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Influence of antisite defects and stacking faults on the magnetocrystalline anisotropy of FePt
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We present density functional theory (DFT) calculations of the magnetic anisotropy energy (MAE) of FePt,
which is of great interest for magnetic recording applications. Our data, and the majority of previously calculated
results for perfectly ordered crystals, predict a MAE of ∼3.0 meV per formula unit, which is significantly larger
than experimentally measured values. Analyzing the effects of disorder by introducing stacking faults (SFs) and
antisite defects (ASDs) in varying concentrations we are able to reconcile calculations with experimental data and
show that even a low concentration of ASDs are able to reduce the MAE of FePt considerably. Investigating the
effect of exact exchange and electron correlation within the adiabatic-connection dissipation fluctuation theorem
in the random phase approximation (ACDFT-RPA) reveals a significantly smaller influence on the MAE. Thus
the effect of disorder, and more specifically ASDs, is the crucial factor in explaining the deviation of common
DFT calculations of FePt to experimental measurements.
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I. INTRODUCTION

Storage density of hard disk drives (HDDs) has increased
over 8 orders of magnitude since their first introduction in the
1950s, peaking in more than 100% increase per year in the late
1990s and reaching 100 Gb/in2 in 2002 and, after a period of
slower growth, finally 500 Gb/in2 2010 [1]. This tremendous
achievement was mainly realized through minimization of the
read-write head, thinner recording media and reduced grain
size. However, to keep storage density growing, grain sizes
need to be further reduced which then can be effected by the
superparamagnetic limit. Here the magnetic energy stored in
a single grain, the product of grain volume V and magnetic
anisotropy constant Ku, approaches the size of thermal energy
kBT . The thermal stability requirements have thus shifted the
focus to materials with very high Ku, especially FePt alloys
[2]. While the anisotropy constant of ordered FePt is large
enough to allow storage densities of up to 4 Tb/in2 [3], a further
problem arises with the limited write fields employed by
conventional read-write heads [4]. Two promising solutions to
this problem have been proposed, giving a thermal write assist
using a laserpuls concentrated by near field laser optics [5], or
exchange spring coupled multilayer media [6,7], which reduce
the switching field while maintaining good thermal stability.
A combination of both approaches is especially promising, for
example using FePt and FeRh in a multilayer configuration, so
only a small thermal assist to trigger the first-order magnetic
phase transition of FeRh (see Ref. [8] and references therein)
is needed to write on extremely hard magnetic FePt alloys
[9]. To date, the highest demonstrated recording density of
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1.402 Tb/in2 was reported in 2015 by using FePt with heat
assisted magnetic recording (HAMR) [10].

Stoichiometric FePt exists both in the disordered fcc A1
phase, and the ordered tetragonal L10 phase, where Fe and
Pt layers are alternating along the c direction. The extremely
large magnetic anisotropy energy (MAE) is only found for
the ordered phase, which is stable below ∼1300 ◦C [1]. For
magnetic recording, thin films of the material are mainly
fabricated by co-sputtering from elemental or alloyed targets
[11–15], and by electron beam evaporation [16,17], but
molecular beam epitaxial deposition and other methods are
also feasible [1]. The substrate is mainly MgO(001) and
deposition temperature as well as sputtering gas pressure
have a large effect on the degree of ordering [12]. Growing
extremely highly ordered FePt films with small grains is a
challenging endeavor [1], but extensive research is performed
in order to improve the growth of grains with the easy axis
perpendicular to the film plane using special buffer and seed
layers [18]. This helps with the reduction of the in-plane
components of the magnetization, which are a serious noise
sources in HAMR.

Computationally, it is of course much easier to investigate
fully ordered FePt using periodic boundary conditions then
simulating disordered structures. However, even though FePt
has an extremely large MAE, it is still only in the meV
range per formula unit (f.u.) and calculated by subtracting
comparatively large numbers from each other. Additionally,
the MAE is a Fermi surface effect and thus very sensitive
to the k-point sampling of the Brillouin zone. These effects
make accurate calculation challenging and one should not be
surprised to find large variations in the results of ab initio
calculations in the literature published in the last decades. In
Fig. 1, we sort 29 previously calculated values for the MAE of
FePt, published in 19 different papers [19–37], in 0.25-meV
wide bins and fit the data with a Gaussian distribution. All
results have been calculated ab initio with density functional
theory (DFT), but involve multiple codes, methods, lattice
parameters, and exchange-correlation potentials. Nearly half
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FIG. 1. Histogram of 29 previously calculated MAE values
of FePt with different DFT codes, computational parameters and
exchange and correlation approximations. The black curve is a
Gaussian fitted to the data resulting in μ = 2.88 meV/f.u. and
σ = 0.64 meV/f.u. The data are collected from Refs. [19–37].

of the results fall into the bin between 2.75 and 3.00 meV, but
the rest of the data are quite scattered, ranging from 1.30 to
4.3 meV/f.u. This leads to an mean of μ = 2.88 meV/f.u. but
quite a large standard deviation of σ = 0.64 meV/f.u.

