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Using rf voltage induced ferromagnetic resonance to study the spin-wave density of states
and the Gilbert damping in perpendicularly magnetized disks
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We study how the shape of the spin-wave resonance lines in rf voltage induced FMR can be used to extract
the spin-wave density of states and the Gilbert damping within the precessing layer in nanoscale magnetic tunnel
junctions that possess perpendicular magnetic anisotropy. We work with a field applied along the easy axis to
preserve the cylindrical symmetry of the uniaxial perpendicularly magnetized systems. We first describe the
experimental setup to study the susceptibility contributions of the spin waves in the field-frequency space. We
then identify experimentally the maximum device size above which the spin waves confined in the free layer can
no longer be studied in isolation as the linewidths of their discrete responses make them overlap into a continuous
density of states. The rf voltage induced signal is the sum of two voltages that have comparable magnitudes: a
first voltage that originates from the linear transverse susceptibility and rectification by magnetoresistance and a
second voltage that arises from the nonlinear longitudinal susceptibility and the resultant time-averaged change
of the exact micromagnetic configuration of the precessing layer. The transverse and longitudinal susceptibility
signals have different dc bias dependencies such that they can be separated by measuring how the device rectifies
the rf voltage at different dc bias voltages. The transverse and longitudinal susceptibility signals have different line
shapes; their joint studies in both fixed field-variable frequency, or fixed frequency-variable field configurations
can yield the Gilbert damping of the free layer of the device with a degree of confidence that compares well with
standard ferromagnetic resonance. Our method is illustrated on FeCoB-based free layers in which the individual
spin waves can be sufficiently resolved only for disk diameters below 200 nm. The resonance line shapes on
devices with 90-nm diameters are consistent with a Gilbert damping of 0.011. A single value of the damping
factor accounts for the line shape of all the spin waves that can be characterized. This damping of 0.011 exceeds
the value of 0.008 measured on the unpatterned films, which indicates that device-level measurements are needed
for a correct evaluation of dissipation.
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I. INTRODUCTION

The frequencies of the magnetization eigenmodes of
magnetic body reflect the energetics of the magnetization.
As a result, the frequency-based methods—the ferromag-
netic resonances (FMR) [1] and more generally the spin-
wave spectroscopies—are particularly well designed for the
metrology of the various magnetic interactions. In particular,
measuring the Gilbert damping parameter α that describes the
coupling of the magnetization dynamics to the thermal bath,
specifically requires high-frequency measurements. There are
two main variants of these resonance techniques. The so-called
conventional FMR and its modern version, the vector network
analyzer [2] (VNA)-FMR, are established techniques to har-
ness the coupling of microwave photons to the magnetization
eigenmodes to measure to anisotropy fields [1], demagnetizing
fields, exchange stiffness [3], interlayer exchange [4], and
spin-pumping [5], most often at film level. More recent meth-
ods, like the increasingly popular spin-transfer-torque-(STT)-
FMR, are developed [6] to characterize the magnetization
dynamics of magnetic bodies embodied in electrical devices
possessing a magnetoresistance of some kind.

In conventional FMR or VNA-FMR, the community is well
aware that the line shape of a resonance is more complicated
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than simple arguments based on the Landau-Lifshitz-Gilbert
equation would tell. There are, for instance, substantial contri-
butions from microwave shielding effects [7] (“eddy currents”)
for conductive ferromagnetic films [8] or ferromagnetic films
in contact with (or capacitively coupled to) a conductive layers.
A hint to this effect is, for instance, to compare the line
shapes [8] for the quasiuniform precession mode and the first
perpendicular standing spin-wave modes that occur in different
resonance conditions. Note that the experimental line shapes
are already complex in VNA-FMR despite the fact that the
dynamics is induced by simple magnetic fields supposedly
well controlled.

In contrast, STT-FMR methods rely on torques (spin-orbit
torques (SOT) [9] or STT) that have less hindsight that
magnetic fields or that are the targeted measurements. These
torques are related to the current across the device and the
experimental analysis generally assumes that this current is in
phase with the applied voltage. This implicitly assumes that the
sample is free of capacitive and inductive responses, even at the
microwave frequencies used for the measurement. A careful
analysis is thus needed when the STT-FMR methods analyze
the phase of the device response to separate the contribution
of the different torques [6,10,11]. Besides, the quasiuniform
mode is often the only one to be analyzed despite the fact that
the line shapes of the higher frequency modes can be very
different [10]. Finally, an external field is generally applied in
a direction that is not a principal direction of the magnetization
energy functional [12]. While this maximizes the signal,
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unfortunately, it makes numerical simulation unavoidable to
model the experimental responses.

With the progress in MTJ technologies, much larger
magnetoresistances are now available [13], such that signals
can be measured while maintaining sample symmetries,
for instance, with a static field applied collinearly to the
magnetization. In addition, high-anisotropy materials can now
be incorporated in these MTJs. This leads to a priori much
more uniform magnetic configurations in which analytical
descriptions are more likely to apply. In this paper, we revisit
rf voltage induced FMR in a situation where the symmetry
is chosen so that all torques should yield a priori the same
canonical line shape for all spin waves excited in the system.
We use PMA MTJ disks of sizes 500 nm, on which a
quasicontinuum of more that 20 different spin-wave modes
can be detected, down to sizes of 60 nm where only a few
discrete spin-wave modes can be detected. We discuss the line
shapes of the spin-wave signals with the modest objective of
determining if at least the Gilbert damping of the dynamically
active magnetic layer can be reliably extracted. We show
that the linear transverse susceptibility and the nonlinear
longitudinal susceptibilities must both be considered when
a finite dc voltage is applied through the device. We propose
a methodology and implement it on nanopillars made with a
standard MgO/FeCoB/MgO free layer system in which we
obtain a Gilbert damping of 0.011 ± 0.0003. This exceeds
the value of 0.008 measured on the unpatterned film, which
indicates that device-level measurements are needed for a
correct evaluation of dissipation.

