferromagnet reads

H = −J
∑
〈i,j〉,l

Si,l · Sj,l −
∑
i,l

KiS
z2
i,l −

∑
i,〈l,l′〉

Ji Si,l · Si,l′

+D
∑

〈〈i,j〉〉,l
νij ẑ · (Si,l × Sj,l) − gμBB0

∑
i,l

Sz
i,l , (1)

where i and j label lattice sites of honeycomb layers, and l and
l′ are layer indexes. 〈i,j 〉 and 〈〈i,j 〉〉 denote the NN and NNN
intralayer lattice sites, and 〈l,l′〉 are the NN layers. Si,l is the
spin (in units of h̄) at site i of layer l. The first term describes the
NN intralayer ferromagnetic exchange interaction with J > 0.
The second term is the anisotropy energy with easy axis along
the z direction and the third term is the NN interlayer exchange
interaction. Here Ki = KA (KB) and Ji = JA (JB) for sites on
sublattice A (B). The fourth term is the Dzyaloshinskii-Moriya
interaction [17,35] and νij = (2/

√
3)(d̂1 × d̂2)z = ±1, where

d̂1 and d̂2 are the unit vectors along NN intralayer bonds
connecting the common NN site of i and j to sites j and i. The
last term is the Zeeman interaction due to the external magnetic
field B0 along the z direction (B0 = 0 is assumed below since
it only shifts the energy). The ubiquitous magnetic dipole-
dipole interaction is omitted since it is much weaker than other
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FIG. 1. (a) Schematic diagram of stacked honeycomb ferromag-
nets. Each site has a spin polarized in the z direction, represented by
a red dot with an arrow on sublattice A and a blue dot with an arrow
on sublattice B. (b) The first bulk Brillouin zone (BZ) and the first
(100) surface BZ of stacked honeycomb ferromagnets.

interactions and the physics is unaffected (see Appendixes A
and B).

III. PHASE DIAGRAM

Under the Holstein-Primakoff transformation [36], spin
Hamiltonian Eq. (1) is mapped to a magnon Hamiltonian
(see Appendix A) whose phase diagram is shown in Fig. 2
in which K± = KA ± KB and J± = JA ± JB. Five distinct
phases (colored differently) exist. Two magnon bands of
Hamiltonian Eq. (A2) are gapped in both green and white
regions. The green region is a topologically nontrivial phase
in which topologically protected surface states exist in the
bulk band gap (see Appendixes C and D) and this phase is
called the topological magnon insulator in the literature [5].
On the other hand, the white regions are topologically
trivial phases. The rest of the regions in Fig. 2 belong to
three different WM phases: (i) WMs in the pink regions
have one pair of WNs at k±

1 = (−4π/3
√

3,0, ± cos−1 f1),
(ii) WMs in the yellow regions have one pair of WNs
at k±

2 = (4π/3
√

3,0, ± cos−1 f2), (iii) WMs in the purple
regions have two pairs of WNs at k±

1 and k±
2 simultaneously.

Here fη = K−/J− + 1 + (−1)η3
√

3D/J− for η = 1 or 2.

K–/D

J– /D 

–3√3–

3√3–

0
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–3√3
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FIG. 2. Phase diagram of stacked honeycomb ferromagnets in
the K−/D-J−/D plane. The yellow, pink, and purple regions denote
three different WM phases. The green region is a topological magnon
insulator phase, while the white regions are trivial phases.