These values are often compared with the bulk experiments
of Ivanov et al. [38] from 1973, who used the ballistic throw
method and also a vibration magnetometer to measure the
magnetic properties of annealed FePt powders, reporting an
anisotropy constant of K1 = 7.0 MJ/m3, corresponding to
∼1.2 meV/f.u.. Looking at the published computational data,
only the results by Shick et al. [35] and Staunton et al. [37] are
close to this value, at 1.30 and 1.70 meV/f.u., respectively.
Ivanov et al. argue that their sample is fully ordered, because
it exhibits especially high magnetic anisotropy, but take no
further measures to actually quantify the degree of order. From
more recent experiments on thin films and powders, however
(see Sec. III B 1), we know that full order is not necessary to
measure anisotropies of 7.0 MJ/m3 or higher in FePt, leading
us to believe that the sample of Ivanov et al. was indeed highly,
but not fully ordered.1

In a very recent paper, Khan et al. published calculations
for the MAE of fully ordered FePt [28]. They employ both
full-potential linear augmented plane wave (FLAPW) and
full-potential Korringa-Kohn-Rostoker (KKR) Green function
methods to calculate the MAE within the local density
approximation (LDA), with both methods being in good
agreement with each other. We consider those calculation
among the most accurate ones published to date and want to
compare our results to their paper especially, since the authors

1Reference [38] provide their K1 values for room temperature and
above. If we extrapolate the data linearly to 0 K, we arrive at
∼10 MJ/m3, corresponding to ∼1.7 meV/f.u.. This is closer, but
still substantially different, from the mean value of the DFT data.

took exceptional care to report convergence data on all relevant
computational parameters. However, since their calculated
MAE of ∼3.0 meV is still about twice as large as the reported
experimental bulk value of Ref. [38], Khan et al. conclude that
many body effects beyond the LDA are playing a decisive role
for the MAE of FePt. In the present paper, we will argue that
the results of Ref. [28] and the majority of other computations
(see Fig. 1) are indeed correct for ideally ordered FePt, but that
experiments always measure somewhat disordered structures
and thus defects must be explicitly considered to reconcile
calculations with experiment.

II. METHODOLOGICAL DETAILS

We have performed spin polarized DFT computations
employing the Vienna ab initio simulation package VASP

[39–42] version 5.4.1, using the projector augmented-wave
(PAW) method [43,44]. The plane-wave energy cutoff was
chosen to be 900 eV, which is more than 230% (300%) higher
than the recommended value for the Fe (Pt) PAW potentials
(set of 2003) which treat the 3s, 3p, 3d, and 4s (5s, 5p, 5d,
and 6s) electrons (32 per FePt pair) as valence. We sample
the Brillouine zone with generalized Monkhorst-Pack grids
as described by Wisesa et al., finding a significantly quicker
convergence with their server generated grids than for those
generated by the VASP routines [45]. Unless otherwise noted
their parameter rmin, which describes the distance between lat-
tice points on the real-space superlattice and increases k-mesh
density if increased, was set to 65 Å. The chosen energy cutoff
might seem large, but only with this cutoff we can achieve a
total energy convergence of less than 0.1 meV, and thus prop-
erly quantify the MCA. Unless otherwise noted, the exchange
and correlation energy has been calculated within the gen-
eralized gradient approximation (GGA), using the functional
parametrized by Perdew, Burke, and Ernzerhof (PBE) [46].
To ensure accurate forces during relaxations, we use an
additional superfine fast Fourier transform (FFT) grid for
the evaluation of the augmentation charges and a smearing
of � 0.1 eV according to Methfessel and Paxton [47] (first
order). For total energy calculations, the tetrahedron method
with Blöchl corrections has been used [48]. In all total energy
GGA calculations we explicitly account for nonspherical
contributions of the gradient corrections inside the PAW
spheres. Electronic relaxations are converged to 10−5 meV,
while forces in ionic relaxations where converged to �
1 meV/Å. For all calculations of the MAE, we turned all
symmetry options off explicitly and subtracted the total energy
values of hard and easy axis orientation of the magnetic
moments. The easy axis is clearly the [001] direction with
a hard plane orthogonal to it in which the energy difference
between orientations is in the μeV range. We chose the [110]
direction of the L10 unit cell as the hard axis (corresponding
to the [001] direction if distorted fcc unit cell is used).

