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Effects of local periodic driving on transport and generation of bound states
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We periodically kick a local region in a one-dimensional lattice and demonstrate, by studying wave packet
dynamics, that the strength and the time period of the kicking can be used as tuning parameters to control the
transmission probability across the region. Interestingly, we can tune the transmission to zero which is otherwise
impossible to do in a time-independent system. We adapt the nonequilibrium Green’s function method to
take into account the effects of periodic driving; the results obtained by this method agree with those found by
wave packet dynamics if the time period is small. We discover that Floquet bound states can exist in certain ranges
of parameters; when the driving frequency is decreased, these states get delocalized and turn into resonances by
mixing with the Floquet bulk states. We extend these results to incorporate the effects of local interactions at the
driven site, and we find some interesting features in the transmission and the bound states.
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I. INTRODUCTION

Periodically driven quantum systems have attracted an
immense amount of interest for many years. A large variety
of interesting phenomena resulting from periodic driving have
been discovered including the coherent destruction of tun-
neling [1,2], the generation of defects [3], dynamical freezing
[4], dynamical saturation [5] and localization [6–8], dynamical
fidelity [9], edge singularity in the probability distribution of
work [10], and thermalization [11] (for a review see Ref. [12]).
There have also been studies of periodic driving of graphene
by the application of electromagnetic radiation [13–16],
Floquet topological phases of matter, and the generation of
topologically protected states at the boundaries [17–39]. Some
of these aspects have been experimentally studied [40–43].

In addition, there have been several studies of the effects of
interactions between electrons in periodically driven systems
[44–56]. The effects of interactions in Floquet topological
insulators have been studied in Ref. [57]. It is known that
interactions can lead to a variety of topological phases (some
of which have elementary excitations with fractional charges)
in driven Rashba nanowires [58,59], and to a chaotic and
topologically trivial phase in the periodically driven Kitaev
model [60]. The effects of periodic driving on the stability
of a bosonic fractional Chern insulator has been investigated
[61]. Interestingly some of these systems have been realized
experimentally demonstrating correlated hopping in the Bose
Hubbard model [62] and many-body localization [63], and
realizing bound states for two particles in driven photonic
systems [64].

Periodic driving can lead to an interesting phenomenon
called dynamical localization. Here the particles become
perfectly localized in space due to periodic driving of some
parameter in the Hamiltonian. Systems exhibiting dynamical
localization include driven two-level systems [1], classical and
quantum kicked rotors [65–69], the Kapitza pendulum [70,71],
and bosons in an optical lattice [72]. It has been shown that
remnants of dynamical localization may survive even in the
presence of strong disorder [73].

In an earlier paper, it was shown that a combination of
interactions and periodic δ-function kicks with a particular
strength on all the sites on one sublattice of a one-dimensional

system can lead to the formation of multiparticle bound states
in three different models [74]. These bound states are labeled
by a momentum which is a good quantum number since the
system is translation invariant. This naturally leads us to ask
if periodic kicks applied to only one site in a system can
also lead to the formation of a bound state which is localized
near that particular site. Furthermore, it would be interesting
to see the effect of such a localized periodic kicking on the
transmission across the site; a similar analysis for localized
harmonic driving has been carried out in Refs. [75,76]. One
can also study what happens if there is both a time-independent
on-site potential (which can produce a bound state and affect
the transmission on its own) and periodic kicking at the same
site. Finally, one can study what the combined effect is of an
interaction (between, say, a spin-up and a spin-down electron)
and periodic kicking at the same site. We will study all these
problems in this paper.

In one dimension it is known that periodic driving in a
local region can lead to charge pumping; see Refs. [77,78]
and references therein. This is a phenomenon in which a net
charge moves in each time period between two leads which
are connected to the left and right sides of the region which
is subjected to the driving. Charge pumping can happen even
when no voltage bias is applied between the leads; however,
this requires a breaking of left-right symmetry which can only
occur if the periodic driving is applied to more than one site.
In this paper we will study the effect of driving at only one
site; this cannot produce charge pumping.

The plan of this paper is as follows. In Sec. II we will
introduce the basic model. We will consider a tight-binding
model with spinless electrons in one dimension where periodic
δ-function kicks are applied to the potential at one particular
site. The strength and time period of the kicks will be denoted
by α and T , respectively. In Sec. III we will discuss wave
packet dynamics and how this can be used to compute the
reflection and transmission probabilities across the site which
is subjected to the periodic kicks. In Sec. IV we will discuss
why there is perfect reflection from the kicked site for a
particular value of α and how this is related to dynamical
localization. In Sec. V we will show how an effective
Hamiltonian can be defined and will use this to calculate the
zero temperature differential conductance (which is related to
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FIG. 1. Schematic figure of a one-dimensional lattice where a
fermion can hop between nearest-neighbor sites with amplitude −γ .
A periodic δ-function kick is applied at the central site Lc of a lattice
of length L. The kicking strength is α.

the transmission probability) using the nonequilibrium Green’s
function method [79]. We will see that this matches the result
obtained by the wave packet dynamics if T is less than some
value. In Sec. VI we will discuss how the periodic kicking
can lead to the formation of a state which is localized near the
kicking site. If T is small enough, this is a bound state, while
if T is large, this is a resonance in the continuum of bulk states
[75,76,80] as we will discuss. In Sec. VII we will see how a
time-independent potential at one site affects the transmission
and how periodic kicking at that site can lead to an increase
in the transmission. In Sec. VIII we will extend the model
to include spin and will introduce a Hubbard-like interaction
between spin-up and spin-down electrons at the same site
which is subjected to periodic kicks. We again study the effects
of the interaction on the transmission of a two-particle wave
packet [81] which is in a spin singlet state. We will also study
the possibility of bound states in this system. We will end in
Sec. IX with a summary of our results and some directions for
future work.