In the WM phases, the effective Weyl Hamiltonian (to the
first order in the momentum deviation q = k − k±

η ) around the
WN at k±

η is

H±
η (q) = (εη + h̄u±

η,zqz)I +
∑

β=x,y,z

h̄v±
η,βqβσβ, (2)

where εη = 3JS + K+S + J+S(1 − fη), u±
η,z = ±J+S√

1 − f 2
η /h̄, v±

η,x = (−1)η3JS/2h̄, v±
η,y = 3JS/2h̄, and v±

η,z=
± J−S

√
1 − f 2

η /h̄. I , σx , σy , and σz are the 2 × 2 identity
matrix and three Pauli matrices, respectively. The Berry
curvature around the WN is �(k±

η + q) = (
∏

β v±
η,β

q)(
∑

β v±2
η,βq2

β)−3/2/2 and the chirality of the WN is C±
η =

sgn(
∏

β v±
η,β ) = ±(−1)ηsgn(J−). Thus, WNs are monopoles

of Berry curvature and appear in pairs with opposite chirality
as required by the no-go theorem [37–39]. According to the
classification of Weyl semimetals [40,41], WMs are type-II
when |u±

η,z| > |v±
η,z| ⇒ |J+| > |J−| (see Appendix E), other-

wise WMs are type-I. At the phase boundary crossing points
(K−/D,J−/D) = (±3

√
3,0), the system becomes nodal-line

magnons in which two energy bands cross on H′K′H′ and
HKH of the first bulk BZ as shown in Fig. 1(b), respectively
(see Appendix F).

To visualize the WNs identified above, we fix the model
parameters D = 0.2J , K+ = 12D, J+ = 2D, and (K−,J−) =
(D,5D) or (−9D,9D) in the WM phases (marked by the black
and white dots in Fig. 2). Energy bands in the kx-kz plane for
fixed ky = 0 [the blue plane in Fig. 1(b)] of the WMs are
shown in Figs. 3(a) and 3(b) in which one and two pairs of
WNs appear. The red and blue dots denote chirality ±1 of
the WNs. The corresponding Berry curvatures are as shown
in Figs. 3(c) and 3(d), respectively, in which the black arrows
encode the direction of Berry curvatures projected onto the
kx-kz plane and the background color represents the divergence
of Berry curvature ∇k · �(k) with red for positive and blue for
negative. Thus, the red and blue spots in Figs. 3(c) and 3(d)
are indeed monopoles of Berry curvature and correspond to
the WNs in Figs. 3(a) and 3(b). The spectral functions on the
front (100) surface along Z̄	̄Z̄ of the first (100) surface BZ
[see Fig. 1(b)] are shown in Figs. 3(e) and 3(f), respectively.
The surface states with high density (red color) on the front
surface between WNs can be clearly seen. Near the energy of
WNs, these surface states form magnon arcs (an analog of the
Fermi arcs) on sample surfaces (see Appendix G).

IV. MAGNONIC LANDAU LEVEL

According to the AC effect [33], a magnon with the
magnetic moment μ = gμB ẑ interacts with an electric field E
and acquires the AC phase, φij = (1/h̄c2)

∫ i

j
(E × μ) · d r .

This effect is reminiscent of the magnetic field effect on
electrons and ∇ × (E × μ) plays the role of the magnetic
field so that the MLLs arise according to the theoretical
proposal in Ref. [42]. Here we consider WMs under an
inhomogeneous electric field E = (Ex,0,0). Compare the
AC phase φij = (gμB/h̄c2)

∫ j

i
Exdy for magnons with the

Aharonov-Bohm phase for electrons; the lattice momentum in
the effective Weyl Hamiltonian Eq. (2) should be replaced
by −ih̄∇ + gμBEx ŷ/c2. The effective Weyl Hamiltonian
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FIG. 3. (a) and (b) Band structures of WMs marked by the black and white dots in Fig. 2, respectively. The WNs of chirality ±1 are marked
by red and blue dots. (c) and (d) Corresponding Berry curvatures of the lower magnon bands in panels (a) and (b). The arrows represent the
direction of Berry curvature vectors in the kx-kz plane with ky = 0. The background color denotes the divergence of Berry curvature, where
red and blue represent positive and negative values. (e) and (f) Density plots of the front (100) surface spectral functions along Z̄	̄Z̄ for the
energy bands in panels (a) and (b). Energy ε is in units of JS, and insets are color bars.

in the electric field can be solved exactly and the magnon
motion in the x-y plane is quantized into MLLs with the
eigenvalues