The paper is organized as follows. The first section lists the
experimental considerations, including the main properties of
the sample, the measurement setup, and the mathematical post-
processing required for an increased sensitivity. The second
section discusses the origins of the measured resonance signals
and their main properties. The third section describes how the
device diameter affects the spin-wave signals in rf voltage
induced ferromagnetic resonance. The last section describes
how the voltage bias dependence of the spin-wave resonance
signals can be manipulated to extract the Gilbert damping of
the dynamically active magnetic layer. After the conclusion,
an Appendix details the main features of the spectral shapes
expected in ideal perpendicularly magnetized systems.

II. EXPERIMENTAL CONSIDERATIONS

A. Magnetic tunnel junctions samples

We implement our characterization technique on the sam-
ples described in detail in Ref. [14]. They are tunnel junctions
with an FeCoB-based free layer and a hard reference system
based on a well compensated [Co/Pt]-based synthetic antifer-
romagnet. All layers have perpendicular magnetic anisotropy
(PMA). The perpendicular anisotropy of the thick (t = 2 nm)
free layer is ensured by a dual MgO encapsulation and an
iron-rich composition. After annealing, the free layer has an
areal moment of Mst ≈ 1.8 mA and an effective perpendicular
anisotropy field μ0(Hk − Ms) = 330 mT. Before pattering,
standard ferromagnetic resonance measurements indicated a
Gilbert damping parameter of the free layer being α = 0.008.
Depending on the size of the patterned device, the tunnel
magnetoresistance (TMR) is 220% to 250%, for a stack

FIG. 1. Sketch of the experimental setup with an 300 × 300 μm2

optical micrograph of the device circuitry. The given numbers are
the typical experimental parameters for a 300-nm diameter junction.
(Inset) Resistance vs out-of-plane field hysteresis loop for a device
with 300-nm diameter.

resistance-area product is RA = 12 �μm2. The devices are
circular pillars with diameters varied from 60 to 500 nm.
The materials processing and device rf circuitry were opti-
mized for fast switching [14] spin-transfer-torque magnetic
random access memories (STT-MRAM [15]); the quasistatic
dc switching voltage is ≈600 mV. In the present paper, the
applied voltages shall never exceed 100 mV to minimize
spin-transfer-torque effects. The fields will always be applied
along z, which is the easy magnetization axis. The sample will
be maintained in the antiparallel (AP) state.

B. Measurement setup

The pillars are characterized in a setup (Fig. 1) inspired from
spin-torque diode experiments [6] but an electrical bandwidth
increased to 70 GHz. The objective is to identify the regions
in the {frequency, field} space in which the magnetization is
responding in a resonant manner. The device is attacked with
an rf voltage Vrf . A 10-dB attenuator is inserted at the output
port of the synthesizer to improve its impedance matching so
as to avoid standing waves in the circuit. This improves the
frequency flatness of the amplitude of the stimulus arriving at
the device. To ease the detection of the sample’s response, the
rf voltage is pulse-modulated at an ac frequency ωac/(2π ) =
50 kHz (Fig. 1). The current passing through the MTJ has thus
frequency components at the two sidebands ωrf ± ωac. The
ac voltage, which appears across the device, is amplified and
analyzed by a lock-in amplifier. We shall discuss the origin
of this ac voltage in Sec. III. Optionally, the device is biased
using a dc sourcemeter supplying Vdc and measuring Idc.

Figure 2 shows a representative map of the dVac
dHz

response
obtained on a pillar of diameter 300 nm with Vdc = 10 mV. As
positive fields are parallel to the free-layer magnetization, the
spin waves of the free layer appear with a positive frequency
versus field slope, expected to be the gyromagnetic ratio γ0

of the free-layer material (see Appendix). Conversely, the
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 300 nm

FIG. 2. Field derivative of the rectified voltage dVac
dHz

in the
{frequency-field} parameter space for a 300-nm diameter device in
the AP state when the field is parallel to the free layer magnetization.
The linear features with positive (respectively, negative) slopes
correspond to free layer (resp. reference layers) confined spin-wave
modes. Black and white colors correspond to signals exceeding
±0.01 V/T. The one-pixel high horizontal segments are experimental
artifacts due to transient changes of contact resistances.

reference layer eigenmodes appear with a negative slope,
expectedly −γ0, where this time γ0 is the gyromagnetic
ratio of the reference layer material combination. Working
in the AP state is thus a convenient way to easily distinguish
between the spin waves of the free layer and of the reference
layers. Note that the gyromagnetic ratios γ0 of the free-layer
mode and the reference layer modes differ slightly owing to
their difference chemical nature. The free layer has a Landé
factor g = 2.085 ± 0.015 where the error bar is given by the
precision of the field calibration; the reference layer modes are
consistent with a 1.2% larger gyromagnetic ratio. The accuracy
of this latter number is limited only by the signal-to-noise ratio
in the measurement of the reference layer properties. Looking
at Fig. 2, one immediately notices that the linewidths of the
reference layer modes are much broader than that of the free
layer. While the linewidth of the reference layer modes will
not be analyzed here, we mention that this increased linewidth
is to be expected for reference layers that contain heavy metals
(Pt, Ru) with large spin-orbit couplings, hence larger damping
factors [16].

