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We investigated quantum critical behaviors in the nonequilibrium steady state of a XXZ spin chain with
boundary Markovian noise using Fisher information. The latter represents the distance between two infinitesimally
close states, and its superextensive size scaling witnesses a critical behavior due to a phase transition since
all the interaction terms are extensive. Perturbatively, in the noise strength, we found superextensive Fisher
information at anisotropy |�| ≤ 1 and irrational arccos �

π
irrespective of the order of two noncommuting limits,

i.e., the thermodynamic limit and the limit of sending arccos �

π
to an irrational number via a sequence of rational

approximants. From this result we argue the existence of a nonequilibrium quantum phase transition with a
critical phase |�| ≤ 1. From the nonsuperextensivity of the Fisher information of reduced states, we infer that
this nonequilibrium quantum phase transition does not have local order parameters but has nonlocal ones, at
least at |�| = 1. In the nonperturbative regime for the noise strength, we numerically computed the reduced
Fisher information which lower bounds the full-state Fisher information and is superextensive only at |�| = 1.
From the latter result, we derived local order parameters at |�| = 1 in the nonperturbative case. The existence
of critical behavior witnessed by the Fisher information in the phase |�| < 1 is still an open problem. The
Fisher information also represents the best sensitivity for any estimation of the control parameter, in our case
the anisotropy �, and its superextensivity implies enhanced estimation precision which is also highly robust
in the presence of a critical phase.
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I. INTRODUCTION

One of the paradigms for nonequilibrium statistical physics
consists of the study of nonthermalizing noisy dynamics [1,2]:
nonequilibrium phase transitions are nonanalytic changes of
nonequilibrium steady states (NESSs). This kind of transition
has a much richer phenomenology than equilibrium phase
transitions because NESSs lack a universal description in terms
of thermodynamic potentials. From a methodological point of
view, this situation results in a large variety of universality
classes without general tools for their characterization [3,4].
For instance, algebraically decaying correlation functions are
not particular to critical phenomena [5]. Also the spectral
gap of the Liouvillian, an open-system generalization of the
Hamiltonian gap, may vanish in the thermodynamic limit for
all parameters, with critical points resulting only in a faster
convergence [6,7].

The broad interest in nonequilibrium phase transitions
and in the search, pursued in our approach, for universal
tools to characterize them stems also from their emergence
in a large variety of settings, from complex systems, both
physical [8–13] and biological [14–19], to social sciences
and economics [20–23]. Furthermore, quantumlike models
have been developed to fit phenomena in social sciences and
economics [24].

For quantum systems, dynamics with Markovian
noise are represented by Lindblad master equations
[25,26]. Recently, many investigations shed light on
the complex and critical behaviors of quantum NESSs
[5–7,27–38]. An interesting paradigmatic master equation

consisting of an anisotropic Heisenberg (XXZ) spin chain
driven by an unequal noise at its boundaries has a non-
trivial steady state with transitions manifesting in transport
properties [39].

Exactly solvable models form one of the main pillars of
classical statistical mechanics, both in and out of equilibrium.
Among important general concepts which are amenable to
exact solutions are the NESSs, important nontrivial examples
of which are the simple exclusion processes with boundary
driving [40]. Similar models do not yet hold for quantum
statistical mechanics, as the number of exact solutions for
interacting models, particularly out of equilibrium, is very
limited. The example of a boundary-driven XXZ model is
one of the very few solutions. Nevertheless, the behavior of
the nonequilibrium partition function for a few other models
that can be exactly solved using a similar boundary noise
protocol (e.g., a boundary-driven Fermi-Hubbard model and
an integrable SU (3) chain [39]) is qualitatively identical to
the one for the isotropic Heisenberg model. This leads us to
believe that the boundary-driven XXZ model discussed here
may represent an important out-of-equilibrium universality
class, and the same type of phase transition may later be seen
in other models. This may not be related to integrability, but
in nonintegrable systems the numerical analysis required to
apply our approach to the NESS will be much harder.

Many equilibrium phase transitions are detected by the
Bures metric, also known as fidelity susceptibility [41]. It
is proportional to the Fisher information [42–45], except in
the presence of pathological behaviors consisting of only
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removable singularities [46]. While this quantity reduces
to standard susceptibilities for thermal phase transitions
[47–50], it represents a more sophisticated tool for quantum
phase transitions (QPTs), both symmetry-breaking [51,52]
and topological [53] ones. It is worth mentioning another
nonstandard approach to phase transitions in equilibrium
statistical mechanics and in chaotic dynamics which is based
on topological changes in isoenergetic manifolds in the phase
space [54,55]. For nonequilibrium steady-state quantum phase
transitions (NESS-QPTs), which are discussed here, the study
of Fisher information is in the very early stages [56,57].