ε±
η,n�1(qz) = εη + h̄u±

η,zqz ± h̄

√
ληn + v±2

η,zq2
z ,

(3)
ε±
η,0(qz) = εη + h̄u±

η,zqz − (−1)ηsgn(E)h̄v±
η,zqz,

where λη = 2|v±
η,xv

±
η,y |/l2

E and the electric length lE =√
h̄c2/gμB |E | is an analog of the magnetic length for elec-

trons [42]. The MLL degeneracy is D = LxLy/2πl2
E ∝ |E |,

where Lx and Ly are the sample lengths in the x and y direc-
tions. The zeroth MLL ε±

η,0(qz) is chiral and linearly dispersed
with opposite group velocities v±

η,g = u±
η,z − (−1)ηsgn(E)v±

η,z

around two paired WNs at k±
η , where the density of states is

ρη = (2π2l2
E h̄|v±

η,g|)−1 (with the Landau degeneracy included).
We also introduce the AC phase into the magnon Hamiltonian
Eq. (A1) through the Peierls substitution [43] and calculate
its spectrum for an infinite long bar along the z direction with
periodic boundary conditions in the x and y directions. For the
electric field gradient E = 1/150

√
3 in units of h̄c2/gμB , the

MLLs for the same model parameters as those in Figs. 3(a)
and 3(b) are shown in Figs. 4(a) and 4(b), where the zeroth
MLLs are the red curves. The MLLs for type-II WMs are
shown in Appendix E.

V. MAGNONIC CHIRAL ANOMALY

To realize the MCA, one needs to drive WMs to flow from
one WN to the other through the zeroth MLL. Due to the

Zeeman energy −B · μ, an inhomogeneous magnetic field B
can exert a driving force on magnons as h̄dk/dt = ∇(μ · B)
and results in the displacement of the lattice momentum

δk = ∇(μ · B)τm

h̄
, (4)

where τm is magnon mean free time that is shorter than the
period of Bloch oscillation due to all kinds of scattering
as well as the intrinsic nonlinear effects for magnons, so
that the transport of WMs through the zeroth MLL results
in the nonconservation of chirality, the fingerprint of chiral
anomaly [44]. To substantiate this claim, let us use the
experimental magnon mean free time τm = 10−7 ∼ 10−6 s of
the ferromagnet yttrium iron garnet at 1.6 K [45] to estimate

(b)(a)

5

6

7

5

6

7

0– 0–
kz kz

εε

FIG. 4. (a) and (b) MLLs under an electric field gradient E =
1/150

√
3 (in units of h̄c2/gμB ) for the model parameters identical

to those in Figs. 3(a) and 3(b), respectively. The red curves are the
zeroth MLLs.
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TABLE I. Driving forces and pumping rates in the chiral anomaly of Weyl magnons and Weyl
electrons. Here V is the sample volume; nB and nF are respectively the Bose-Einstein and Fermi-Dirac
distributions; and ε is the energy of WNs (as well as the Fermi energy for Weyl electrons).

Weyl particle Driving force Pumping rate

Weyl magnon
h̄dk
dt

= ∇(μ · B)
dN

dt
= V nB (ε)

4π 2h̄2c2
∇(μ · B) · [∇ × (E × μ)]

Weyl electron
h̄dk
dt

= −eE
dN

dt
= V e3nF (ε)

4π 2h̄2c
E · B

the necessary condition for observing the Bloch oscillation.
The period of Bloch oscillation is τB = 2πh̄/a∇(μ · B) =
h/agμB∂zB ∼ 0.36 s T m−1/∂zB, where the lattice constant
a ∼ 1 Å. Therefore the necessary condition for observing
the Bloch oscillation is τB < τm, which yields ∂zB > 3.6 ×
105 T m−1, too large to realize for natural crystals. The
comparison of the driving forces and pumping rates for WMs
and for Weyl electrons are summarized in Table I. In contrast
to the electronic chiral anomaly in Weyl semimetals where
parallel electric and magnetic fields are required, mutually
perpendicular inhomogeneous electric and magnetic fields are
needed for the MCA. Moreover, the electric and magnetic
fields exchange their roles for WMs since the electric field
generates MLLs while the magnetic field exerts driving forces,
opposite roles in the chiral anomaly of Weyl electrons.