C. Experimental settings

In practice, we choose an applied field interval of
[−110,110 mT], which is narrow enough to stay in a state
whose resistance is very close to that of the remanent AP
state. The frequency ωrf/(2π ) is varied from 1 to 70 GHz;
we generally could not detect signals above 50 GHz. The

f − γ0Hz

2π

Hz (b)

(a)

FIG. 3. Illustration of the dynamic range improvement by self-
conformal averaging (Sec. II D 2). The procedure is implemented
on a 300-nm diameter device to evidence the free-layer modes.
(Bottom) Field derivative of the ac signal in the rotated frame in
which the modes with df

dHz
= γ0

2π
should appear as vertical lines. (Top)

Comparison of a single field frequency scan (red) with the average
over all scans as performed in the ω = γ0Hz direction. Note that
the signal of the lowest frequency mode (which corresponds to the
quasiuniform precession) disappears near zero field, at 5 mT (see the
apparent break in the middle of the most left line in the bottom panel).

practical frequency range 2π × 50 GHz/γ0 ≈ 1.6 T is much
wider that our accessible field range. For wider views of the
experimental signals (for instance when the spin-wave density
of states is the studied thing), we shall thus prefer to plot
them versus frequency than versus field. The response is
recorded pixel by pixel in the {frequency, field} space. The
typical pixel size is {δHz × δf } = {1 mT × 50 MHz}. The
field and frequency resolutions are thus comparable (indeed
2π × δf/γ0 = 1.7 mT).

D. Signal conditioning

1. Mathematical post-treatments

Finally, despite all our precautions to suppress the rectifying
phenomena that do not originate from magnetization dynam-
ics, we have to artificially suppress the remaining ones. This
was done by mathematical differentiation, and we generally
plot dVac

df
or dVac

dHz
in the experimental figures (Figs. 2–5).

2. Dynamic range improvement by self-conformal averaging

A special procedure (Fig. 3) is applied when a better signal
to noise ratio is desired, while the exact signal line shape and
amplitudes are not to meant to be looked at. This procedure
harnesses the fact that the normalized shape of the sample’s
response is essentially self-conformal when moving across a
line with dω

dHz
= γ0 in the {frequency, field} parameter space

(see Appendix). The procedure consists in calculating the
following primitive:

s(f0) = 1

2γ0H max
z

∫
contour

dVac

dHz

df, (1)
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in which the integration contour is the segment linking the
points (−H max

z ,f0 − γ0H
max
z ) and (H max

z ,f0 + γ0H
max
z ) in the

{field, frequency} parameter space. Such contours appear as
pixel columns in Fig. 3(b). This primitive [Eq. (1)] is efficient to
reveal the free-layer spin-wave modes that yield an otherwise
too small signal. For instance, when only seven modes can
be detected in single field spectra [Fig. 3(a)], the averaging
procedure can increase this number to typically above 25.
The averaging procedure is also effective in suppressing the
signals of the reference layer as these layers average out over
a contour designed for the free-layer mode when in the AP
state. However, as the linewidth of the free-layer modes is
proportional to the frequency, it is not constant across the
contour; the higher signal to noise ratio is thus unfortunately
obtained at the expense of a distorted (and unphysical) line
shape. Note also that this procedure can not be applied to
the quasiuniform precession mode as will be explained in
Sec. III D 2.

III. ORIGIN AND NATURE OF THE RECTIFIED SIGNAL

Let us now discuss the origin of the demodulated ac voltage.
In this section, we assume that the reference layer magneti-
zation is static but not necessarily uniformly magnetized. We
can thus express any change of the resistance by writing δR =
δR
δM

δM , where δ has to be understood as a functional derivative
with respect to the free-layer magnetization distribution.

A. The two origins of the rectified signals

The ac signal can contain two components V1,ac and V2,ac

of different physical origins [17]. The first component is the
“standard” STT-FMR signal: the pulse-modulated rf current is
at the frequency sidebands ωrf ± ωac and it rectifies to ac any
oscillation of the resistance δRrf occurring at the frequency
ωrf . We simply have V1,ac = δRrf × iωrf±ωac .

The second ac signal (V2,ac) is related to the change of
the time-averaged resistance due to the population of spin
waves created when the rf current is applied [12]. Indeed,
the time-averaged magnetization distribution is not the same
when the rf is on or off. This change of resistance δRac can be
revealed by the (optional) dc current Idc passing through the
sample, i.e., V2,ac = δRac × Idc.

Note that a third rectification channel [18] can be obtained
by a combination of spin pumping and inverse spin Hall effect
in in-plane magnetized systems [19]. This third rectification
channel yields symmetric Lorentzian lines when applied to
PMA systems in out-of-plane applied fields ( see Eq. (23) in
Ref. [18] ) . Besides, the spin pumping is known to be largely
suppressed by the MgO tunnel barrier [20], such that we will
consider that we can neglect this third rectification channel
from now on. In summary, we have

V1,ac = Vrf

R + 50

δR

δM
δMrf and (2)

V2,ac = Vdc

R + 50

δR

δM
δMac. (3)

This has important consequences.

B. Compared signal amplitudes in the P and AP states

The first important consequence of Eqs. (2) and (3) is
that the signal amplitude depends on the nature of the
micromagnetic configuration. As intuitive, both V1,ac and V2,ac

scale with how much the instantaneous device resistance
depends on its instantaneous micromagnetic configuration.
This is expressed by the sensitivity factor δR

δM
, which is

essentially a magnetoresistance. We expect no signal when
the resistance is insensitive to the magnetization distribution
at first order (i.e., when δR

δM
≡ 0).

In our samples, the shape of the hysteresis loop (Fig. 1)
seems to indicate that the free layer magnetization is very
uniform when in the parallel (P) state. Consistently, the
experimental rectified signals were found to be weak when
in the P state. Conversely, there is a pronounced curvature in
the AP branch of the R(Hz) hysteresis loop (see one example
in the inset of Fig. 1). This indicates that the resistance is much
dependent on the exact magnetization configuration when in
the AP state. Consistently, this larger δR

δM
in the AP state is

probably the reason why the rectified signal is much easier to
detect in the AP state for our samples.