II. THE MODEL

We consider a chain of length L on which spinless electrons
hop between neighboring sites with the Hamiltonian

HT B = −γ

L−1∑
n=1

(c†ncn+1 + H.c.), (1)

where γ is the hopping integral, and c
†
n and cn are the fermion

creation and annihilation operators at site n, respectively. (We
will set γ = 1 in all our numerical calculations. We will also
set the lattice spacing and h̄ to 1 in this paper.) The energy-
momentum dispersion for this Hamiltonian is given by Ek =
−2γ cos k, where k lies in the range [−π,π ]; hence the group
velocity is vk = |2γ sin k|. We now apply periodic δ-function
kicks at a single site labeled as Lc lying in the middle of the
system; the kicks are described by the time-dependent potential

HK = α

∞∑
m=−∞

δ(t − mT )c†Lc
cLc

. (2)

Hence the complete Hamiltonian (see Fig. 1) is

H = HT B + HK. (3)

We are interested in studying the properties of this system as
we tune parameters such as the strength α and the time period
T of the kicking.

III. WAVE PACKET DYNAMICS AND TRANSPORT

We will first investigate the effect of the kicking on the
transport properties. To this end, we first construct an initial
wave packet at time t = 0 given by

ψi(r) = 1

(2πσ 2)1/4
exp

(
− (r − Lo)2

4σ 2
+ ikcr

)
, (4)

which satisfies
∫

dr|ψi(r)|2 = ∑
n |ψi(n)|2 = 1. Here σ de-

notes the width of the wave packet in real space, kc is the
central value of the wave vector of the wave packet, and
Lo is the position in real space where the wave packet is
initially centered. Since the wave packet is centered at the
momentum kc we know that the effective group velocity of
the packet will be |2 sin kc|. We evolve the system for a time
(L − 2Lo)/|2 sin kc|; this allows the wave packet the time to
travel a distance L/2 − Lo when it reaches the site where
the periodic kicks are applied and then allows the transmitted
part of the wave packet to travel further by an equal distance
L/2 − Lo. At the end of that time, we have a wave function ψf ;
we then define the transmission and reflection probabilities T
and R as

R =
Lc∑

n=1

|ψf (n)|2,

T =
L∑

n=Lc+1

|ψf (n)|2. (5)

These definitions ensure that R + T = 1. [For spinless elec-
trons, the transmission probability T at an energy E is related
to the zero temperature differential conductance G = dI/dV

as G(E) = (e2/h)T (E). In our figures, we will plot G rather
than T , since G is a directly measurable physical quantity.]
The numerical results for kc = π/2 are shown in Fig. 2. (A
reason for choosing kc = π/2 is that this minimizes the rate
of spreading of the wave packet [82]. In one dimension, it is
known that the width of a wave packet spreads in time at a
rate which is proportional to (∂2Ek/∂k2)k=kc

= 2γ cos kc; this
vanishes at kx = π/2.) An important point to note in Fig. 2 is
thatR goes to 1 and G = (e2/h)T goes to zero as α approaches
π . Hence there is perfect reflection at a particular value of
α. This can be seen more clearly by directly observing the
evolution of a wave packet in the presence of the periodic
kicking. Some representative cases are shown in Fig. 3. Here
T and R are calculated for a wave packet which is centered at
the site Lo = 50 with width σ = 5 on a lattice with L = 801
sites. The kicking is done at the Lc = 401th site (denoted by
a vertical blue line). The kicking time period is taken to be
T = 1, and the central momentum of the wave packet is taken
to be kc = π/2. The wave packet is shown at different intervals
of time. From top to bottom, the different cases correspond to
kicking strengths α = 0, 1.4, and 3. For the first case when
there is no kicking, the wave packet moves across the kicked
site unhindered. For the second case, one sees that the original
wave packet splits into two, one which transmits across the
barrier and the other which reflects. For the third case, when
α is close to π , one finds that the wave packet gets completely
reflected from the central site.
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FIG. 2. (Top) Reflection probability R (red circles) and different
conductance G = (e2/h)T (blue squares) vs α of a wave packet
which is centered at the site Lo = 50 with width σ = 5 on a lattice
with L = 401 sites. The kicking is done at the Lc = 201th site. The
kicking time period is T = 0.5, and the momentum is centered at kc =
π/2. The wave packet is evolved up to a time (L − 2Lo)/|2 sin kc|.
(Bottom) Differential conductance G = (e2/h)T vs T when α = 1
is kept fixed. Other parameters are the same as in the top panel.

It is also interesting to see what happens when α is fixed at
a particular value and T is varied. This is shown in Fig. 2. We
notice that at small T , the transmission is extremely small,
a feature which we find to be generic in most cases for
nonzero α.