III. RESULTS AND DISCUSSION

A. Pristine FePt

The high MAE of FePt in the L10 phase is mainly due
to the large spin-orbit coupling in the Pt atoms. They show
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TABLE I. Local spin moments (mloc) and orbital magnetic
moments (morb) for FePt. ‖ and ⊥ mark orientation of the spin
moments parallel and normal to the c axis, respectively.

mloc (μB) morb (μB)
Fe Pt Fe‖ Pt‖ Fe⊥ Pt⊥

PBE 2.83 0.39 0.056 0.044 0.052 0.057
LDA 2.69 0.37 0.058 0.043 0.052 0.055
LDA+U 2.83 0.36 0.056 0.043 0.054 0.055

magnetic moments induced by the Fe 3d orbitals, and the d

orbital of both species hybridize with each other. Detailed
discussions about the origin and nature of the large MAE
can be found in the literature [23,28,29,36] and will not be
discussed here further.

In contrast to Ref. [28], we use the PBE functional, which
belongs to the class of GGAs, instead of the LDA. This choice
was made due to the better equilibrium volume obtained by

PBE of 28.02; Å
3
, which at +2%, is much closer to the exper-

imental value of 27.5 Å
3

[31] than LDA at 24.55 Å
3

(−11%).
Since we need to relax our structure once we introduce defects,
getting better volumes and forces is even more important.
Additionally, at the smaller equilibrium volume given by the
LDA, the local magnetic moments of the Fe and Pt atoms
would be reduced by about 15% and 10%, respectively.

Relaxing L10 FePt with PBE yields lattice parameters a =
2.7287 Å and c = 3.7629 Å. This leads to a c/a ratio of 1.38,
about 1.5% larger than the experimental value of 1.36 [31].
While this difference will influence the MAE somewhat, the
effect of the c/a ratio is considered to be small compared to
disorder in the sample [32].

For PBE we calculate an MAE of 2.74 meV/f.u.,
corresponding to an anisotropy constant Ku of 15.7 MJ/m3.
Increasing the total number of k points in the Brillouin zone
by ∼55% from 7317 to 11340 (via adjusting rmin to 75 Å)
does not change this value. This result compares well to the
mean value of previously published results of Fig. 1, and
is in excellent agreement with the calculations of Ref. [28],
which reports a value of 2.73 meV/f.u. for PBE. The angular
dependence of the anisotropy Energy E can be fitted to
E(θ ) − E(0) = K1 sin2(θ ) + K2 sin4(θ ), where we find that
K1 with 2.67 meV is more than one order of magnitude larger
than K2 with 0.13 meV. Employing the LDA functional (for the
same PBE-relaxed unit cell) yields a somewhat larger value of
3.11 meV/f.u. (which is virtually unchanged if we calculate
the MAE for the slightly smaller lattice parameters used in
Ref. [28]), again in good agreement with recent calculations
(reporting values from 2.85 to 3.12 meV/f.u., depending on
method and code) [28]. The local magnetic moments as well as
the orbital moments calculated with PBE, LDA, and LDA+U

can be found in Table I.

1. Analyzing correlation effects

Although we are able to reproduce the results of Khan
et al. very well with less computational effort, we fail to
reproduce the LDA+U results published previously by Shick
and Myrasov [35]. Using their lattice parameters and values
for both U and J , we calculate a MAE of 2.79 meV/f.u.,

which is about 0.32 meV less than our result with LDA for
their lattice parameters, but still about twice as large as their
published result of 1.3 meV/f.u.. Switching from the rota-
tionally invariant LDA+U flavor of Liechtenstein et al. [49],
to the simplified version by Dudarev et al. [50], did not change
our result significantly.