C. Bias dependence of the rectified signals

The second important consequence of Eqs. (2) and (3)
concerns the dependence of the rectified ac signals V1,ac and
V2,ac on the dc and rf stimuli. As δMrf scales with the applied rf
torque according to a linear transverse susceptibility [�e(χxx),
see Appendix], V1,ac is expected to scale with the rf power Vrf

2

[see Eq. (2)] independently from the dc bias, i.e., we have

V1,ac ∝ Vrf
2.

In contrast, δMac is related to a longitudinal susceptibility and
is thus quadratic with the rf torques (see Appendix). Using
Eq. (3), we thus expect the following bias dependence:

V2,ac ∝ Vrf
2Vdc.

D. Peculiarities of the quasiuniform precession (QUP) mode

The last important consequence of Eqs. (2) and (3) concerns
specifically the quasiuniform precession (QUP) mode that
shows a peculiar ac signal.

1. Quasiabsence of STT-FMR like signal for the
quasiuniform precession mode

In the idealized macrospin case (see Appendix), the uniform
precession is perfectly circular with no rf variation of Mz at
any order. If the fixed layer was uniformly magnetized along
exactly z, this would lead to V1,ac = 0 such that the signal of the
QUP mode would be given by purely V2,ac. This qualitatively
“pure V2,ac character” is confirmed experimentally by the fact
that the signal of the QUP mode systematically changes sign
with Vdc in our sample series (not shown).

2. Strong dependence of the QUP signal amplitude
with the applied field

In addition, the experimental signal of the quasiuniform
mode is found to disappear at low fields [see Figs. 2, 3(b),
4(a), and 4(b)], exactly at the apex of the AP branch of the
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(a) (b)

(c)

(e)

(f)

(d)

FIG. 4. Dependence of the field derivative of the ac voltage
over the device diameter. (Top) Full spectral dependence in the
window [6,40GHz] × [−90,90 mT] for 90-nm (left) and 500-nm
(right) diameter devices. (Bottom) Frequency dependence of the field
derivative of the ac voltage after self-conformal averaging for various
device sizes. The signal amplitudes have been normalized to ease
their comparison.

hysteresis loop (Fig. 1), i.e., for the field leading specifically
to dR

dHz
= 0. Moreover, the amplitude of the ac signal of the

QUP mode appears to be essentially linearly correlated with
the loop slope dR

dHz
(not shown). For instance, the V2,ac of the

QUP mode changes sign when the applied field crosses the
apex of the R(Hz) loops (Fig. 1).

The reason stems probably from the sensitivity factor δR
δM

and its correlation with the loop slope dR
dHz

; in some sense, a
large loop slope should translate in a large sensitivity factor.
While a numerical evaluation of this correlation goes beyond
the scope of this paper, we stress that if the magnetization
was perfectly uniform there would be a one-to-one correlation
between loop slope dR

dHz
and magnetoresistance sensitivity

factor δR
δM

. This trend remains qualitatively true for the QUP
mode. Indeed, as the hysteresis loop is monitoring the spatial
average of the magnetization, it is more insightful for the
uniform mode than for any other (higher-order) modes whose
dynamic profiles spatially average to essentially zero [21]; the
correlation between dR

dHz
and δR

δM
is thus expected to be maximal

for quasiuniform changes of the magnetization configuration.
While this property—the disappearance of the QUP mode

signal when dR
dHz

= 0—can be used to distinguish the QUP
mode from the higher-order spin waves, the pronounced field
dependence of the QUP signal complicates the analysis, as it
prevents to conveniently analyze the field derivative of the ac

signal (Sec. II D 1). In the remainder of this paper we shall
focus on only higher-order modes to avoid such difficulties.

E. Signals for nonuniform spin waves

Before analyzing the spin-wave density of states (Sec. IV),
let us comment on the amplitude of the STT-FMR-like signal
V1,ac for the nonuniform spin waves. In the perpendicular mag-
netization state, these spin waves have a circular precession
[22]. By symmetry, the resistance is not expected to change
during a period of circular precession when in the perfect
collinear cases and for radial spin waves maintaining the
cylindrical symmetry of the system. In other words, when
the dynamical magnetization of the eigenmode maintains
the cylindrical symmetry and when the free and reference
layers equilibrium magnetizations follow �Mfree × �Mref = �0
everywhere in the (xy) plane, with × being the conventional
vector product) the device resistance is not expected to
oscillate. While we can not identify to what extent we
depart from this ideal situation, we speculate that this perfect
collinearity does not happen in practice at least because of
finite thermal fluctuations. The effect of thermal fluctuations
on the device resistance is not averaged out for nonuniform
spin waves, while it could be essentially averaged out for the
QUP mode analyzed earlier. In practice a finite variation of
the resistance δRrf �= 0 is always present during a precession
period for a nonuniform spin wave. This provides a finite
sensitivity to any spin-wave mode. This resistance variation at
ωrf has the spectral shape of a transverse susceptibility term
�e(χxx) (see Appendix).

IV. SPIN-WAVE DENSITY OF STATES AGAINST
LATERAL CONFINEMENT

Any reliable analysis of a spectral line shape or linewidth
requires to determine first how many spin waves contribute
to the line shape under study. Therefore, before discussing the
line shapes of the individual spin-wave modes, let us determine
how the lateral confinement influences the measured rectified
signal. The impact of the device diameter on the spectral
signals is reported in Fig. 4.

A. Spin waves within the references layers

Figure 4 indicates that the modes of the reference layers
have frequencies that are almost not affected by the device
diameter. This fact is related to the well compensated character
of the synthetic antiferromagnet that composes the reference
layers. Indeed, the internal demagnetizing fields compensate
to some extent, such that they do not influence the frequency
of the acoustical mode of a SAF as much as the anisotropies
and the interlayer exchange couplings do.