The rationale of our approach relies upon the geometric
interpretation of the Fisher information as the distance between
two infinitesimally close states with respect to a varying control
parameter. Indeed, when all interaction terms are extensive,
a superextensive metric implies instability with respect to
small changes, e.g., due to critical points separating different
phases. In this paper, we exemplify this approach with deep
characterizations of the NESS-QPT in the XXZ chain with
boundary noise. The above geometric interpretation provides
a universal and unifying approach for both equilibrium and
nonequilibrium, and possibly unknown, phase transitions, with
a clear advantage over the aforementioned nonuniversal tools.

We also investigate relations between nonlocal or local
order parameters and the Fisher information of the full state
or of reduced states, respectively. This relation is general and
does not depend on the model and, as such, can be applied
to any phase transition detected by the Fisher information.
Moreover, it relies upon the Cramér-Rao bound, i.e., a result
from estimation theory [42–44], while previous studies of the
fidelity susceptibility focused only on the intuition behind
the geometric interpretation, thus missing the connection to
order parameters. Connection is intuitive for symmetry-
breaking phase transitions where local order parameters are
known, so signatures of the phase transition can be found in
reduced states. The most interesting application is in phase
transitions without known order parameters, like in our case.
This application reverses the usefulness argument for the
fidelity susceptibility in topological phase transitions: while
size scaling of the Fisher information was used to detect
transitions without local order parameters, in our case we infer
the local or nonlocal nature of order parameters from the size
scaling of the Fisher information.

Using the above arguments, we endorse our approach
as a powerful tool to characterize general nonequilibrium
quantum phase transitions in other systems far beyond pre-
viously considered cases, according to the following recipe:
superextensivity of the Fisher information in systems with
extensive interactions which scale linearly with the volume
detects general critical behaviors with at least nonlocal
order parameters, and superextensivity of the reduced-state
Fisher information further proves local order parameters. Our
study opens a different avenue of research in NESS-QPTs,
illustrating that complex structures and relevant features can
be extracted by the Fisher information in highly nontrivial
systems.

Fisher information is also intimately connected to metrol-
ogy, being the inverse of the smallest variance in the estimation
of the varying parameters [42–44]. Superextensivity implies
extraordinary enhanced metrological performances. Thus, be-

yond the aim of NESS-QPTs, our study deepens the connection
between quantum noisy dynamics and metrology [57–63],
as well as general relations between NESS and quantum
information [64,65].

This paper is organized as follows. We define the spin-chain
model with boundary Markovian dissipation in Sec. II and the
Fisher information with properties relevant for our analysis
in Sec. III. In Sec. IV, we discuss the size scaling of Fisher
information for perturbatively small dissipation strength and
implications of the nonequilibrium phase transition, including
the existence of a critical phase and of (non)local order
parameters. In Sec. V, we report on the Fisher information
and properties of the nonequilibrium phase transition non-
perturbatively in the dissipation strength, and in Sec. VI we
conclude.

II. SPIN MODEL

We discuss an n-spin chain with the XXZ Hamiltonian

HXXZ =
n−1∑
j=1

(
σx

j σ x
j+1 + σ

y

j σ
y

j+1 + �σz
j σ z

j+1

)
, (1)

which is an archetypical nearest-neighbor interaction in
condensed matter [66,67], with σα

j being the Pauli matrices
of the j th spin. In addition, we consider a uniform magnetic
field along the z direction and Markovian dissipation at the
boundary of the chain, arriving thus at the following dynamical
equation for the density matrix, called the master equation:

d

dt
ρ(t) = −i

[
�

2
Mz + JHXXZ,ρ(t)

]

+ λ

4∑
k=1

[
Lkρ(t)L†

k − 1

2
{L†

kLk,ρ(t)}
]
, (2)

where

L1,2 =
√

1 ± μ

2
σ±

1 , L3,4 =
√

1 ∓ μ

2
σ±

n (3)

are the so-called Lindblad operators and Mz = ∑n
j=1 σ z

j is the
total magnetization along the z direction [68].

While the first line of (2) reproduces the standard
Schrödinger equation, the second line is the prototypical form
of quantum Markovian dissipation under the minimal physical
assumption that the resulting time evolution γt is a semigroup,
i.e., γtγs = γs+t ∀ t,s ≥ 0, trace preserving, and completely
positive, i.e., preserves positivity of any initial density matrix
even when arbitrarily correlated with ancillary systems.

Markovian master equations can be derived from micro-
scopic models with system-environment interaction that is
linear in the Lindblad operators [25,26]. In particular, Marko-
vian master equations with local Lindblad operators, i.e., each
environment interacting with a single particle as in Eq. (2),
derive from the so-called singular coupling approximation
[25,26] or from the weak system-environment coupling if the
system Hamiltonian is dominated by the interaction-free part
[69], in our case � � J .

Our model has an exactly solvable steady-state density
operator, i.e., a fixed point ρ∞ = limt→∞ ρt of (2), which
can be represented in terms of a matrix product ansatz (see
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Ref. [39] for a review). This structure will be essential to make
our computations efficient.