To detect the MCA, we consider a two-terminal device
sketched in Fig. 5(a) under an inhomogeneous magnetic field
along the z direction. Here a quasi-one-dimensional magnon
conductor described by Eq. (1) and in the inhomogeneous
electric field specified above is connected to two magnon
reservoirs. Higher magnetic fields B1 and B2 are applied to the

B

z

B2

B1

B0

(a)

(b)εε

εη – gμB∆B/2

εη+gμB∆B/2

nB nB00

FIG. 5. (a) Schematic diagram of a two-terminal device under
an inhomogeneous magnetic field along the z direction, in which
the middle quasi-one-dimensional magnon conductor is connected to
two magnon reservoirs. (b) Sketch of MLLs of the middle magnon
conductor and magnon distribution functions of the left and right
magnon reservoirs. The arrows indicate the injection of magnons
from the reservoirs to the zeroth MLL (the red curve) of the middle
magnon conductor.

reservoirs to shift the magnon band bottoms to εη − gμB�B/2
and εη + gμB�B/2 (where �B = B2 − B1) so that the sys-
tem is at nonequilibrium as shown in Fig. 5(b). The imbalance
of magnon concentrations between the two reservoirs within
the energy window [εη − gμB�B/2,εη + gμB�B/2] drives
magnons to flow from the left to the right through the magnon
conductor. In the ballistic regime where the sample length is
smaller than the magnon mean free path, and for type-I WMs
with only one pair of WNs at k±

η (η = 1 or 2), the spin and
heat currents (carried by magnons) through the zeroth MLL
can be calculated from the Landauer-Büttiker theory [42] as

Is,η =
∫ εη+gμB�B/2

εη−gμB�B/2

h̄LxLynB(ε)dε

4π2l2
E h̄

= Gs,η�B,

Ih,η =
∫ εη+gμB�B/2

εη−gμB�B/2

εLxLynB(ε)dε

4π2l2
E h̄

= Gh,η�B, (5)

Gs,η = LxLygμBnB(εη)

4π2l2
E

, Gh,η = LxLygμBεηnB(εη)

4π2l2
E h̄

,

where nB(ε) = (eε/kBT − 1)−1 is the Bose-Einstein distri-
bution, Gs,η and Gh,η are respectively the spin and heat
conductance (from the pair of WNs labeled by η) in the
linear transport region. The contributions from higher MLLs
(n � 1) are negligible when gμB�B 
 2h̄

√
λη so that the

energy window is within the energy gap between the first
MLLs ε±

η,1(qz), as shown in Fig. 5(b). Apparently, the spin
(heat) conductance is linear in the electric field gradient as
Gs(h),η ∝ l−2

E ∝ |E | due to the MLL degeneracy. Therefore, the
MCA results in the positive and linear spin (heat) conductance,
namely, the negative spin (heat) resistance as Rs(h),η ∝ |E |−1.
Because the ballistic magnon transport can be realized [46],
these results are experimentally detectable and can serve as
the signatures of the MCA.

VI. DISCUSSION

Before concluding this paper, we would like to make the
following remarks.

(i) The transport results are valid for any number of pairs
of WNs as long as WMs are type-I because the contributions of
zeroth MLLs from different pairs of WNs are additive. Thus,
the total spin (heat) conductance is simply Gs(h) � ∑

η Gs(h),η,
due to different pairs of WNs labeled by η. Transport of
type-II WMs can be complicated because magnons can
also be transported through the higher MLLs so that one
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cannot distinguish the zeroth MLL from higher ones (see
Appendix E).

(ii) The linear spin and heat conductance from the MCA
indicates that electric field gradient can be used to control
magnon transport. In the diffusive regime where the sample
length is much larger than the magnon mean free path, the
electric field dependence of spin and heat conductance should
be sensitive to the detailed scattering processes. In fact, it was
recently shown that the linear magnetoconductance can exist
in disordered Weyl semimetals [47]. How it works for WMs
is an open question.