IV. PERFECT REFLECTION AND DYNAMICAL
LOCALIZATION

A curious feature noted in the last section is that the wave
packet completely reflects when the kicking strength α is close
to π . This is intimately related to dynamical localization. We
will make this connection clear in this section. It has been
shown in previous work [8,74] that a periodic kicks of strength
π on one sublattice of a bipartite system can lead to the
phenomena of dynamical localization where a wave packet
remains localized in space; this holds even when there is no
disorder present in the system.
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FIG. 3. Transmission and reflection of a wave packet which is
centered at the site Lo = 50 with width σ = 5 on a lattice with
L = 801 sites. The kicking is done at the Lc = 401th site (denoted
by a vertical blue line). The kicking time period is T = 1, and the
momentum is centered at kc = π/2. The wave packet is shown at
various intervals of time. From top to bottom, the different cases
correspond to kicking strengths α = 0, 1.4, and 3. In the first case, the
wave packet moves across the kicked site unhindered. In the second
case, the original wave packet splits into two, one which transmits
across the barrier and the other which reflects. In the third case, the
wave packet gets completely reflected from the central site.

In the present context, the time evolution operator for a
single time period T can be written as

U = exp
(−iαc

†
Lc

cLc

)
exp

[
iγ T

L−1∑
n=1

(c†ncn+1 + H.c.)

]
. (6)

It is particularly instructive to look at U 2 which evolves the
system for a period 2T . We rewrite HT B in Eq. (1) as

HT B = Hr − γ (c†Lc
cLc+1 + c

†
Lc

cLc−1 + H.c.), (7)

where Hr denotes the rest of the terms. Then

U 2 = e−iαc
†
Lc

cLc exp(−iHT BT )

× e−iαc
†
Lc

cLc exp(−iHT BT ). (8)

We can evaluate this for α = π by noting that e−iπc
†
Lc

cLc =
eiπc

†
Lc

cLc (since c
†
Lc

cLc
can only take the values 0 and 1), and

using the identities

eiπc
†
Lc

cLc cLc
e−iπc

†
Lc

cLc = −cLc
,

eiπc
†
Lc

cLc c
†
Lc

e−iπc
†
Lc

cLc = −c
†
Lc

. (9)
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FIG. 4. Differential conductance G(Ec) = (e2/h)T (Ec) vs α. G is computed from the dynamics of a wave packet which is centered at the
site Lo = 50 with width σ = 10 on a lattice with L = 401 sites. The kicking is done at the 201th site, and the time period takes the values 0.4,
1.2, 2.4, and 3.6 in the four figures from top left to bottom right. The momentum is centered at kc = π/2, so that Ec = 0. The transmissions
obtained from the exact wave packet dynamics and the NEGF formalism are compared. We see that the NEGF formalism matches the exact
results for small T .

We then find

U 2 = exp
[−iT

{
Hr + γ

(
c
†
Lc

cLc+1 + c
†
Lc

cLc−1 + H.c.
)}]

× exp
[−iT

{
Hr − γ

(
c
†
Lc

cLc+1 + c
†
Lc

cLc−1 + H.c.
)}]

.

(10)

Using the Baker-Campbell-Hausdorff formula

eXeY = eX+Y+ 1
2 [X,Y ]+···, (11)

and assuming that γ T � 1, we can evaluate Eq. (10) to first
order in T ; we obtain

U 2 = exp(−i2HrT ). (12)

We now examine the form of Hr . We see that Hr is the part
of the tight-binding Hamiltonian in which the hoppings to the
central site are removed, i.e., Hr is effectively described by
two disconnected chains. This is the underlying reason why a
wave packet completely reflects back at α = π . Interestingly,
this is also the regime which leads to dynamical localization
in translationally invariant systems where the periodic kicking
is applied to all the sites on one sublattice of a bipartite lattice
[8,74].

We note here that the parameter α appearing in Eq. (6)
is really a periodic variable, namely, α and α + 2π give the

same results since c
†
Lc

cLc
can only take the values 0 and 1. In

particular, α equal to any integer multiple of 2π will have no
effect on the time evolution.

For later purposes, it is convenient to consider the Floquet
eigenstates ψj and eigenvalues e−iεj T of the unitary operator
U defined in Eq. (6). The εj ’s are called quasienergies; since
they are only defined modulo 2π/T , we can take them to lie
in the range [−π/T ,π/T ].

V. NONEQUILIBRIUM GREEN’S FUNCTION METHOD

The nonequilibrium Green’s function (NEGF) method is
one of the most robust methods for evaluating the conductance
of a time-independent Hamiltonian [79]. Here we extend it to
a periodically driven system and show that such a formalism
appears to work for large driving frequencies or small time
periods T .

The time evolution operator for a single time period T can
be written as

U = exp(−iαc
†
Lc

cLc
) exp

[
iγ T

L−1∑
n=1

(c†ncn+1 + H.c.)

]

≡ exp(−iHeffT ), (13)
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FIG. 5. (Top) Bound state energy and (bottom) IPR for α = 0.5
and different values of T . The numerically calculated spectrum
matches well the analytical expression as shown in Eqs. (17) and
(20), for L = 401 and Lc = 201.

where Heff can be found exactly by a numerical calculation. We
now propose to use Heff as a time-independent Hamiltonian
and implement the NEGF method. Namely, we use the
Hamiltonian Heff, along with the self-energies 
1(Ec) and

2(Ec) at the left and right ends of the system (here Ec =
−2γ cos kc is the energy of a particle with momentum kc), to
compute the zero temperature differential conductance G at
the energy Ec. (See Ref. [83] for details of the procedure.)