III. FISHER INFORMATION

Given the aforementioned analytic solution, we compute
the Fisher information for variations of the anisotropy �,

F� = 8 lim
δ→0

1 − √
F(ρ∞(�),ρ∞(� + δ))

δ2

= 2
∫ ∞

0
ds Tr

[(
∂ρ∞
∂�

e−sρ∞

)2
]
, (4)

with the Uhlmann fidelity F(ρ,σ ) = (Tr
√√

σρ
√

σ )2 [45].
Defining the eigenvalues {pj }j and the corresponding eigen-
vectors {|j 〉}j of the state ρ∞, the definition (4) of the Fisher
information reads [42–44]

F� = 2
∑
j,l

|〈j |∂�ρ∞|l〉|2
pj + pl

. (5)

The connection between the Fisher information F� and
estimation theory is summarized in the Cramér-Rao bound,
which bounds any estimation variance of � [42–44]. If �

is estimated by the measurement of the observable O, the
Cramér-Rao bound reads

Var(�) = �2O(
∂

∂�
〈O〉)2 ≥ 1

F�

, (6)

where �2O is the variance of the observable O and Var(�)
follows from error propagation.

A property of the Uhlmann fidelity that is useful in the
following is that it is nondecreasing under the action of
trace-preserving and completely positive maps on both the
arguments [70]. The partial trace, namely, the average over the
degrees of freedom of subsystems, is a trace-preserving and
completely positive map. Therefore, the Fisher information
computed from (4) but using reduced states, i.e., resulting from
partial traces of the full state ρ∞, is a lower bound to the Fisher
information of ρ∞. In the next sections, we use the relation
between local order parameters and the Fisher information
computed with reduced states instead of full states, which we
explain here.

Good order parameters for phase transitions are nonanalytic
quantities at critical points. Consider local expectations 〈O〉
with

O =
∑
R

OR, 〈OR〉 = Tr
(
ρR

∞OR
)
, (7)

where R are subsystems with finite, n-independent size,

ρR
∞ = TrR̄ρ∞ (8)

is the reduced state resulting from the partial trace over the
complement R̄ of the subsystem R, and OR is an observable
of the subsystem R. Divergences of the derivatives of 〈O〉 are
related to the Fisher information FR

� computed from Eq. (4)
using the state ρR

∞. Suppose that the anisotropy � has to be
estimated via measurements of local expectations 〈OR〉. The
Cramér-Rao bound is a bound for any estimation variance

[42–44]:

Var(�) = �2OR(
∂

∂�
〈OR〉)2 ≥ 1

FR
�

, (9)

where �2OR is the variance of the observable OR and
Var(�) follows from error propagation. Suppose, instead,
we estimate � via experimental measurements of the kth
derivative ∂k

∂�k 〈OR〉. The Cramér-Rao bound reads

Var(�) = Var
(

∂k−1

∂�k−1 〈OR〉)(
∂k

∂�k 〈OR〉)2 ≥ 1

FR
�

, (10)

where Var( ∂k

∂�k 〈OR〉) is the variance of the experimental

measurements of ∂k

∂�k 〈OR〉. Such a quantity depends on the
measured observables and on instrumental parameters, e.g.,
the increment of � if derivatives are estimated via difference
quotients. Therefore, the size scaling of the reduced Fisher
information bounds from above the degree of divergence of
the derivatives of local expectations (7):∣∣∣∣ ∂

∂�
〈O〉

∣∣∣∣ ≤
∑
R

∣∣∣∣ ∂

∂�
〈OR〉

∣∣∣∣ ≤
∑
R

√
FR

� �2OR, (11)

∣∣∣∣ ∂k

∂�k
〈O〉

∣∣∣∣ ≤
∑
R

∣∣∣∣ ∂k

∂�k
〈OR〉

∣∣∣∣
≤

∑
R

√
FR

� Var

(
∂k−1

∂�k−1
〈OR〉

)
. (12)

We use these bounds to infer the existence of local order
parameters.

IV. PERTURBATIVE ANALYSIS IN THE
DISSIPATION STRENGTH

We start our investigation with the perturbative analysis for
small noise strength λ

J
. It is worth stressing that this analysis

does not correspond to a perturbation around equilibrium. The
zeroth order of the NESS is the completely mixed state which
does not depend on any parameter. Therefore, there is no notion
of temperature or of other equilibrium properties or traces of
phase transitions in the zeroth order. As a consequence, our
perturbative analysis already captures genuine nonequilibrium
phase transitions. In this case, the NESS [39,71] is

ρ∞ = 1

2n

(
1 + i

λμ

2J
(Z − Z†) + λ2μ

8J 2
{[Z,Z†]

− μ(Z − Z†)2 − 2Tr(ZZ†)1}
)