(iii) Besides the transport measurement, one can also study
the WMs by examining WNs and magnon arcs detectable by
inelastic neutron scattering that was successfully used to probe
the magnon bands of a topological magnon insulator [12].

(iv) There is a clear difference between the MCA and
the electronic chiral anomaly. Instead of the parallel electric
and magnetic fields used in the electronic chiral anomaly, the
inhomogeneous electric and magnetic fields in the MCA are
perpendicular to each other.

VII. CONCLUSION

In conclusion, stacked honeycomb ferromagnets can be
both type-I and type-II WMs. Magnonic states can be
quantized into MLLs in a proper inhomogeneous electric
field through the AC effect. The MCA results in the linear
dependence of spin and heat conductance on the electric
field gradient when mutually perpendicular inhomogeneous
electric and magnetic fields are applied. Our results provide
new avenues to probe WMs and to control magnon transport
by electric fields.
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APPENDIX A: MAGNON HAMILTONIAN

According to the Holstein-Primakoff transformation [36],
the spin operators are related to the magnon operators as
S+

i,l = √
2S − ni,lci,l and S−

i,l = c
†
i,l

√
2S − ni,l , where ni,l =

c
†
i,lci,l , S±

i,l = Sx
i,l ± iS

y

i,l , and c
†
i,l and ci,l are magnon creation

and annihilation operators satisfying the boson commutation
relations. Substituting the transformation to Eq. (1), the spin
Hamiltonian is transformed to a magnon Hamiltonian,

H = −JS
∑
〈i,j〉,l

(c†i,lcj,l + H.c.) − DS
∑

〈〈i,j〉〉,l
(iνij c

†
i,lcj,l + H.c.)

(A1)
+

∑
i,l

Vic
†
i,lci,l −

∑
i,〈l,l′〉

JiS(c†i,lci,l′ + H.c.),

where Vi = 3JS + 2KiS + 2JiS is the sublattice-dependent
on-site energy and high-order magnon-magnon interaction
terms are neglected. Under the Fourier transformation ak =√

2/N
∑

i∈A,l e
ik·r i,l ci,l and bk = √

2/N
∑

i∈B,l e
ik·r i,l ci,l ,

where i ∈ A (B) for lattice sites on sublattice A (B) and N

is the total number of lattice sites, the magnon Hamiltonian
Eq. (A1) is block diagonalized in momentum space as
H = ∑

k c
†
kH(k)ck, where ck = (ak,bk)T and

H(k) = ε0(k)I +
∑

β=x,y,z

hβ(k)σβ. (A2)

The various terms here are ε0(k) = 3JS + K+S +
J+S(1 − cos kz), hx(k) = −JS

∑3
α=1 cos(k · aα), hy(k) =

−JS
∑3

α=1 sin(k · aα), and hz(k) = 2DS
∑3

α=1 sin(k · bα) +
K−S + J−S(1 − cos kz). Generally speaking, a system with
both time-reversal (T ) and inversion (P) symmetries can
be a Dirac semimetal instead of a Weyl semimetal because
T P imposes a double degeneracy on energy bands and the
nontrivial band crossing involves four energy bands. There is
no Kramer degeneracy for a magnetic system due to the
intrinsic violation of time-reversal symmetry for magnetic
order as well as T 2 = 1 for spin-1 magnons [19]. Thus topo-
logical magnetic semimetals are in general Weyl semimetals.
The inversion symmetry in the current model is also broken
because of the anisotropic interlayer exchange interaction
(J− = 0) and anisotropy (K− = 0) for the two sublattices so
that PH(k)P−1 = H(−k), where P = σx is the irreducible
representation of the inversion operator.