B. Spin waves within the free layer

Conversely, the frequencies of the modes of the free layer
are strongly affected by the device diameter (Fig. 4). First,
the modes are pushed to higher frequencies as the device is
shrunk. At remanence, the lowest frequency mode is at fQUP =
12.3 GHz for a diameter of 500 nm; it reaches 19.5 GHz for
60-nm devices (not shown). Second, the frequency spacing
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TABLE I. Summary of the expected line shapes and linewidths for the different signals that can be encountered in rf voltage induced FMR
experiments. A hyphen is inserted when the concept is not applicable.

Signal Spectral Peak-to-peak Full width Zero crossings
shape separation at half maximum separation

Expected signals and their stimulus dependence:
V1,ac ∝ V 2

rf �e(χxx) 2αω - -
V2,ac ∝ V 2

rfVdc 	Mz - 2αω -

Signal extraction procedure from experiments:
d

dHz
V

exp

1,ac estimated from dV
exp
ac

dHz

∣∣
Vdc=0

d�e(χxx )
dω

- - 2αω

d

dHz
V

exp

2,ac estimated from
[

dV
exp
ac

dHz

∣∣
Vdc �=0

− dV
exp
ac

dHz

∣∣
Vdc=0

]
d�m(χxx )

dω

2√
3
αω - -

between the free layer modes increases substantially when
downsizing the device.

The first effect—increase of fQUP at downscaling—is
indicative of a dependence of some effective fields with
the device diameter. Among the effective fields, the only
ones that vary with the diameter are the exchange fields
(positive contribution to the frequency fQUP if magnetization
is nonuniform), the demagnetizing fields (positive contribution
to the frequency fQUP at downscaling), and the local effective
anisotropy fields in case some process damages alter locally the
interface anisotropy at the perimeter of the free layer (negative
contribution to the frequency fQUP at downscaling) or alter
the local magnetization of the rim of the free layer (positive
contribution to the frequency fQUP at downscaling). The
exchange fields are related to the nonuniformities of either the
static configuration—-the fact that the AP state is not perfectly
uniform as inferred previously from the loop in Fig. 1—or
nonuniformities of the dynamic magnetization, i.e., the fact
that the quasiuniform mode is not a strictly uniform mode.
If the frequency increase was due to the sole demagnetizing
effects, it could be estimated from the demagnetizing factors
of disks [23], which are Nz ≈ 1 − (3π/8)t/a, where t and
a are the thickness and radius of the free layer. However, a
fQUP against 1/a plot (not shown) has a perceivable curvature
near all sizes; an unwise linear fit through fQUP against
the expected γNz would give a slope of ≈2.5 T, which is
obviously too large for the magnetization of the free layer. This
indicates that the sole change of the global shape anisotropy
with the device diameter is insufficient to account for the
increase of fQUP at downscaling: exchange contributions or
nonuniformities induced by process damages also contribute to
the frequencies. Exchange contributions should not contribute
for the largest devices, however, even for those devices the
experimental frequencies are larger than the ones expected
from global shape anisotropy only, which argues for some
process damages. Since the TMR is almost independent of
the device size [14], we can reasonably assume that the
MgO/FeCoB interface is not substantially affected by the
patterning and that consequently the interface anisotropy is
essentially preserved at the rim of the free layer. We conclude
that part of the increase of fQUP at downscaling is due to a
reduced magnetization (magnetically “dead” or weak zone)
near the edges of the free layer. This interpretation is probably
very much stack and process technology dependent, hence it
should not be considered as general.

The second effect—the increased frequency spacing be-
tween the modes at small diameters—is the expected effect of
the confinement of the spin waves and the resulting increase
of the exchange contribution to the mode frequencies [17].
The eigenmodes of perpendicularly magnetized circular disks
are well understood and can be described analytically in a
semiquantitative manner [21,24–28]. The frequency spacing
between the lowest frequency modes scales with γ0HJ , where
HJ = 2Ak2

μ0MS
is a generalized exchange field with A the ex-

change stiffness. The effective wave vector k is reminiscent of
the lateral confinement and reads k2 = (u2

2 − u2
1)/a2 ≈ 9/a2

where u1 and u2 are the first zeros of the first and second Bessel
functions [21]. The lowest frequency spin-wave modes can
be resolved only if their frequency spacing is comparable or
greater than their linewidth 2αγ0(Hz + Hk − Ms + HJ ) (see
Appendix).

This condition can be used to define a critical device
diameter:

a2
crit = 9A

αμ0MS(Hz + Hk − Ms)
. (4)

For large devices with a 
 acrit, we expect to observe a
quasicontinuum of overlapping modes above fQUP, while
discrete nonoverlapping modes are anticipated in the opposite
limit. Typical parameters of an FeCoB-based free layer include
a magnetization of μ0Ms = 1.2 T and a Gilbert damping of
[29] α = 0.01. From the quasiuniform mode frequency, we can
get our effective anisotropy, which is Hk − Ms = 330 kA/m.
If the exchange stiffness of the free layer was bulklike (i.e.,
A = 22 pJ/m) like in Ref. [17], the critical diameter would
be 2acrit = 444 nm. In practice, the small frequency spacings
between the modes of our samples indicate that the exchange
stiffness of our free layer is in the range of 6–7 pJ/m, i.e., well
below the bulk value. This estimate of the exchange stiffness
was deduced assuming perfectly pinned boundary conditions
for the spin waves at the device edge, which is a questionable
[30] assumption. However, the exchange stiffness is anyway
weak in the free layer and this can be also qualitatively
seen directly from the spin-wave spectroscopy: indeed, the
frequency spacing of the lowest modes of the reference layer
system is typically twice larger that the frequency spacing of
the lowest modes of the free layer [see for instance Fig. 3(b)].
While the reason for this small value of the free layer exchange
stiffness is not entirely clear, we emphasize that having such a
small exchange stiffness is not uncommon in magnetic systems
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FIG. 5. Rectified ac signals vs frequency at fixed applied field
(left) or vs field at fixed frequency (right). The plotted data are

d

dHz
V1,ac [black, (a) and (d)] and d

dHz
V2,ac [blue, (b), (c), (e), and (f)] as

estimated according to the formulas of Table I. The arbitrary vertical
scale is the same for all panels. The dotted black lines are separated by
9.5 mT and 270 MHz. The dotted blue lines are separated by 6.1 mT
or 170 MHz. These dotted lines correspond to the expected linewidth
for a damping of 0.011. (b) is measured for a device different from
that of the other panels.