+ O

(
λ

J

)3

, (13)

where Z is a matrix product operator,

Z =
∑

{s1,...,sN }∈{0,+,−}N
〈L|

n∏
j=1

Asj
|R〉

n⊗
j=1

σ
sj

j . (14)
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Asj
are tridiagonal matrices on the auxiliary Hilbert space

spanned by the orthonormal basis {|L〉,|R〉,|1〉,|2〉, . . . ,| n
2 �〉}:

A0 = |L〉〈L| + |R〉〈R| +
 n

2 �∑
k=1

cos(ηk)|k〉〈k|,

A+ = |1〉〈R| −
 n

2 �∑
k=1

sin(ηk)|k + 1〉〈k|, (15)

A− = |L〉〈1| +
 n

2 �∑
k=1

sin(η(k + 1))|k〉〈k + 1|,

and η = arccos � ∈ R ∪ iR. The expansion (13) holds as soon
as the zeroth order is larger than the first order in λ

J
. Estimating

the magnitude of each order with its Hilbert-Schmidt norm
(||O||HS =

√
Tr(OO†)), the validity condition for (13) reads

λ

J
<

√
2n+1

μ
||Z||−1

HS =
{

O
(

1√
n

)
if |�| < 1,

O
(

1
n

)
if |�| = 1.

(16)

For � > 1 the upper bound in (16) is the inverse of a
superexponential function; thus, the perturbative expansion
(13) is not useful.

A. Noncommuting limits for the Fisher information

At the lowest order in λ
J

, the Fisher information is

F� = λ2μ2

2n+1J 2
Tr(∂�Z ∂�Z†) + O

(
λ

J

)4

= λ2μ2

J 2
(F̃� + F̂�) + O

(
λ

J

)4

, (17)

with the two non-negative contributions

F̃� = 1

2(1 − �2)

n∑
j=1

〈L|Aj−1
0 DAn−j

0 |R〉, (18)

F̂� = 1

8(1 − �2)

d2

dη2
〈L|An

0|R〉 (19)

and the matrices A0 and D on the auxiliary space of the matrix
product structure,

A0 =
∑

k,k′ = L,R,

1, . . . ,
⌊

n
2

⌋

[
(A0)2

k,k′ + 1

2
(A+)2

k,k′ + 1

2
(A−)2

k,k′

]
|k〉〈k′|,

(20)

D =
 n

2 �∑
k=1

[
sgn(1 − �2)

k2

2
|k〉〈k| + k2

4
|k + 1〉〈k|

+ (k + 1)2

4
|k〉〈k + 1|

]
. (21)

The trace in (17) equals a transition amplitude in the doubled
auxiliary space, spanned by {|k〉 ⊗ |k′〉}k,k′=L,R,1,2,..., n

2 �; for
example, the leftmost (rightmost) state on the right-hand

sides of Eqs. (18) and (19) is actually 〈L| ⊗ 〈L| (|R〉 ⊗
|R〉). Nevertheless, only the subspace spanned by {|k〉 ⊗
|k〉}k=L,R,1,2,..., n

2 � contributes, and then we apply the mapping
|k〉 ⊗ |k〉 → |k〉 to reduce the dimension of the auxiliary space.

Now, we briefly reread the results of Ref. [57], originally
focused on metrology but not on NESS-QPT, and then we
report our results in order to end up with a full description
of the NESS-QPT. The system undergoes a NESS-QPT at
|�| = 1, detected by superextensive Fisher information in the
leading order,

F� � λ2μ2

32J 2
n4 for

λμ

J
<

1

n
and large n. (22)

When the rescaled anisotropy parameter η

π
= arccos �

π
is ratio-

nal and |�| < 1, the Fisher information in the leading order is

F� � λ2μ2

J 2
(̃ξ n2 + ξ n) for

λμ

J
<

1√
n

and large n, (23)

with size-independent coefficients ξ̃ and ξ . Thus, F� cannot
be superextensive. Keeping only the leading contribution
of the Fisher information in the thermodynamic limit and
only afterwards setting η

π
to an irrational number result in

F� = λ2μ2

J 2 O(n5), with some oscillations in n damped for more
irrational η

π
. The latter approach catches the superextensive

size scaling of the Fisher information, i.e., the divergent
degree of the Fisher information density, when the limit of
η

π
approaching irrationals is taken after the thermodynamic

limit.
Keeping in mind the just mentioned results of [57], we

now present results aiming to complete the characterization of
the NESS-QPT. We show that the limit of η

π
approaching an

irrational number does not commute with the thermodynamic
limit n → ∞ for |�| < 1. Consider first the thermodynamic
limit and then the limit of η

π
approaching an irrational number

via a sequence of rational approximants, say, ηm

π
= fm+1

fm
,

with {fm}m being the Fibonacci sequence for m ≥ 3, which
approaches the golden ratio ϕ = 1+√

5
2 as m → ∞. The

coefficient ξ , plotted in Fig. 1, shows the divergence for
m → ∞ fitted by

ξ = (0.0107 ± 0.0004)f 3.993±0.007
m . (24)

When |fm| ≥  n
2 � + 1, ξ (|fm|) = ξ ( n

2 � + 1); thus,
ξ = O(n4) in the limit m → ∞, in agreement with the
above results.