To further investigate the effects of correlation and possibly
corroborate our LDA+U results, we employ the adiabatic
connection fluctuation-dissipation theorem in the random
phase approximation (ACFDT-RPA), as implemented in the
VASP package [51–53]. Here, the correlation energy is com-
puted via the plasmon fluctuation equation by calculating
the independent particle response functions using occupied
and unoccupied states. The exchange energy is calculated by
Hartree-Fock theory. Both contributions are calculated non-
self-consistently using DFT orbitals and are added to Hartree,
kinetic, and Ewald energies to obtain the total ACFDT-RPA
energy. Thus both local and orbital magnetic moments do
not change with this method with respect to standard DFT,
but the correlation and the exchange energies are calculated
with significantly more evolved methods. The ACFDT-RPA
is a nonlocal method that captures a significant portion of
correlation effects (all ring-type Goldstone diagrams of many-
body perturbation theory) and has been successfully used
to improve on results of standard DFT without introducing
external parameters [54,55]. As prudent for metallic systems,
we neglected long wavelength contributions [53].

Due to the huge computational effort needed for such
calculations, we where not able to perform them with the
same accuracy as our other MAE calculations.2 Furthermore,
the integral over ω in the plasmon equation has to be solved
numerically using a fixed number of sampling points Nω.
Fortunately, convergence with respect to Nω (which can be
troublesome for metals) was quick for FePt, and the necessary
accuracy (∼0.1 meV) was already obtained for Nω = 10.
Calculating the RPA energy for significantly more than ∼1000
k points proved impossible with our computational resources,
so we reduced the rmin parameter to maximally 34 Å, resulting
in 1088 k points in the full Brillouin zone. The plane wave
cutoff was also reduced to 600 eV, which then leads to an
MAE of 3.1 meV/f.u. on the PBE level, about 10% higher
than for our converged computational parameters.

As can be seen from Fig. 2, the ACFDT-RPA calculations
are not converged at 1088 k points, much in contrast to standard
DFT, which is qualitatively correct even for comparatively
low k-mesh densities and for an energy cutoff of 600 eV. For
example, 420 k points are enough to approach the converged
value of the MAE within ∼10% for PBE, while on the RPA
level not even the easy axis is correctly predicted. However,
the oscillations observed in the data above 600 k points allow
us to estimate a region of convergence by fitting two linear
functions to envelope the data (see grey area in Fig. 2). While
this is not the most accurate estimate, we are fairly confident
that the present data are sufficient to predict a higher value for
the MAE than 2.0 meV/f.u..

2The leftmost point (420 k points) in Fig. 2 alone consumed over
12 000 core hours, with the rightmost points exceeding this number
by more than a factor of 10!
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FIG. 2. MAE calculated on the ACFDT-RPA level with respect
to the number of k points in the full Brillouin zone. The PBE results
for an energy cutoff of 600 eV are also plotted for comparison. The
MAE converges slowly with increased number of k points but we
estimate it to be higher than 2.0 meV/f.u. (see grey region).

Although we could not fully converge our ACFDT-RPA
calculations, the trend we observe, as well as our LDA+U

results, make us confident that correlation effects alone are
not able to reduce the MAE of FePt by a factor of two. In
the following section, we will show that disorder is able to
reconcile experiment and calculations much more satisfyingly
than a high-level treatment of exchange and correlation.

B. Defects in FePt

As discussed in Sec. I, experimental measurements of the
MAE of FePt are always performed for a somewhat disordered
crystal. Disorder in a crystal can be quantified by the long-
range order parameter S. In the case of a stoichiometric FePt
crystal, the fractions of Fe and Pt atoms sitting on their correct
respective lattice sites must be equal (rFe = rPt = r), thus the
equation for S reduces to

S = rFe + rPt − 1 = 2r − 1. (1)

For a totally disordered crystal S = 0, as each atom has 50%
probability to sit on its preferred lattice site, while S = 1 is
achieved for perfect order.3 Experimentally, the order param-
eter usually is estimated by the relative strength of integrated
x-ray diffraction peaks I001 and I002 according to the formula

S2 = (I001/I002)meas

(I001/I002)S=1
calc

, (2)

where the numerator consists of the measured values and
the denominator uses calculated intensities for perfect order,
assuming atomic scattering factors, Debye-Waller correction,
Lorentz polarizations factors and structure factors [15]. How-
ever, in a recent investigation of a multigrain FePt nanoparticle

3Sometimes also the short-range order parameter η is used in this
context. S and η are connected by the relation η = 2S − 1 and
0.5 � η � 1.