that comprise only a small number of atomic layers, starting,
for instance, from 2 pJ/m for a single layer of iron [31].
Anyway, with these parameters, we expect a clear separation
of the lowest frequency modes at remanence provided that the
device diameter is much smaller than 2acrit = 250 nm.

In practice, for 300- and 500-nm devices a fine structure
can still be detected in the spin-wave density of states [see
Fig. 4(c)] but it is hard to count the modes and guess their
frequencies out of this fine structure. In the remainder of this
paper, we shall thus only consider devices of diameter less
than 200 nm, in which the different spin-wave modes can be
unambiguously resolved [see Figs. 4(e) and 4(f)].

V. LINE-SHAPE EVOLUTIONS WITH BIAS AND
EXTRACTION OF THE GILBERT DAMPING

Let us now compare the shapes of the experimental rectified
signal with those expected (see Appendix). For that purpose
we harness the different bias dependencies (Table I) of the
rectified signals V1,ac and V2,ac to isolate each of them in the
experimental signal Vac. We identify V1,ac to the experimental
curve Vac measured at Vdc = 0, and we construct an estimate
of V2,ac by subtracting Vac measured at Vdc = 0 from that
measured at Vdc �= 0 (see Table I). Note because of this
subtraction, any dependence of the spin-wave frequency with
the dc voltage will prevent the measurement of the voltage
dependence of the damping factor or of the voltage dependence
of the exciting torques.

We illustrate this procedure in Fig. 5 in which we plot the
field derivatives of the so-calculated V1,ac and V2,ac rectified
signals in both fixed field or fixed frequency experimental
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FIG. 6. Statistical view of the Gilbert damping parameters ob-
tained from the fitting of the three lowest spin-wave resonances of
a device of 90-nm diameter. For each applied field, the spectral line
shapes of the quasiuniform mode are fitted using d

dHz
V2,ac function

(red symbols) while the line shapes of the two next modes are fitted
with d

dHz
V1,ac function (blue and black). (a) gathers the values of

the damping parameters that best fit each spectrum recorded at a
given applied field. (b) displays the histogram of the distribution of
these estimates of the Gilbert damping for the nonuniform modes
(dashed-dotted line histogram and its blue Gaussian guide to the eye,
of half width 0.0009) and a Gaussian fit (red curve) of the distribution
for the quasiuniform mode, of half width 0.0015.

conditions for a device of diameter 90 nm. We center the curves
on the second lowest frequency eigenmode since it provides
the largest signals and it is reasonably separated from both the
quasiuniform precession mode and from the other high-order
modes. The obtained experimental V1,ac curves [see Figs. 5(a)
and 5(d)] have the expected line shapes (see Appendix) with
a negative peak surrounded by two tiny positive halos (areas
shaded in red). The separation between the two zero crossings
is 9.5 ± 0.5 mT or 285 ± 10 MHz. The obtained experimental
V2,ac curves also have the expected line shape of the derivative
of a Lorentzian distribution (see Appendix). As expected,
the sign of the response changes with the dc bias voltage.
The separation between the positive and negative maxima
of the distribution are 6.1 ± 0.5mT and 170 ± 10MHz.

These four different ways of measuring the linewidths
[Figs. 5(a), 5(d), 5(b), and 5(e)] are consistent with a free
layer damping of α = 0.011 ± 0.0003. Indeed, this value
of damping would predict linewidths of 2αf = 295 MHz
and 2μ0αω/γ0 = 9.54 mT [materialized as black bars in
Figs. 5(a), 5(d) and 5(d)] and 1.15αf = 171 MHz or
1.15αω/γ0 = 6.21 mT [materialized as blue bars in Figs. 5(b),
5(c), 5(e), and 5(f)].

This proposed value of damping is also consistent with the
linewidths of higher-order spin waves that appear at larger
frequencies but with a lower signal. This is illustrated in
Fig. 6 where a comparison is drawn between the values of
the damping estimated for each applied field from the second
(and most intense) mode and from the third mode for a device
of diameter 80 nm. The used procedure is a direct fit of the
experimental line shapes to the derivative of Eq. (A3) with the
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damping, the resonance frequency, and the signal amplitude as
free parameters. For this specific device, the estimates of the
damping parameter are subjected to a random error of standard
deviation 0.0018 around a mean value of α = 0.0119. It is
interesting to note that the nonlocal contributions [32,33] to
the damping expected for the relatively large wave vectors
of the second and third spin-wave modes seem to be too
small to be observed in our samples. Note that as mentioned
earlier, the same procedure can, in principle, not be applied to
the quasiuniform mode since it exhibits a strong dependence
of the mode amplitude with the field which invalidates the
procedure to some extent. For the sake of completeness of
this paper, we have anyway fitted the experimental QUP
line shapes with the field derivative of Eq. (A4); this is not
possible near zero field, as the corresponding signal vanishes.
The value of the Gilbert damping that would be illegitimately
deduced would be 0.01, i.e., 20% lower than the correct value.
Besides, the estimates from the QUP mode would exhibit
a substantially larger spread in the fit results [compare the
histograms in Fig. 6(b)]. For these two reasons, we consider
that the reliable estimate of the damping is the one extracted
from the nonuniform modes.