We now show the numerical computation of the Fisher
information with the opposite order of limits, namely, at irra-
tional η

π
without any assumption about the particle number n.

The log-log plot of the rescaled contribution J 2

λ2μ2 F̃� to the

Fisher information, with F̃� < F�, is shown in Fig. 2. We
are particularly interested in the superextensivity of F� as a
signature of a critical phase, and the remaining contribution to
F�, i.e., F̂�, can scale only linearly with n. This plot shows
slower overall growth compared to the Fisher information with
the limit order exchanged, with fits given in Table I.

We have thus shown the noncommutativity of the two limits
and also the superextensivity of the Fisher information for both
limit orders for irrational η

π
which are all critical points. This
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FIG. 1. Semilog plot of the coefficient ξ for η

π
= fm+1

fm
, with

{fm}m being the Fibonacci sequence. The inset shows the log-
log plot of ξ as a function of fm, which is perfectly fitted by
(0.0107 ± 0.0004)f 3.993±0.007

m .

indicates that the model has a critical phase for |�| ≤ 1 with
a highly singular behavior.

B. Reduced Fisher information and the absence
of local order parameters

A critical phase detected by the Fisher information was
also observed in the XY model with boundary noise which is
mapped to a free Fermion model [56]. Our model has Fermion
interactions, i.e., the anisotropy term, and the above singular
behavior. A critical phase with several peaks of the Fisher
information was also found in the topological phase transition
of the Kitaev honeycomb model [53] without local order
parameters. This analogy demands a deeper understanding of
the NESS-QPT in terms of order parameters. We undertake

10 102 103 104 105
n

102

104

106

108

1010

1012

FIG. 2. Log-log plots of the contribution J 2

λ2μ2 F̃� to the Fisher
information as a function of n for irrational η

π
: η = πϕ, with ϕ =

1+√
5

2 being the golden ratio (solid black line), η = π
√

3
2 (dotted line),

η = π 2 (dashed line), and η = πe (dot-dashed line). For comparison
we also plot the slopes of power laws 10−2n2 and n3 (solid gray lines).

TABLE I. Fits of the size scalings plotted in Fig. 2. The fits are
more precise when the oscillations are smaller.

η

π
Fit: J 2

λ2μ2 F̃�

ϕ = 1+√
5

2 (2.112 ± 0.002)10−2 n2.32788±0.00009

√
3

2 (3.0 ± 0.3)10−1 n2.37±0.01

π (1.9 ± 0.2)10−1 n2.35±0.02

e (3.5 ± 0.2)10−2 n2.341±0.006

this investigation based on the Fisher information of reduced
states.

Defining the set R = {Rj }j=1,...,|R| made of |R| spins
at increasing positions Rj , the reduced NESS of this chain
portion is

ρR
∞ = 1

2|R|

[
12|R| + i

λμ

2J
(ZR − Z

†
R)

]
+ O

(
λ

J

)2

, (25)

where 12R is the 2R × 2R identity matrix and

ZR =
∑

{sRj
}j=1,...,|R|

∈ {0, + ,−}|R|

〈L|AsR1

|R|∏
j=2

A
Rj −Rj−1−1
0 AsRj

|R〉
|R|⊗
j=1

σ
sRj

Rj
.

(26)

In Eq. (26), we have used the fact that A0|R〉 = |R〉 and
〈L|A0 = 〈L|.

We show upper bounds for the reduced Fisher information
and the nonincreasing n dependence of local expectations,
thus of �2OR and Var( ∂k

∂�k 〈OR〉). These results, together
with Eqs. (11) and (12), imply that there are no local order
parameters, i.e., nonanalytic expectations (7). For instance,
extensive expectations 〈O〉, e.g., with a number O(n) of
subsystems such as R labeling single spins or neighboring
couples, cannot have superextensive derivatives.

We start this analysis by bounding the reduced Fisher
information of arbitrary subsystems R with an n-independent
size |R| at order λ2

J 2 :

FR
� ≤ O

(
1

n

)
, (27)

which follows from the matrix operator structure of ρ∞ and
ρR

∞ through the following logical steps:
(i) Coefficients of ρ∞ expanded in the tensor basis made

of Pauli matrices are generated by products of sequences of n

tridiagonal matrices on an auxiliary space [65], as shown in
Eq. (14).

(ii) The dependence of these coefficients on n enters through
the number of matrices in the sequence generating a  n

2 �-
dimensional auxiliary subspace.