FIG. 3. Experimental anisotropy constant Ku in MJ/m3 and
plotted over the long-range order parameter S. The right axis is a
conversion to the MAE in meV. Data are taken from Refs. [11–17,31]
as indicated in the legend. Red symbols are measurements at room
temperature, while blue symbols stand for low temperature.

by 3D atomic electron tomography, it was observed that L10

order might be wrongly attributed in standard 2D methods
due to overlapping L12 grains, although this seems unlikely in
highly stoichiometric samples [56]. In Fig. 3, we have plotted
several experimentally determined values for the magnetic
anisotropy constant Ku = K1 + K2. Values are given in
MJ/m3 and have also been converted to meV/f.u., for easier
comparison to calculations. Most measurements have been
performed at room temperature (RT shown with red symbols)
but Okamoto et al. [12] and Lyubina et al. [31] have also
provided low-temperature measurements at 10 and 5 K, re-
spectively (LT shown with blue symbols). From their data, we
see that the MAE is reduced by ∼20% to 30% at RT compared
to LT. More generally, the temperature dependence of the
first-order anisotropy constant K1 is coupled to the temperature
dependence of the magnetization MS to approximately second
power, K1(T )/K1(0) = (MS(T )/MS(0))2, as measured by
Refs. [12,13] and calculated by Refs. [24,37,57,58]. From
Fig. 3, we also see that the spread of values for high-order
parameters is quite large, an effect which can be explained in
part by the different compositions of the samples (see legend
of Fig. 3), but also indicates the difficulties in accurately
measuring such a large anisotropy with usual laboratory fields.
For example, Thiele et al. [14] give two values for the MAE
of the same sample, once measured by torque magnetometry
(3.96 MJ/m3, � in Fig. 3), and once deduced from saturation
magnetization and dipolar length measurements (10 MJ/m3,
� in Fig. 3), which differ by more than 100%.

Computational studies investigating the MAE of disordered
FePt in the L10 structure have been conducted by Staunton
[59], Burkert [22], Kota [29], and their respective coworkers.4

Several studies also deal with the electronic structure and

4Reference [24] also provides data for disordered structures, but
since they do not deviate from Ref. [59], other than for S = 1, and
two of the authors appear on both papers, we discuss only the earlier
reference at this point.
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FIG. 4. MAE in meV/f.u. plotted over the long-range order
parameter S. Purple crosses are the ab initio results for the fully
ordered system as presented also in Fig. 1. Black symbols represent
experiments at room temperature (circles) and around 10 K (squares).
The red circles, blue squares, and green diamonds represent the
calculations by Kota [29], Burkert [22], and Staunton [59].

magnetic properties of the fully disordered alloy in the face
centered cubic structure (e.g., Ref. [60] and the references
therein). Generally, the coherent potential approximation
(CPA) was used in these papers to model the disorder effects on
a mean field basis. While the results calculated by Refs. [29,59]
fit the experimental data very well (see Fig. 4), they arrive
at considerably lower MAE values for the fully ordered
system than the majority of other calculations, including the
most recent study by Khan and coworkers [28]. Furthermore,
at certain order parameters, some experimental data points
lie higher than the CPA calculations, which seems unlikely
given that surface effects, grain boundaries and varying grain
orientations in experimental samples will likely decrease the
MAE compared to the infinite crystal size of the calculations.
Burkert et al. report data that agree with the most accurate
calculations for full order and approach the experimental
data nicely for lower values of S (see Fig. 4). However, the
mean-field approach is unable to predict which types of defects
are responsible for the significant drop of Ku with decreasing
order and the divergence between the studies by Staunton,
Kota, and Burkert, all using very similar methods, is a little
unsatisfactory.

We, on the other hand, are more interested in the influence of
single localized defects in the FePt crystal, especially antisite
defects (ASD) and stacking faults (SF). An ASD consists of
one Fe and one Pt atom exchanging their place in the lattice,
while a SF can occur during growth of FePt thin films if instead
of perfect alternating stacking of Fe and Pt planes, two planes
of the same material follow each other. We distinguish between
localized defects, where two neighboring atoms are exchanged
for ASDs and two layers of one type are followed by two layers
of the other in SF, and dispersed defects, where the exchanged
atoms and the double-planes are far away from each other.
These basic defects are depicted in Fig. 5.