Above 100 mV of dc bias, the amplitude of the constructed
experimental V2,ac start to depart from proportionality with Vdc

and a frequency shift is observed, as expected when dc fieldlike
spin torques are applied. This comes with by a distortion of the
line shape, probably linked to the modification of the spin-wave
lifetimes by spin-transfer torque as commonly observed in
in-plane magnetized MTJs [34].

VI. SUMMARY AND CONCLUSIONS

In this paper, we have studied how to use rf voltage induced
ferromagnetic resonance to study the spin-wave density of
states and the Gilbert damping in perpendicularly magnetized
disks embodied in magnetic tunnel junctions. We have applied
the field along the easy axis to preserve the cylindrical
symmetry of the magnetization energy functional. The interest
of this configuration is that all the current-induced torques that
potentially excite the dynamics yield the same type of suscepti-
bility spectral shape. Additionally, this configuration is the sole
in which the applied field and the frequency play similar roles
near FMR so that consistency crosschecks between variable-
field and variable-frequency experiments can be performed to
reveal and suppress potential experimental artifacts.

Working in a situation in which the fixed layer and the
free layer are oppositely magnetized is a convenient way to
classify the spin waves according to their hosting layer, as the
two subsystems have opposite eigenmode frequency-versus-
field slopes. The dc bias dependence of the signal of the
quasiuniform mode is peculiar and can be used to ambiguously
identify the free layer quasiuniform mode in the manifold of
spin waves. The nonuniform (higher-order) spin waves are
easier to analyze, as their amplitudes weakly depend on the
applied field so that field differentiation can be used safely for
background subtraction. Optionally, the dynamic range of the
experiment can be improved by self-conformal averaging of
the resonance spectra.

The unambiguous identification of the spin-wave frequen-
cies requires devices that are sufficiently small to avoid that

the spin-wave modes overlap into a quasicontinuous density of
states. The critical device size is set by the exchange stiffness,
the damping, the magnetization and the effective anisotropy
field. In practice, device diameters below 200 nm are needed
in our low-damped FeCoB-based PMA system.

For each spin-wave mode, the rf voltage induced spin-wave
spectra contain contributions from two different physical
mechanisms. The first one is the standard STT-FMR-like
signal, whose spectral shape is a linear transverse susceptibility
term. It is independent from the dc voltage applied across
the MTJ. The second one is a variation of the time-averaged
magnetic configuration when the rf voltage is applied. It is
proportional to the dc voltage applied across the MTJ and it
has the spectral shape of a nonlinear longitudinal susceptibility.
The bias dependence can be used to separate these two signals.
The analysis of their spectral shape yields the Gilbert damping
within the precessing layer. A single value of the damping
factor is found to account for the line shapes of all studied spin
waves.

The spectra of rf voltage induced rectified voltages for a
vanishing dc voltage bias are in principle sufficient to get the
Gilbert damping of the dynamically active layer. However,
as microwave methods are prone to artifacts, a consistency
check exploiting the bias dependence of the resonance spectra
is useful for a consolidation of the numerical estimation of the
damping.

ACKNOWLEDGMENTS

This work was supported in part by the Samsung Global
MRAM Innovation Program, who provided also the samples.
Critical discussions with Vladimir Nikitin, Jean-Paul Adam,
Joo-Von Kim, and Paul Bouquin are acknowledged.

APPENDIX: SUSCEPTIBILITIES IN AN IDEALIZED
PMA FILM

In this Appendix, our aim is to determine the transverse
and longitudinal microwave susceptibility versus frequency
f and static field Hz for a PMA film as a response to
an harmonic transverse field hx cos(ωt) �ex . We shall write
the equations with this transverse field hx but any other
effect that yields a torque possessing a component transverse
to the static magnetization will yield similar line shapes.
This includes current-induced Oersted-Ampere fields but also
Slonczewski STT and fieldlike STT as soon as the reference
layer magnetization �Mref is not strictly collinear with that of
the free-layer �Mfree. The susceptibility tensor will be used
to deduce the shape of the line expected in rf voltage induced
FMR, as summarized in Table I. Throughout this Appendix, we
assume a dc field Hz perfectly perpendicular to the plane and
a free layer magnetization �M = Mz�ez + mx �ex + my �ey , where
the transverse terms are assumed small and written as complex
numbers in the frequency space. For convenience, we will
use the notation H ′ = Hz + Hk − Ms . We shall also write the
frequencies in field units and define ω′ = ω/γ0. This is meant
to emphasize the fact that the generalized field H ′ and the
generalized frequency ω′ play very similar roles in the FMR of
perpendicularly magnetized macrospin when near resonance.
We shall systematically assume that α � 1 and only keep
the lowest order of the damping terms in the equations. In
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Sec. A 1–A 3, we make the macrospin approximation. This
approximation is discussed in Sec. A 4.

1. Transverse linear susceptibility

Following the usual procedure, we project the linearized
Landau-Lifshitz-Gilbert equation along �ex et �ey :

H ′(my + αmx) + imxω
′ = hxMsα

H ′(mx − αmy) − imyω
′ = hxMs.

We then invert this system of equations to get the susceptibil-
ities mx = χxxhx and my = χyxhx . They are

χxx = MsH
′

H ′2 − ω′2 + 2iαH ′ω′ (A1)

and

χyx = −i
Msω

′

H ′2 − ω′2 + 2iαH ′ω′ . (A2)

Several points are worth to remind. (i) The dc transverse
susceptibilities are χdc

xx = Ms/H
′ and χdc

yx = 0. (ii) The in-
phase transverse susceptibility χxx is peaked at the FMR
condition ω′ = H ′. It reaches χFMR

xx = − 1
2iα

χdc
xx . (iii) When

near the FMR condition, we have χyx ≈ −iχxx . Hence the two
transverse components of the magnetization are in quadrature
and the forced precession is essentially circular. Note that this
holds true despite the fact that the pumping field is linearly
polarized [i.e., along (x) only]. It would also remain true for
other (e.g., STT) pumping torques.