(iii) The coefficients of ρR
∞ in the Pauli tensor basis have an

analogous structure, as shown in Eq. (26), but with the diagonal
matrix A0 in the matrix product at positions corresponding to
traced-out spins.

(iv) This diagonal matrix A0 does not have raising
and lowering operators, and thus, the dimension of the
generated auxiliary subspace equals |R|

2 . As a consequence, the
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dependence of ρR
∞ on n is manifest only from the exponents

Rj − Rj−1 + 1 < n.
(v) The modulus of A0 is strictly upper bounded by the

identity matrix at |�| < 1. Therefore, the coefficients of ρR
∞

in the Pauli tensor basis are upper bounded in the modulus
by an exponentially decaying function due to A

Rj −Rj−1−1
0 if

some Rj − Rj−1 − 1 grows with n or by an n-independent
contribution if Rj − Rj−1 − 1 = O(n0) for j ∈ [2,|R|]. This
already proves that local expectations, and thus �2OR and
Var( ∂k

∂�k 〈OR〉), do not increase with n. The above n depen-
dence, together with the definition (4) and the range λ

J
< 1√

n
of

the perturbation expansion, implies the bound (27) for |�| < 1.
(vi) At |�| = 1, the eigenvalues of A0 are ±1, and local

expectations remain nonincreasing with n. Furthermore, the
derivative in the definition (4) gives an additional multi-
plicative factor upper bounded by n when deriving the term
A

Rj −Rj−1−1
0 , but with the exponential damping suppressed

in the limit |�| → 1. This multiplicative factor is, however,
insufficient to compensate the smallness of λ

J
< 1

n
, which is

the validity range of the perturbation expansion at |�| = 1.
This again implies the bound (27).

Remarkable examples are reduced states ρR
∞ of contiguous

blocks of spins, i.e., R = [Rmin,Rmax], with all traced-out
spins near the boundaries. These reduced states, i.e., Eq. (25)
withRj − Rj−1 − 1 = 0, have exactly the same analytic form
of the full steady state ρ∞ with n replaced by the number of
spins |R| = Rmax − Rmin in the subsystem. The system is thus
self-similar.

Summing up, the kth derivatives of any observable with k =
O(n0) lack divergent behaviors. If both k and Rj − Rj−1 − 1
grow with n, the kth derivatives can diverge because of
repeated derivations of the terms A

Rj −Rj−1−1
0 . Since the lower

bound in (10) does not depend on k, this divergence must
be compensated by the numerator on the left-hand side.
Intuitively, to measure derivatives at increasing orders, e.g., via
different quotients, we need to distinguish many measurements
all at values of � that lie within a very, ideally vanishingly,
small interval. Thus, the measurements of such derivatives
become very hard, witnessed by large Var( ∂k

∂�k 〈OR〉), and
so is the consequent determination of � as imposed by the
Cramér-Rao bound (10).

The above discussion is insufficient for the reduced states
of a single spin, i.e., R = {j}, because it is completely mixed
at order λ

J
, i.e., ρ

R={j}
∞ = 12

2 + O( λ
J

)
2
, and the next order is

ρR={j}
∞ = 1

2

(
12 + λ2μ

4J 2
γjσ

z
j

)
+ O

(
λ

J

)3

, (28)

with

γj = 〈L|Aj−1
0 AzA

n−j

0 |R〉, (29)

Az = 1

2

∑
k,k′ = L,R,

1, . . . ,
⌊

n
2

⌋
[
(A+)2

k,k′ − (A−)2
k,k′

]|k〉〈k′|, (30)

and A0 defined in Eq. (20). As before, we have applied
the mapping |k〉 ⊗ |k〉 → |k〉 to reduce the dimension of

the auxiliary space because only the subspace spanned by
{|k〉 ⊗ |k〉}k=L,R,1,2,..., n

2 � contributes.
The corresponding single-spin reduced Fisher information

is

F
R={j}
� =

(
∂

∂�
〈σ z

j 〉)2

�2σ z
j

= λ4μ2

256J 4

(
∂γj

∂�

)2

+ O

(
λ

J

)5

. (31)

From numerical computations, we found intensive and even
very small F

R={j}
� at |�| < 1. This, together with the validity

condition λ
J

< 1√
n

of the perturbative expansion at |�| < 1,
implies a bound tighter than (27), namely,

F
R={j}
� ≤ O

(
λ4

J 4
n0

)
< O

(
1

n2

)
. (32)

The zeroth and first orders of γj around |�| = 1 can be
analytically computed truncating the auxiliary space to the
subsystem spanned by {|L〉,|R〉,|1〉,|2〉}:

γj |�=±1 = 1
4 (n − 2j + 1)[1 ± (n − 2)(� ∓ 1)] + O(� ∓ 1)2.