The comparison of the differential conductance G(Ec)
obtained using the NEGF method and the exact value using
wave packet dynamics is shown in Fig. 4. [An analytical
expression for G(Ec) will be presented in Eq. (16) below
for the case when T is small.] It is clear that the NEGF
method using Heff works well for small T , but deviates
significantly as T becomes large. It is natural to ask what
determines the crossover time scale between the two regimes.
Another observation from Fig. 4 is that, even when α ∼ π ,
the wave packet dynamics shows that the transmission T is
quite far from zero when the time period T is large. Both
of these observations can be understood by the following
argument. Since a wave packet with width σ and centered
at a momentum kc has a velocity |2γ sin kc|, it will take a time
�t = σ/|2γ sin kc| to cross any particular site on the lattice.
If the kicking time period T is larger than this �t , one expects
that the wave packet may not sample the kick and will therefore

pass right through the site where the kicking is being applied.
Therefore the kicking can properly affect the transmission only
when

T � σ

|2γ sin kc| . (14)

In Fig. 4 we have chosen σ = 5 and kc = π/2; this gives
T � 2.5 in Eq. (14). This explains why the NEGF results agree
well with those based on wave packet dynamics if T = 0.4,
1.2, and 2.4, but not if T = 3.6.

We note that the use of an effective Hamiltonian is only
justified if 2γ T < π ; this can be seen as follows. We recall
that the quasienergies εj are only defined up to multiples of the
driving frequency ω = 2π/T . Since the εj ’s are eigenvalues of
Heff, this means that Heff is not uniquely defined to begin with.
The eigenstates of HT B in Eq. (1) lie in the range [−2γ,2γ ];
hence if 2γ T < π , we can define the quasienergies of all the
bulk states to lie in the range [−π/T ,π/T ]. This will define
Heff uniquely. On the other hand, the correspondence between
the NEGF results and wave packet dynamics are expected to
hold if the condition in Eq. (14) holds; this condition depends
on both the wave packet width σ and the momentum kc.

VI. FLOQUET BOUND STATES AND RESONANCES

In the presence of kicking we can study if there are Floquet
bound states in the system and explore the properties of such
bound states both analytically and using numerical techniques.

At high frequencies (i.e., small values of T ), the effective
Hamiltonian prescription, as briefly discussed in Sec. V,
becomes more and more accurate. If both α and γ T are small,
we can use Eq. (11) to show that the effective Hamiltonian is

Heff = HT B + α

T
c
†
Lc

cLc
(15)

to lowest order in α and γ T . This is effectively a time-
independent system with a potential equal to α/T at the site Lc.
It is known that such a potential on a lattice gives a transmission
probability

T (kc) = 4γ 2 sin2 kc

4γ 2 sin2 kc + α2

T 2

(16)

for a particle which is coming in with momentum kc and energy
Ec. The form in Eq. (16) explains the shape of the first plot
in Fig. 4 where T = 0.4 is small. A potential α/T at one site
also produces a bound state with energy εb given by

εb = ±
√

4 + α2

T 2
, (17)

where the sign of εb is the same as the sign of α/T .
Numerically, given all the eigenstates of either a time-

independent Hamiltonian H or a time evolution operator U , the
bound states can be identified quickly by looking at the values
of the inverse participation ratio (IPR) of all the states. The IPR
of a state |ψ〉 = ∑L

n=1 ψ(n)|n〉 is defined as
∑L

n=1 |ψ(n)|4.
Typically, states which are spread over the entire system of
length L have an IPR of the order of 1/L, while a bound state
with a decay length λ which is much smaller than L will have
an IPR of the order of 1/λ which is much larger than 1/L.
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FIG. 6. The maximum IPR value of the eigenstates of the time evolution operator as a function of T and α for V = 0 (left panel) and
V = −4 (right panel). The system has L = 401 sites and the central site is kicked periodically. For V = 0, the IPR increases as α increases,
while increasing T reduces the IPR. When T crosses π/2 the bound state (which has the largest IPR) ceases to exist.

Hence a plot of the IPR versus the eigenstate number will
clearly show the bound states [33].

The bound state with the energy given in Eq. (17) has an
exponentially decaying wave function of the form

ψ(n) = N exp(−|n − Lc|/λ) if
α

T
< 0,

= N (−1)n exp(−|n − Lc|/λ) if
α

T
> 0, (18)

where the normalization constant N = √
tanh(1/λ), and the

decay length λ is given by

λ =
(

arccosh

√
1 + α2

4T 2

)−1

. (19)

If λ � 1, one can show that the Fourier transform of the wave
function in Eq. (18) will have a peak at k = 0 if α/T < 0
and at k = ±π if α/T > 0. [The Fourier transform of a wave
function ψ(n) is defined as ψ̃(k) = 1√

L

∑L
n=1 ψ(n)e−ikn.] The

IPR of the wave function in Eq. (18) is given by

IPR = α

T

α2

T 2 + 2(
α2

T 2 + 4
)3/2 . (20)

The highest IPR and its corresponding quasienergy cal-
culated numerically for the eigenstates of the time evolution
operator U in Eq. (13) and their comparison with the analytical
expressions in Eqs. (17) and (20) is shown in Fig. 5. We will
see later that the highest IPR corresponds to a bound state in
certain regions of the “phase diagram” in the α-T plane and to
a resonance in the continuum in other regions.