From Eq. (A1) we deduce the classical expressions for the
real and imaginary parts of the transverse susceptibility:

�e(χxx) = MsH
′(H ′2 − ω′2)

4α2H ′2ω′2 + (H ′2 − ω′2)2
, (A3)

�m(χxx) = − 2αMsω
′H ′2

4α2H ′2ω′2 + (H ′2 − ω′2)2
. (A4)

The line shapes given by the above expressions are shown in

Fig. 7. Their main properties are summarized in Table I.

2. Longitudinal nonlinear susceptibility

Let us now express the nonlinear change of the longitudinal
magnetization 	Mz that occurs due to the precession. This can
be viewed as an rf-induced reduction of the remanence. Using
the circularity of the precession near the FMR resonance and
the conservation of the magnetization norm to second order in
mx,y , one gets

	Mz ≈ ||hx ||2
2MS

M2
s H ′2

[H ′2 − ω′2]2 + 4α2H ′2ω′2 , (A5)

where ||hx || is the (constant) amplitude of the applied rf
field. It is worth noticing that the longitudinal loss of the
magnetization is stationary (constant in time) despite the fact
that the magnetization precesses continuously.

3. Line shapes and linewidths of the susceptibilities
and their derivatives

The different susceptibility expressions are plotted in Fig. 7.
The line shape of the functions 	Mz and χxx are essentially

FIG. 7. Transverse susceptibilities, longitudinal susceptibility,
and their derivatives in the PMA macrospin model. The curves
are plotted for α = 0.02 and a resonance condition of unity. The
responses amplitudes have been normalized to ease the comparison
between the different line shapes. The black horizontal segment in
the bottom panel is the FWHM of �m(χxx) and 	Mz or equivalently
the peak-to-peak separation of �e(χxx) (also sketched as the black
square dots). The blue segment sketches the peak-to-peak separation
of d�m(χxx )

dω′ (also sketched as the empty blue square dots). The area
shaped in red is the positive halo that surrounds the main (negative)
peak in d�e(χxx )

dω′ .

determined by their denominator, which are the fast varying
functions of Eqs. (A4) and (A5). As χxx and 	Mz are two
signatures of the same resonance process, their denominators
are equal [see Eqs. (A4) and (A5)] and a simple algebra
confirms that �m(χxx) and 	Mz lead to the same frequency
or field linewidths (half width at half maximum), which are

	ω = 2αω or equivalently, 	Hz = 2αH ′. (A6)

Note that 	ω (respectively, 	Hz) is also the frequency
(respectively, field) spacing between the positive maximum
and negative maximum of �e(χxx) about the FMR condition.

We stress that this linewidth is different from that obtained
by conventional FMR in which people examine the derivative
of the absorption signal d�m(χxx )

dHz
versus Hz. The peak-to-

peak separation of the conventional FMR signal is 	Hz =
2√
3
αH ′ = 2√

3
αω′. The factor 2/

√
3 is 1.1547. The spectral

shapes of �e(χxx) and 	Mz as deduced above are to be used
in the main part of the paper to describe, respectively, V1,ac

and V2,ac (Table I).

4. Linewidth beyond the macrospin approximation

Some words of caution are needed as the calculations done
so far the Appendix are for the uniform precession mode of
a macrospin, while most of our experimental results were
obtained on the higher-order (nonuniform) spin waves. When
modeling nonuniform spin waves, one needs to take into
account additional exchange and dipole-dipole terms.

For nonuniform spin waves in perpendicularly magnetized
system, the exchange fields related to the non uniformity of
the dynamical magnetizations mx and my can be added to H ′

104413-9



THIBAUT DEVOLDER PHYSICAL REVIEW B 96, 104413 (2017)

to form a new generalized field H̃ = H + Hk − Ms + 2Ak2

μ0MS
,

where k is a generalized wave vector [21,26,28]. The additional
exchange contributions act on mx and my on equal footing,
hence they maintain the circularity of the precession. The
Gilbert linewidth for a nonuniform spin wave is simply [35,36]

	ω = αωk

∂ωk

γ0∂H̃
, (A7)

where this equation holds as H̃ is a circular term. As a result
of Eq. (A7), the proportionality of an eigemode linewidth
to its frequency [Eq. (A6)] is not broken by the exchange
contributions in nonuniform spin waves.

Conversely, the directional nature of the dipole-dipole
interaction is such that the related effective fields act differently
on the two dynamical magnetizations mx and my for spin
waves having a nonradial character. As a result, the dynamic
demagnetizing fields can not be simply added to the circular

precession H ′ term and they induce some ellipticity of the
precession of the nonuniform spin waves. Dipole-dipole inter-
actions make the eigenmode frequency nonlinear with the field
(see Eq. (52) in Ref. [22]). For the lowest lying nonuniform
spin wave, the dipole-dipole stiffness field is MSkt/2 with
k ≈ π/a. It is negligible against the generalized field H̃

for the thickness used in practice in PMA systems meant
for spin-torque applications. The precession stays therefore
essentially circular for all the modes observed experimentally
here; we will thus consider that it is legitimate to use Eq. (A6)
and deduce the damping from the ratio of the half frequency
linewidth to the eigenmode frequency.

Finally, we would like to mention that our method is not
restricted to the PMA materials only: it should hold when
the considered spin waves are quasicircular. In particular, this
is the case of exchange-dominated spin waves in in-plane
magnetized systems [37].
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