(33)

Therefore, the Fisher information of the reduced state (28) at
|�| = 1 is

F
R={j}
�=±1 = λ4μ2

256J 4
(n − 2)2(n − 2j + 1)2 + O

(
λ

J

)5

. (34)

The Fisher information of the single-spin reduced state (34)
exhibits an apparent superextensive behavior, i.e., a power-law
size scaling with an exponent between 2 and 4, depending on
the spin position j . Nevertheless, this power law is reduced
by the validity range of the perturbative expansion, namely,
λ
J

< 1
n

at |�| = 1. Therefore, the bound on the reduced Fisher
information is

F
R={j}
� ≤ O

(
λ4

J 4
n4

)
< O(n0). (35)

Although the above bound does not allow for local order
parameters, its increase with respect to (27) suggests that
the superextensivity of F

R={j}
�=±1 might gradually emerge when

increasing the order of λ
J

and in the nonperturbative regime,
as we discuss in Sec. V.

These results imply that there are no local order parameters
detecting the NESS-QPT, like for topological phase transi-
tions.

C. Nonlocal order parameters

Although there are no local order parameters at the lowest
order in λ

J
, there are nonlocal order parameters which detect at

least the onset of the critical phase |�| = 1, for instance, the
expectation of

O� = 2n+1 J

μ

∂

∂λ
ρ∞

∣∣∣∣
λ=0

(36)
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or its limit O�→±1 if one prefers a �-independent operator.
The expectation of (36) satisfies

〈O�〉 = λμ

J
〈L|An

0|R〉 + O

(
λ

J

)2

−−−→
�→±1

λμ

8J
n(n − 1)

+ O

(
λ

J

)2

(37)

and

∂

∂�
〈O�〉 −−−→

�→±1
∓ λμ

12J
n(n − 1)(n − 2) + O

(
λ

J

)2

. (38)

The variance of O� is

�2O� = 2〈L|An
0|R〉 + O

(
λ

J

)
−−−→
�→±1

1

4
n(n − 1)

+ O

(
λ

J

)
. (39)

The nonlocal order parameter then has a superextensive
derivative, i.e., a divergent density of the derivative in the
thermodynamic limit. The density derivative is 1

n
∂

∂�
O� =

O(n2−α) for λμ

J
= O( 1

nα ), with α ∈ (1,2), compatible with
the range of validity λμ

J
< 1

n
of the perturbative expansion for

|�| = 1. The ratio ( ∂
∂�

〈O�〉)2
/�2O� also has the same scaling

of the Fisher information F�||�|=1 (22) almost saturating the
Cramér-Rao bound (6) with O = O�.

V. NONPERTURBATIVE ANALYSIS IN THE
DISSIPATION STRENGTH

In order to investigate the nonperturbative behavior of the
Fisher information, we consider the steady state of the master
equation (2) with μ = 1 which is known for any λ [39,72–74]:

ρ∞ = SS†

Tr(SS†)
, S =

∑
{s1, . . . ,sn}

∈ {0, + ,−}n

〈0|
n∏

j=1

Bsj
|0〉

n⊗
j=1

σ
sj

j , (40)

with the matrix product operator S and tridiagonal matrices
Bsj

on the auxiliary Hilbert space spanned by the orthonormal
basis {|0〉,|1〉,|2〉, . . . ,| n

2 �〉},

B0 =
 n

2 �∑
k=0

sin[η(s − k)]

sin(ηs)
|k〉〈k|,

B+ = −
 n

2 �∑
k=0

sin[η(k + 1)]

sin(ηs)
|k〉〈k + 1|, (41)

B− =
 n

2 �∑
k=0

sin[η(2s − k)]

sin(ηs)
|k + 1〉〈k|,

with s given by 8i sin η cot(sη) = λ.
While the numerical or analytical computation of the

full-state Fisher information (4) is very hard, the computation

TABLE II. Fits of the size scalings plotted in Fig. 3.

Spin position Fit: F
{j}
�=1

1 (4.36 ± 0.06)10−1 n1.992.±0.002

 n

4 � (8.5 ± 0.9)10−4 n3.97.±0.01

 n

2 � (6.8 ± 0.2)10−3 n1.993.±0.003

of reduced states of small subsystems and their reduced Fisher
information is feasible. The reduced Fisher information is
a lower bound of the full-state Fisher information because
the Uhlmann fidelity is a nondecreasing function under the
action of trace-preserving and completely positive maps, like
the partial trace, on both the arguments [70]. Therefore, su-
perextensivity of the reduced Fisher information immediately
implies superextensivity of the full state’s Fisher information,
which is the more general signature of the phase transition. As
explained in Sec. III, superextensivity of the reduced Fisher
information also provides additional knowledge, e.g., proving
the existence of and deriving local order parameters.