It is interesting to study the full phase diagram for this
system. This is shown in the left panel of Fig. 6 when there is
no time-independent on-site potential [i.e., V = 0, where V is
defined in Eq. (21)]. With increasing α one finds that the IPR
increases, while increasing T reduces IPR. Both of these are
expected results since the effective potential due to the kicking
is given by α/T . However we find that the bound state appears
to vanish abruptly when T increases beyond π/2. This value
of T corresponds to the driving frequency ω = 4 which is also
the bandwidth of the tight-binding model with γ = 1. Since

the quasienergies of the bulk states (namely, the states which
are extended throughout the system) form a continuum going
from −2γ to 2γ . Hence, for T < π/2, the quasienergies do
not cover the full range [−π/T ,π/T ]; this makes it possible
for a bound state to appear with a quasienergy which does not
lie in the range of the bulk quasienergies; hence the bound
and bulk states do not mix. However, for T > π/2, the bulk
quasienergies cover the full range; hence any bound states must
have a quasienergy which lies in the continuum of the bulk
quasienergies. Such a situation is generally not possible except
in special cases where the bound and bulk states cannot mix
due to some symmetry or topological reasons; see Ref. [80]
and references therein. Thus the disappearance of bound states
above a certain value of T is a unique feature of the Floquet
system, since in a time-independent system in one dimension, a
nonzero potential will always produce a bound state. Although
there are no bound states for T > π/2, we will now see that
there can be a resonance in the continuum; such a state is a
superposition of a state which is localized near one point and
some of the bulk states.

In Fig. 7 we show the Floquet eigenvalues (since the time
evolution operator is unitary, its eigenvalues lie on a unit circle
in the complex plane), the probabilities |ψ(n)|2 at different
sites of a bound state, and the square of the modulus of the
Fourier transform of the bound state for a system with 401
sites in which periodic δ-function kicks are applied at the
201th site with strength α = 0.4 and time period T = 1. The
bound state is easily identified because it has the largest IPR
equal to 0.0936. Its Floquet eigenvalue is equal to −0.4473 −
0.8944i which is shown by a large red dot lying just outside the
continuum of the eigenvalues of the bulk states; this eigenvalue
agrees well with exp(−iεbT ) = −0.4518 − 0.8921i, where
εb =

√
4 + α2/T 2 is the bound state energy given in Eq. (17).

According to Eq. (19), the decay length of this state is equal
to λ = 5. The IPR equal to 0.0936 agrees fairly well with the
value of 0.1018 given by Eq. (20). The square of the modulus
of the Fourier transform |ψ̃(k)|2 of the bound state is found to
have peaks at k = ±π .

Figure 8 shows the Floquet eigenvalues, the probabilities
|ψ(n)|2 at different sites of a resonance state, and the square of
the modulus of the Fourier transform of the resonance state for
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FIG. 7. (Left) Eigenvalues of time evolution operator for a system with 401 sites in which δ-function kicks are applied at the 201th site
with α = 0.4 and T = 1. There is a bound state with IPR equal to 0.0936 and Floquet eigenvalue equal to −0.4473 − 0.8944i shown by a large
red dot. (Middle) Probability |ψ(n)|2 of the bound state. (Right) Square of the modulus of the Fourier transform |ψ̃(k)|2 of the bound state. It
has peaks at k = ±π .

a system with 401 sites in which δ-function kicks are applied at
the 201th site with α = 0.4 and T = 2. The resonance state has
the largest IPR equal to 0.0324. Its Floquet eigenvalue is equal
to −0.6388 + 0.7694i which is shown by a large red dot lying
within the continuum of the bulk eigenvalues; this value again
agrees well with exp(−iεbT ) = −0.6384 + 0.7697i, where εb

is the bound state energy given in Eq. (17) (the bound state has
turned into a resonance here due to mixing with the bulk states).
According to Eq. (19), the decay length of this state is equal
to λ = 10. The IPR equal to 0.0324 is significantly smaller
than the value of 0.0502 given by Eq. (20); this is because
of a substantial mixing with plane waves with k = ±0.967
(found from the peaks in the Fourier transform). According
to Eq. (19), the decay length of this state is equal to λ = 10.
The square of the modulus of the Fourier transform |ψ̃(k)|2
of the bound state is found to have peaks at both k = ±π

and k = ±0.967. We can understand the peaks at k = ±0.967
as follows: we note that there are bulk states at these values
of k with a Floquet eigenvalue equal to exp(i2γ T cos k) =
−0.6444 + 0.7647i. This is close to the Floquet eigenvalue of
the resonance state which can therefore mix easily with these
bulk states.