FIG. 5. Depiction of a localized (a) and a dispersed (b) antisite
defect, as well as a localized (c) and a dispersed (d) stacking fault in
stoichiometric FePt alloy. ASDs are modeled in a 54 atom and SFs in
a 16 atom supercell, with Fe shown in gold and Pt in silver. Arrows
mark the defect positions.

1. Defect formation energies

While we do not consider a change in cell volume or cell
shape, the atomic positions in all of our supercells have been
relaxed carefully and separate static calculations are used to
determine the defect formation energies. As we only consider
defects where two (or more) atoms exchange their positions
and keep the alloy fully stoichiometric, the defect formation
energy (DFE) is simply the total energy of the supercell
containing the defect minus n times the total energy of a fully
relaxed FePt unit cell, where n is the number of FePt pairs in
the supercell, Edf = Esc − nEuc. Keeping the supercell fixed
simplifies the treatment of symmetry breaking by defects,
which only becomes important if more than one defect is
considered per unit cell. Thus we avoid complex ensemble
averages that have to be considered if random disorder is
modeled with a supercell approach [61]. Defect formation
energies for different super cell sizes (described as multiples
of the unit cell in a, b, and c direction) are given in Table II for
both ASDs and SFs. If two defects are considered in a cell the
DFEs are averaged over several configurations. For example,
if two local ASDs are put into a 2×2×2 supercell with the first
one being located at the origin, the second on can be shifted
by a lattice vector a (equivalent to a shift by b), a lattice vector
c, by both a and c (equivalent to b and c), a and b, or by a,
b, and c together. We thus arrive at five different possibilities,
of which two have to be counted twice since they have less
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TABLE II. Defect formation energies Edf per defect for ASDs
and SFs with corresponding order parameters S in different supercells
(SC) and configurations. N is equal to the number of defects per cell,
while L or D denote a local or a dispersed defect.

ASDs
SC N L/D S Edf/N (meV)

4×4×4 1 L 0.97 735.6
3×3×3 1 L 0.93 781.1
3×3×3 1 D 0.93 938.5
3×3×3 2 L 0.85 714.6
2×2×2 1 L 0.75 745.5
2×2×2 2 L 0.50 566.9

SFs
SC N L/D S Edf/N (meV)

1×1×12 1 L 0.83 449.4
1×1×10 1 L 0.80 451.6
1×1×10 1 D 0.80 455.8
1×1×8 1 L 0.75 451.6
1×1×8 1 D 0.75 453.5
1×1×6 1 L 0.66 449.4
1×1×5 1 L 0.60 450.2
1×1×4 1 L 0.50 453.9
1×1×3 1 L 0.33 447.1
1×1×2 1 L 0.00 443.2

symmetry. The DFEs are actually quite different, ranging from
435 meV for stacking along c, to 690 meV for stacking along
a or b.

We immediately notice that SFs have a lower DFE than
ASDs, and that they are very well decoupled from each
other, since the energy stays nearly constant at ∼450 meV.
If the stacking fault is localized, with two Pt layers followed
immediately by two Fe layers, or dispersed, where the double
layers are far away from each other does not matter much from
an energetic point of view. On the other hand, a single local
ASD shows quite different Edf depending on supercell size.
For the 3×3×3 supercell, the DFE is noticeable higher than
for the largest cell considered, but the 2×2×2 shows again a
reduced Edf . This indicates that ASDs are not decoupled, and
interact attractively in close proximity, as can be seen from the
averaged DFE for two ASDs in a 2×2×2 supercell, which, at
∼566 meV per defect, is considerably lower than an isolated
ASD (∼736 meV).

In a very recent study, Yang et al. used high-resolution,
tomographic, scanning transmission electron microscope data
to map the positions of over 23 000 Fe and Pt atoms in
a multigrain FePt nanoparticle [56]. ASDs are frequently
observed in their non stoichiometric sample, while SFs are not
seen at all.5 This seems to contradict our data for DFEs, which
predict SF to occur more likely than SFs. However, one has to
keep in mind that a SF is an extended defect, ranging over the
whole grain (or in our model over the whole infinite crystal).

5In the nonstoichiometric sample of Ref. [56], a swap defect denotes
what we call here ASD. An antisite defect in their notation is just a
single Fe atom sitting on a Pt site or vice versa. Here we call this type
of defect “point defect.”

FIG. 6. MAE in meV/f.u. plotted over the long-range order pa-
rameter S. Black symbols represent experiments at room temperature
(circles) and around 10 K (squares). The red circles are for SFs, green
diamonds are for ASDs, and blue squares are the KKR-CPA results
of Ref. [22]. SF data are fitted with a straight line, all other lines serve
only as guides to the eye.