The two energy bands ε±(k) = ε0(k) ±
√∑

β h2
β(k) given

by Eq. (A2) cross each other only when hx(y,z)(k) = 0. This
can happen on HKH and H′K′H′ of the first bulk BZ be-
cause hx(y)(k) = 0 and hz(k) = ±3

√
3DS + K−S + J−S(1 −

cos kz) for k = (±4π/3
√

3,0,kz). Therefore WNs are located
at k±

1 = (−4π/3
√

3,0, ± cos−1 f1) and k±
2 = (4π/3

√
3,0, ±

cos−1 f2), with fη = K−/J− + 1 + (−1)η3
√

3D/J− for η =
1 or 2. Conditions of |fη| � 1 result in the WM phases and
four phase boundaries of K− = ±3

√
3D (solid lines) and

K− + 2J− = ±3
√

3D (dashed lines) in Fig. 2. Otherwise the
two magnon bands are gapped.

APPENDIX B: DIPOLE-DIPOLE INTERACTION

The NN intralayer and interlayer magnetic dipole-dipole
interactions (DDIs) in stacked honeycomb ferromagnets are

3

9

6ε

(a)

U UΓ– – –

(b)

ZZ Γ– – – 3

9

6ε

FIG. 6. Density plots of the front (100) surface spectral function
along Z̄	̄Z̄ and Ū	̄Ū for the topological magnon insulator whose
model parameters are specified in Appendix D.
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7ε
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4.5
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6
ε

ZZ Γ– – –

kz

FIG. 7. (a) Energy bands along H′K′H′ for WMs with J+ = 2D, 5D, and 7D, while the other model parameters are specified in Appendix E.
(b) Density plot of the front (100) surface spectral function for the type-II WM with J+ = 7D in panel (a) and along Z̄	̄Z̄. (c) MLLs of the
type-II WM under an inhomogeneous electric field specified in Appendix E. The red curve is the zeroth MLL.

described by the following Hamiltonians:

H intra
D =

∑
〈i,j〉,l

g2μ2
B

r3
ij

(
Si,l · Sj,l − 3(Si,l · r ij )(Sj,l · r ij )

r2
ij

)
,

H inter
D =

∑
i,〈l,l′〉

g2μ2
B

d3
ll′

(
Si,l · Si,l′ − 3(Si,l · d ll′ )(Si,l′ · d ll′ )

d2
ll′

)
,

(B1)

where r ij and d ll′ are vectors connecting the NN intralayer and
interlayer lattice sites [48], respectively, so that rij = dll′ = 1.
Under the Holstein-Primakoff transformation and the Fourier
transformation, the total Hamiltonian (with DDIs but without
magnon-magnon interactions) is

H̃ = H + H intra
D + H inter

D =
∑

k

�
†
kH̃(k)�k, (B2)

where �k = (ak,bk,a
†
−k,b

†
−k)T is the Nambu basis and

H̃(k) =

⎛⎜⎜⎜⎜⎝
ε̃0(k) + h̃z(k) h̃x(k) − ih̃y(k) 0 f̃ (k)

h̃x(k) + ih̃y(k) ε̃0(k) − h̃z(k) f̃ (−k) 0

0 f̃ ∗(−k) ε̃0(−k) + h̃z(−k) h̃x(−k) + ih̃y(−k)

f̃ ∗(k) 0 h̃x(−k) − ih̃y(−k) ε̃0(−k) − h̃z(−k)

⎞⎟⎟⎟⎟⎠. (B3)

The various terms in Eq. (B3) are ε̃0(k) = ε0(k)/2 + g2μ2
BS(1 + 2 cos kz)/2, h̃x(k) = hx(k)/2 − g2μ2

BS
∑3

α=1 cos(k · aα)/4,
h̃y(k) = hy(k)/2 − g2μ2

BS
∑3

α=1 sin(k · aα)/4, h̃z(k) = hz(k)/2, and f̃ (k) = −3g2μ2
BS

∑3
α=1 ei2θα e−ik·aα /4, where θ1 = 3π/2,

θ2 = π/6, and θ3 = 5π/6. Now we focus on k = (±4π/3
√

3,0,kz) on HKH and H′K′H′, where WNs exist in the absence of
DDIs. The four eigenvalues given by Eq. (B3) are