To see how the IPR of a bound or resonance state varies with
the system size, we study the maximum IPR versus L, taking L

to be odd, the kicking site to be at the middle, Lc = (L + 1)/2,
and open boundary conditions. For α = 0.4 and T = 1, we find

that the maximum IPR is equal to 0.0936 and is independent of
the system size in the range 101 � L � 799. (We have chosen
this range so that L is much larger than the decay length λ of the
central part of the state.) This size independence is a signature
of a bound state. On the other hand, for α = 0.4 and T = 2, we
find that the maximum IPR fluctuates significantly for small
changes in L but on the average decreases as L increases. This
is shown in Fig. 9; the fluctuations demonstrate a sensitivity to
the system size and confirm that it is a resonance rather than
a bound state. We have chosen a fit of the form IPR = a/Lb;
we find that the best fit is given by the exponent b = 0.41
for α = 0.4,T = 2, and 0.83 for α = 1,T = 2.5. This is to
be compared with the IPRs of the bulk states which decrease
as 1/L. Thus although the peak value of the wave function
goes to zero as L increases, the ratio of the peak value to the
value of the wave function far from the peak grows with L.
The value of the exponent b is not universal; we find that it
depends on the values of α and T . However, it is smaller than
1 over a wide range of parameters and reasonably large system
sizes, implying that although the IPR of the resonance state
decreases, the IPRs of the bulk states decrease even faster as
L increases.

To summarize, we find that a bound state differs from a
resonance in several ways.

(i) The Floquet eigenvalue of a bound state lies outside
the continuum of the Floquet eigenvalues of the bulk states,
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FIG. 8. (Left) Eigenvalues of time evolution operator for a system with 401 sites in which δ-function kicks are applied to the 201th site
with strength α = 0.4 and time period T = 2. (There are more eigenvalues on the left side than on the right side; hence the plot looks solid
on the left and dotted on the right.) There is a resonance state with Floquet eigenvalue equal to −0.6388 + 0.7694i shown by a large red dot.
(Middle) Probability |ψ(n)|2 of the resonance state. (Right) Square of the modulus of the Fourier transform |ψ̃(k)|2 of the resonance state. It
has peaks at both k = ±π and k = ±0.967, thus showing a substantial mixing with the bulk states.
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FIG. 9. The maximum IPR value of the eigenstates of the time
evolution operator as a function of the system size L for (I) α = 0.4
and T = 2 and (II) α = 1.0 and T = 2.5. Curve I corresponding to
the lower value of α has much larger fluctuations than curve II. The
dotted lines show a fit of the form IPR = a/Lb for the average IPR;
for (I) the values a = 0.31 and b = 0.41 give the best fit; for (II)
a = 2.65 and b = 0.83.

while the Floquet eigenvalue of a resonance lies within the
continuum of the bulk eigenvalues.

(ii) The wave function of a bound state is peaked at some
point, decays rapidly away from that point, and essentially
becomes zero beyond some distance. The wave function of
a resonance is also peaked at some point and decays away
from that point, but it does not become completely zero no
matter how far we go; this is because it contains a nonzero
superposition of some plane waves and therefore remains
nonzero even far away from the peak.

(iii) If the system size is large enough, the properties of a
bound state, such as its IPR and the peak value of its wave
function, become independent of the system size L and the
boundary conditions (for instance, whether we have periodic,
antiperiodic, or open boundary conditions). For a resonance,
however, the IPR and peak value of the wave function depend
sensitively on the boundary conditions and the value of L, and
on the average they keep decreasing as L is increased. This is
because such a state contains some plane waves which sample
the entire system, and the quasienergies of the plane waves is
sensitively dependent on the boundary conditions and L. (We
recall that if periodic boundary conditions are imposed, the
momentum of the plane wave states is quantized in units of
2π/L. Hence the values of the momentum and therefore the
quasienergies −2γ cos k depend on L.)

Next, we introduce a time-independent on-site potential at
the same site where the periodic kicking is being applied; this
potential is given by

HV = V c
†
Lc

cLc
. (21)

To investigate the effects of kicking, we again plot the
maximum value of the IPR of all the eigenstates of the time
evolution operator as a function of T and α. This is shown
in the right panel of Fig. 6 for V = −4. We see a number
of features in this plot including some straight lines; we now
provide a qualitative understanding of these features. The bold
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FIG. 10. Differential conductance G = (e2/h)T vs α for a
system with V = −4. We see that α can tune the conductance all
the way from zero to 1. Here L = 401, kc = π/2, Lo = 50, σ = 5,
and T = 0.5.

lines within which the IPR is close to 1 is basically determined
by whether the bound state mixes with the continuum states
or not. Since the bulk quasienergies lie between −2γ and 2γ ,
the bound state does not mix with the continuum states and
therefore exists in the regions

εb + α

T
> 2γ, (22)

εb + α

T
< −2γ, (23)

where εb is the bound state energy

εb = −
√

V 2 + 4γ 2 (24)

produced by an on-site potential V < 0. Similar to the
condition in Eq. (22) and using the fact that quasienergies
are only defined modulo 2π/T , we see that another line for
the existence of a bound state is given by

εb + α

T
> −2π

T
+ 2γ. (25)

Between the two lines given in Eqs. (22) and (23) and below
the line given in Eq. (25), the bound state mixes with the
bulk quasienergies and therefore turns into a resonance in the
continuum.