The j th spin reduced state is diagonal in the σ z
j basis:

ρ(j )
∞ = 1

2

(
1 + γjσ

z
j

)
, (42)

γj = 〈σ z
j 〉 = 〈0|Bj−1

0 BzB
n−j

0 |0〉
〈0|Bn

0|0〉 , (43)

and

B0 =
 n

2 �∑
k,k′=0

[
|(B0)k,k′ |2 + 1

2
|(B+)k,k′ |2 + 1

2
|(B−)k,k′ |2

]
× |k〉〈k′|, (44)

Bz = 1

2

 n
2 �∑

k,k′=0

[|(B+)k,k′ |2 − |(B−)k,k′ |2]|k〉〈k′|. (45)

We have again applied the mapping |k〉 ⊗ |k〉 → |k〉 to reduce
the dimension of the auxiliary space because only the subspace
spanned by {|k〉 ⊗ |k〉}k=0,1,2,..., n

2 � contributes.
Therefore, the j th spin reduced Fisher information is

F
R={j}
� =

(
∂

∂�

〈
σ z

j

〉)2

�2σ z
j

, (46)

saturating the Cramér-Rao bound (9) with OR={j} = σ z
j . The

derivative ∂
∂�

〈σ z
j 〉 and F

{j}
� are both superextensive at |�| = 1,

as shown in Fig. 3 for � = 1. The superextensive size scalings
of F

{j}
� are fitted with power laws listed in Table II. The case

� = −1 gives similar results. The reduced Fisher information
F

{j}
� is also symmetric with respect to reflection of the spin

chain around its center.
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FIG. 3. Top: The Fisher information F
{j}
�=1 of the j th spin reduced

state as a function of n and j . The superextensivity is manifest from
the comparison with the plane 108n. Bottom: Log-log plots of F

{j}
�=1

as a function of n, set to powers of 2, for λ = 1 and j = 1 (circles),
j =  n

4 � (squares), and j =  n

2 � (diamonds). The solid lines are the
corresponding fits (see Table II), excluding the first three points of
each line, which clearly deviate from the large-n behavior.

As a consequence of the above superextensivity, the mag-
netization profile 〈σ z

j 〉 is an intensive, local order parameter
for the critical points |�| = 1, with a diverging derivative
∂

∂�
〈σ z

j 〉, plotted in Fig. 4. The finite-size scaling of ∂
∂�

〈σ z
j 〉

equals the square root of that of the reduced Fisher information
F

R={j}
� from (46) because the variance in the denominator is

�2σ z
j = 1 − 〈σ z

j 〉2 = O(n0), in agreement with Fig. 4. Exten-
sive local order parameters are the magnetizations

∑
j∈R〈σ z

j 〉

FIG. 4. Plot of the magnetization profile 〈σ z
j 〉 of the j th spin as a

function of j and � for n = 1000 and λ = 1.

for any macroscopic but not centrosymmetric portion R of the
chain. For centrosymmetric portions, the divergences at spin
positions j and n − j cancel each other. Other extensive local
order parameters are

∑
j∈R f (〈σ z

j 〉) with even functions f (·)
and for any set R, even centrosymmetric ones.

The reduced Fisher information does not show superexten-
sive size scaling at |�| < 1. Therefore, the superextensivity
of the full-state Fisher information at |�| < 1, and thus the
presence of a critical phase in the nonperturbative regime, is
still an open question.

VI. CONCLUSIONS

We derived characterizations of the NESS-QPT of the
XXZ model with boundary noise, starting from the Fisher
information. We identified a critical phase defined by the
anisotropy range |�| ≤ 1, with irrational η

π
being critical

points, for small dissipation. For instance, we observed a clear
divergence for η

π
approaching the golden ratio through the

Fibonacci sequence and superextensive Fisher information
at different irrational η

π
. This critical behavior lacks local

order parameters but exhibits nonlocal ones. Moreover, it was
observed for a small dissipation strength which vanishes for an
infinite particle number. This limit might be considered to be
similar to reducing the XYZ model to the XY model, which
still exhibits a phase transition. Moreover, other topological
characterizations of phase transitions already revealed critical
points with nonanalytic microcanonical entropy at finite size
which becomes smoother and analytic in the thermodynamic
limit [54,55].

At nonperturbative dissipation, the reduced Fisher in-
formation provides a superextensive lower bound to the
full-state Fisher information at |�| = 1 together with local
order parameters, e.g., the magnetization profile. Since the
reduced Fisher information of the nonperturbative NESS is
not superextensive for |�| < 1, it is still an open question
whether the Fisher information is superextensive.

We have proved the power of the Fisher information
approach to characterize NESS-QPTs. We suggest that this
approach will be useful for many other critical phenomena,
such as classical nonequilibrium phase transitions [1–4], in
quenched and dynamical systems [30,32], and in chaotic
systems [54,75]. Superextensive Fisher information also iden-
tifies probes for the estimation of the control parameter
with enhanced performance [42–44]. Our system, having
a NESS with a very low or vanishing entanglement, is
also relevant for enhanced metrological schemes without
entanglement [76].
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Marchetti, I. Carusotto, and M. H. Szymańska, Phys. Rev. X
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