ε̃1(k) = ε̃0(k) + 3
√

3DS

2
+ |K−S + J−S(1 − cos kz)|

2
,

ε̃2(k) = ε̃0(k) + 3
√

3DS

2
− |K−S + J−S(1 − cos kz)|

2
,

ε̃3(k) = ε̃0(k) − 3
√

3DS

2
+

√
81g4μ4

BS2/4 + [K−S + J−S(1 − cos kz)]2

2
,

ε̃4(k) = ε̃0(k) − 3
√

3DS

2
−

√
81g4μ4

BS2/4 + [K−S + J−S(1 − cos kz)]2

2
. (B4)

Apparently, ε̃1(k) and ε̃2(k) can cross each other when

K−S + J−S(1 − cos kz) = 0. (B5)

However, ε̃3(k) and ε̃4(k) are gapped for nonvanishing DDI. Moreover ε̃2(k) and ε̃3(k) can cross each other when

3
√

3DS − |K−S + J−S(1 − cos kz)|
2

−
√

81g4μ4
BS2/4 + [K−S + J−S(1 − cos kz)]2

2
= 0, (B6)

and if DDIs vanish, this condition just recovers the phase
diagram (Fig. 2). Therefore, we can conclude that our main

results survive in the presence of DDIs but the phase diagram
and positions of WNs are modified as expected. Because the
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FIG. 8. (a)–(c) Energy bands for nodal-line magnons specified in Appendix F. Nodal lines are marked by the red curves.

DDI is usually much weaker than the other interactions studied
in the Hamiltonian Eq. (1), it is reasonable to omit the DDI.
It has been shown that theoretical models without DDIs can
well describe the experimental results [3,12].

APPENDIX C: CHERN NUMBER

One can view the three-dimensional system as coupled mul-
tiple two-dimensional subsystems: H(k) = ∑

kz
Hkz

(kx,ky),
where kz is the subsystem index. In order to elaborate the
existence of topologically protected surface states in both WM
and topological magnon insulator phases, we calculate the
Chern number of the subsystem described by Hkz

(kx,ky) for

(b)(a)

kx

ky
kz

kx

ky
kz

Г
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K
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A H
H’

H’

H’
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H’

H

H

H

H

Г

A

K

H

K’

H’

A H
H’

H’

H’

H’

H’

H

H

H

H

Г

Z

Z

–

–

–

U–

U–

U–

U–

Г

Z

Z

–

–

–

U–

U–

U–

U–

(d)(c)

0 1
C

kz

–

0

ky

kz

–

0

ky C
U UZ– – – 0 1U UZ– – –

FIG. 9. (a) and (b) Positions of WNs in Figs. 3(a) and 3(b) are
schematically indicated by the red and blue dots (for chirality ±1) in
the first bulk BZ and the first (100) surface BZ. (c) and (d) Density
plots of the corresponding front (100) surface spectral functions in
the first (100) surface BZ are shown in the left panels. The red curves
connecting WNs are magnon arcs. The corresponding Chen numbers
C(kz) are shown in the right panels.

fixed kz. The Chern number as a function of kz is

C(kz) =
∑
η=1,2

(−1)η

2
sgn[(−1)η3

√
3D + K−

+ J−(1 − cos kz)]. (C1)

In the WM phases, the Chern number changes from 0 to ±1
or vice versa when the constant kz plane passes through a WN
in momentum space. Therefore, the topologically protected
surface states exist between WNs as shown in Figs. 3(e)
and 3(f). In the topological magnon insulator phase, C(kz) =
±1 for all kz and topologically protected surface states exist
in the magnon bulk band gap (see Appendix D). In the trivial
phase, C(kz) = 0 for all kz.