Thus the likelihood of SFs forming during the transition from
the disordered A1 phase to the L10 phase is significantly lower
than the survival of local ASDs. Furthermore, Ref. [56] report
a large number of point defects, which is a single Fe(Pt) atom
sitting on a Pt(Fe) lattice site. This differs from an ASD,
where one Fe and one Pt atom exchange places, as it breaks
stoichiometry. Estimating the DFE of a point defect as half of
the DFE of a dispersed ASD, we arrive at ∼470 meV, which
is comparable to the DFE of SFs.

From the data of Table II, we see that the DFEs are quite
sizable at ∼0.5 to 0.9 eV per defect, depending on type
and configuration. Thus healing out defects in a FePt alloy
with low-order parameter S would lower the free energy
enormously, even considering the decreased entropy. The
difficulties in producing highly ordered films of the material
experimentally (see Sec. I), leads thus to the conclusion that
the barriers for defect healing must be comparably large.

2. Magnetic anisotropy energy

The magnetic anisotropy energy was calculated for the
supercells of Table II analogous to the method used for the
perfect crystal with the same energy cutoff and k-grid density.
Our results for both SFs and ASDs are plotted in Fig. 6
alongside the mean-field data from Burkert et al. [22] and
the experimental data detailed in Fig. 3.

It is obvious that although the DFE of ASDs is higher than
for SFs, the former are responsible for the strong decrease of
the MAE at reduced order. For stacking faults, a decrease in
S leads to a linear reduction of the MAE. This means that the
defects are not only well isolated from each other regarding
the DFE, but also regarding the MAE. As the fraction of
correctly ordered unit cells in the supercell decreases, the MAE
decreases proportionally, right down S = 0.5. If the cell size is
further reduced to six atoms (S = 0.33) or four atoms (S = 0),
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which are not shown in Fig. 6, it is not really appropriate
to speak of a SF, as 2/3 or more of the material is layered
in the wrong way. For S = 0.33, we calculate an MAE of
1.40 meV, slightly higher than the linear trend would predict,
while for S = 0 the MAE drops to 0.18 meV. An antisite
defect on the other hand, has much larger effect, which can
also be reasoned intuitively, as there are significantly more
unit cells directly influenced by a single localized ASD (8)
than by a SF (2), disregarding lower-order effects like atoms
sitting on wrong lattice sites in a neighboring unit cell or
relaxations. Furthermore, ASDs perturb the surrounding of Pt
atoms (which are mainly responsible for the large MAE) in
3D, while SFs only change the surrounding in 2D, having
a diminished effect on the MAE. While our calculations for
ASDs are in reasonable agreement with the experimental data
over the whole range, the agreement is certainly a lot better for
lower values of S. This might indicate that ASDs do indeed
cluster together in FePt, as our data for S = 0.5 are averaged
over different configurations of two ASDs in an 16 atom
supercell. This result is also supported by the DFE data in
Table II.

The KKR-CPA results from Burkert et al. [22] lies between
our SF and ASD data, although closer to the ASD points.
This is to be expected from a mean field approach for random
disorder, which should encounter SF like regions less than
ASDs. Delocalized defects where not included in Fig. 6, due
to generally higher DFE, but the cases that we tested showed
MAE differing less than 5% from the localized defects in the
same supercell.

In the single-atom resolution images from Ref. [56], ASDs
are also commonly observed and their density is still ∼3% in

the highest ordered grain centers of the nanoparticle. This is a
strong indication that ASDs are also common in stoichiometric
FePt, although they have a rather large DFE. Although we
can not completely rule out that the MAE might also be
lowered slightly by correlation effects (see Sec. III A 1), we
believe that the inclusion of ASDs is sufficient to explain
the experimental MAE data on the basis of standard DFT
calculations.

IV. CONCLUSIONS

We have shown that ASDs are responsible for the large
reduction of the MAE in FePt with decreasing long-range
order parameter S. Experimental measurements and ab initio
DFT calculations are thus also comparable without including
many body effects beyond the LDA or GGA level. Qualitative
calculations using the ACDFT-RPA show that the effect of
more accurate treatment of correlations is probably smaller
than that of disorder. This will allow future DFT calculations
to accurately model thin FePt films and layered systems useful
for magnetic recording with reasonable effort.
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