VII. INCREASE IN CONDUCTANCE DUE
TO PERIODIC KICKING

In the presence of only a time-independent on-site potential
V , we have a bound state and a transmission probability T
which is less than 1. We now ask if the transmission can
be increased by periodic kicking at the same site where the
potential V is present. In Sec. II we saw that the transmission
can get reduced when we introduce kicking. We now look
at the opposite case where periodic driving can increase the
transmission. In Fig. 10 the differential conductance is shown
as a function of α for a system with T = 0.5, V = −4, and
kc = π/2. The maximum transmission should occur at α =
−V T which is equal to 2 for the parameters used in Fig. 10.
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FIG. 11. Reflection probability R↑ of a spin-up electron for a
wave packet in a system with an on-site interaction U and kicking
strengths α = 0 (lower curve) and 0.2 (upper curve). Even with α = 0
the wave packet is not completely transmitted in the presence of a
finite U . This happens because there is a finite probability for the
incoming wave packet to get trapped in a bound state which lives
near the interacting site. The effect of U acts asymmetrically in the
presence of a finite α. The effect of U reduces with increasing α and
at large values of α, R↑ is independent of U . We have taken L = 51,
T = 0.25, kc = π/2, σ = 4, and Lo = 6.

We see in that figure that this is indeed true and the system
becomes “transparent” when α = −V T .

VIII. EFFECTS OF INTERACTIONS

We now analyze the effects of interactions on the various
aspects that we have discussed so far, namely, transport and
the presence of bound states. We consider a system containing
two species of electrons with up and down spins and a
time-independent interacting term on the site Lc. The total
Hamiltonian is

H = −γ

L−1∑
n=1

∑
σ=↑,↓

(c†nσ cn+1,σ + H.c.)

+α

∞∑
m=−∞

δ(t − mT )c†Lcσ
cLcσ

+Un̂Lc↑n̂Lc↓, (26)

where n̂Lcσ is the number operator for electrons with spin σ

at site Lc. In order to investigate the effect of the interaction
term, we begin with an initial wave packet which has two
particles in a singlet state of ψ↑(r) and ψ↓(r); the form
of the wave packet is given in Eq. (4). We then study the
effects of the interaction using exact diagonalization and wave
packet evolution. The effect of U is shown in Fig. 11 where
the reflection probability for an electron with spin-up R↑ is
shown as a function of U . [Given an amplitude ψ(n1,n2) for
a spin-up electron to be at n1 and a spin-down electron to be
at n2, we define the reflection and transmission probabilities
for a spin-up electron to be R↑ = ∑Lc

n1=1

∑L
n2=1 |ψ(n1,n2)|2

and T↑ = ∑L
n1=Lc+1

∑L
n2=1 |ψ(n1,n2)|2, analogous to Eq. (5).

These satisfy R↑ + T↑ = 1. We can similarly define R↓ and
T↓; our choice of the form of the wave packet implies that
R↑ = R↓ and T↑ = T↓.] Increasing α makes U less effective;
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FIG. 12. (Top) The value of the two-body IPR for the state with
the maximum IPR as a function of the Hubbard interaction U , with
and without periodic driving. We have taken L = 51, T = 0.5, α =
0.4 (black disks) and α = 0 (red squares). (Bottom) A two-particle
bound state wave function for L = 51, T = 0.5, α = 0.4, and U = 1
where a much more localized bound state is produced by the driving.

this is because in the presence of kicking, the wave packet
is small at the site Lc and is therefore unable to sample
the interaction. Note that in the presence of α, the effects
of U and −U are different. This is because the driving
produces an effective on-site potential equal to α/T ; hence
the total quasienergy of a state with two electrons at site Lc

is U + 2α/T . The minimum of this energy (and hence the
minimum of the reflection probability) occurs at a nonzero
value of U .

As in the case of a noninteracting system, we find that
Floquet bound states can also appear in the presence of
interactions. They have an interesting dependence on the time
period T . If U � γ , there will be a bound state in which both
electrons are at the site Lc, and the quasienergy of this state
is U + 2α/T in the presence of kicking. Since the energy of
the bulk states of the two-electron system goes −4γ to 4γ , the
bound state will not mix with the bulk states if

U + 2α

T
> 4γ, (27)

U + 2α

T
< −4γ. (28)

We can calculate the IPR of a two-particle state and study
its variation with U ; this is shown in Fig. 12. In the absence
of kicking (α = 0), we find that for |U | � 2, the IPR is not
very high suggesting a state which is not strongly localized,
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while for |U | � 2, the IPR is large which suggests a strongly
localized state. Interestingly, we find that a finite kicking
strength (such as α = 0.4) can turn a strongly localized state
into a weakly localized one and vice versa, depending on the
values of U and T . A strongly localized two-particle bound
state wave function is shown in Fig. 12.

IX. CONCLUSIONS

In this paper we have studied the effects of periodic
driving at one site in some tight-binding lattice models in
one dimension. We have taken the driving to be of the form of
periodic δ-function kicks with strength α and time period T .
We have studied how the kicking affects transmission across
that site and whether it produces any bound states.

The transmission (which is related to the differential
conductance) has been calculated by constructing an incoming
wave packet which is centered around a particular momen-
tum and time evolving it numerically. The reflection and
transmission probabilities are found by computing the total
probabilities on the left and right sides of the kicking site after
a sufficiently long time. The bound state is found by computing
all the eigenstates of the time evolution operator U for one time
period, and finding the eigenstate with the maximum value of
the inverse participation ratio; we look at the corresponding
wave function to confirm that it is indeed peaked near the
kicking site.