APPENDIX D: TOPOLOGICAL MAGNON INSULATOR

To visualize the topologically protected surface states of
topological magnon insulators, we compute the front (100)
surface spectral function for model parameters D = 0.2J ,
K+ = 12D, J+ = 2D, and (K−,J−) = (D,0.5D) in the topo-
logical magnon insulator phase (the green region in Fig. 2) with
C(kz) = 1 for all kz. The density plot of the front (100) surface
spectral function along Z̄	̄Z̄ and Ū	̄Ū of the first (100) surface
BZ are respectively shown in Figs. 6(a) and 6(b). As expected,
the bulk states are gapped and topologically protected surface
states exist in the bulk band gap.

APPENDIX E: TYPE-II WEYL MAGNON

In the effective Weyl Hamiltonian Eq. (2), the third term
gives a Weyl cone while the second term tilts the Weyl cone
along the kz direction in momentum space. According to the
criteria of the type-II Weyl semimetal in Ref. [41], we obtain
the condition for WMs becoming type-II in our model as
|u±

η,z| > |v±
η,z| ⇒ |J+| > |J−|. To confirm this result, we com-

pute the magnon bands for the model parameters D = 0.2J ,
K+ = 12D, (K−,J−) = (D,5D), and J+ = {2D,5D,7D}. In
the current case, there is a pair of WNs located on H′K′H′
of the first bulk BZ. Therefore, we plot the magnon bands
along H′K′H′ and the results are shown in Fig. 7(a). Indeed,
the system changes from the type-I WM to the type-II WM at
J+ = 5D = J− where one magnon band is flat along H′K′H′.
For J+ = 7D > J−, it is clearly shown that the Weyl cones
are tilted to be type-II.
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Because the tilt of the Weyl cone does not change its
band topology, topologically protected surface states also exist
between WNs in type-II WMs. In Fig. 7(b), we show the
front (100) surface spectral function of the type-II WM with
J+ = 7D in Fig. 7(a) along Z̄	̄Z̄ of the first (100) surface BZ.
Apparently, the type-II WNs and surface states are identified.
Under the inhomogeneous electric field E = (Ex,0,0), with
E = 1/100

√
3 in units of h̄c2/gμB , MLLs of the type-II WM

are shown in Fig. 7(c). The zeroth MLL (marked by the red
curve) is still chiral but cannot be separated from higher MLLs,
because there is no band gap between the first MLLs.

APPENDIX F: NODAL-LINE MAGNON

At the phase boundary crossing points (K−/D,J−/D) =
(±3

√
3,0) and for k = (∓4π/3

√
3,0,kz), hx(y,z)(k) = 0 for

all kz. Namely, two bands cross on nodal lines of H′K′H′
and HKH, respectively, so that the system becomes nodal-line
magnons. In order to visualize these nodal lines, we compute
the energy bands for the system at two phase boundary
crossing points as shown in Figs. 8(a) and 8(b), while the
other model parameters D = 0.2J , K+ = 12D, and J+ = 2D

are fixed. The nodal lines are marked by red curves. When
K− = D = 0 (with the other parameters unchanged), the two
points merge together and the two nodal lines coexist as shown
in Fig. 8(c).

APPENDIX G: MAGNON ARC

For the energy bands in Figs. 3(a) and 3(b), WNs of
chirality ±1 in the first bulk BZ and their projection in the
first (100) surface BZ are respectively denoted by the red
and blue dots in Figs. 9(a) and 9(b). In order to visualize
the magnon arcs formed by topologically protected surface
states near the WN energy on sample surfaces, we compute
the corresponding front (100) surface spectral functions within
the first (100) surface BZ for the energies ε = ε1 [for Fig. 9(a)]
and (ε1 + ε2)/2 [for Fig. 9(b)], as shown in the left panels
of Figs. 9(c) and 9(d). Apparently, the surface states with
high density (red color) on sample surfaces form magnon arcs
that connect WNs of opposite chirality. The corresponding
Chern numbers C(kz) are computed according to Eq. (C1)
and shown in the right panels of Figs. 9(c) and 9(d). Indeed,
the magnon arcs accompany nonzero Chern numbers as
expected.
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