When T is much smaller than the inverse of the hopping
γ and |α| � 1, the numerically obtained values of both the
transmission probability and the Floquet quasienergy of the
bound state are consistent with the fact that the kicking
effectively acts like a time-independent potential equal to
α/T at the special site. This is confirmed by calculating
the effective Hamiltonian and then using the nonequilibrium
Green’s function method to compute the transmission; this
is found to agree well with the transmission found from
wave packet dynamics if T is small. When T is small and
α = π , we find that the transmission probability is zero; this
is because the effective hoppings between the kicked site and
its two neighboring sites become zero, and it is related to the
phenomenon of dynamical localization. On the other hand,
when T becomes comparable to 1/γ , the agreement between
the transmissions found using wave packet dynamics and the
effective Hamiltonian breaks down, showing that the effective
Hamiltonian no longer provides an accurate description of the
system.

We note that the effective breaking of a “bond” in the
Floquet description is a unique result and cannot be found
in a static case. This feature is true even in higher dimensions
and therefore provides a unique opportunity to experimentally
simulate bond percolation problems [84] in cold atom or
photonic systems. In such systems local δ-function kicking
can be implemented at randomly chosen sites in the system
and their effect on the localization physics can be investigated.

A bound state can appear only if its quasienergy does not lie
in the continuum of the quasienergies of the bulk states going
from −2γ to 2γ modulo 2π/T . If the Floquet quasienergy
of the would-be bound state lies within the continuum of the
quasienergies of the bulk states [this necessarily happens if
T > π/(2γ ) but it can also happen for certain values of α if

T < π/(2γ )], the bound state ceases to exist. However, we
then find that in certain ranges of values of α and T , there is a
state which can be described as a resonance in the continuum.
The wave function of such a state consists of a superposition
of a strongly peaked part which resembles a bound state and a
plane wave part which does not decay even far away from the
kicking site. Furthermore, the IPR of this state is sensitively
dependent on the system size and boundary conditions and it
gradually decays as the system size is increased. This behavior
is in contrast to a bound state whose IPR becomes independent
of the system size and boundary conditions when the system
size is larger than the decay length.

Next, we have studied what happens if there is a time-
independent potential V at a single site and periodic δ-function
kicks are applied to the same site. Separately both V and the
kicks reduce the transmission from unity and can produce
bound states. When both of them are present, we get a
complex pattern of regions in the α-T plane where bound
states are present. These regions can be understood using a
simple condition that the sum of the effective on-site potential
α/T due to the kicking and the energy of the bound state
produced by V alone should not lie within the continuum of
the quasienergies of the bulk states. Furthermore, if V and
α/T have opposite signs, their effects can partially cancel
each other and the transmission probability can be higher than
if only one of them was present.

Finally, we have studied a model with spin-1/2 electrons
where there is a Hubbard interaction of strength U at a
single site and periodic kicks are applied to the same site.
We numerically study wave packet dynamics starting with an
initial wave packet which contains two electrons in a spin
singlet state. In the absence of kicking, a state in which both
particles are at the special site has an energy U . This has a
similar effect as an on-site potential for the model of spinless
electrons; the transmission probability is therefore reduced
from 1 for any nonzero value of U , and it has the same value for
U and −U . When we introduce kicking, the effective potential
for two particles at the special site is given by the sum of U

and 2α/T . Hence the transmission probability will be higher
when U and 2α/T have opposite signs, and will therefore not
be symmetric under U → −U . We also find that a bound state
can appear if its quasienergy does not lie within the continuum
of bulk quasienergies. When U is nonzero, we find that kicking
can convert strongly localized states to weakly localized ones
and vice versa.

We end by pointing out some directions for future studies.
(i) In this paper we have only examined systems with one or

two particles. It may be interesting to study a thermodynamic
system with a finite filling fraction of particles. One can then
investigate if, for example, the model of spin-1/2 electrons with
both an interaction U and periodic kicking at the same site can
show a Kondo-like resonance [85,86]. Related problems have
been studied in Refs. [87,88].

(ii) It may be interesting to look at the effects of heating. It is
known that a system generally heats up to infinite temperature
when there are interactions and periodic driving at all the sites
[89–91]. However, if interactions and periodic driving are both
present in only a small region as considered in this paper, it
is not known if the system will heat up indefinitely at long
times.
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(iii) The effects of periodic kicking at more than one
site, possibly with different strengths and phases, would be
interesting to study. It is known that harmonic driving at two
sites with a phase difference can pump charge (see Ref. [78]
for references). We therefore expect that the application of
δ-function kicks at two sites may also pump charge. In
addition, we can study what kinds of bound states are generated
in such a system.

There has been an increasing interest in understanding the
dynamics of a single impurity or of electrons in a quantum
dot under the periodic modulation of some parameter. This
is motivated both by theoretical considerations such as the
effect of such a modulation on the Kondo effect [88,92]
and by advances in cold atom experiments which allow for

the imaging and modulation of systems up to single site
resolution [93–95]. The results presented in this paper describe
many interesting phenomena which are realizable due to an
interplay of impurity physics and dynamical modulation of
some parameter in the Hamiltonian. It will be interesting if
such effects can indeed be observed in cold atom or mesoscopic
systems.
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