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Electron-phonon scattering rates in complex polar crystals
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The thermalization of fast electrons by phonons is studied in CsI, NaI, SrI2, and YAlO3. This numerical study
uses an improvement to a recently developed method based on a density functional perturbation description of
the phonon modes that provides a way to go beyond widely used phonon models based on binary crystals. The
method is compared to standard ab initio approaches to the electron-phonon interaction. Improvements to this
method are described, and scattering rates are presented and discussed. The relative activity of the numerous
phonon modes in materials with complicated structures is discussed, and a simple criterion for finding the modes
that scatter strongly is presented.
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I. INTRODUCTION

Detailed theoretical and experimental investigations over
the last decade have shown that the thermalization phase of
a scintillation event plays a significant role in determining
the ultimate performance of scintillating gamma-ray detectors
[1–7]. While much of the underlying physics is now well
understood, significant gaps remain regarding the complicated
sequence of events following gamma excitation of a polar
crystal, in particular, competing effects arising from the
different mobilities and lifetimes of the various excitations
that are present in scintillating materials. In the course of
this discovery, it has been noted that ionic crystals with more
than two atoms in a unit cell show less resolution limiting
nonproportionality than similar materials with simple crystal
structures. It has been hypothesized [8–11] that the improved
performance in complex crystals may result from reduced
charge separation. As the secondary electrons travel away from
the less mobile holes, they are less able to escape to remote
regions of the crystal if the crystal structure has low symmetry.
These electrons, therefore, are more likely to recombine with
holes and ultimately contribute to the optical signal. Analyzing
this type of hypothesis requires detailed knowledge of the
microscopic physics, including the thermalization distances
and times of initially hot electrons created in the energy
cascade. This thermalization occurs mainly through interaction
with the phonons, which have mostly been treated with
phenomenological models that apply best to systems with
small, simple unit cells [2,5–7,12]. Detailed evidence on the
dynamics of the energy cascade is emerging from modeling
and experiment [3,11,13–17], however uncertainty remains
about the population of various types of secondary excitations,
their dynamics, and mutual interactions. Importantly, the
amount of energy and momentum relaxation that is due
to optical and acoustic phonons differs widely in various
models [6,7,18–20]. A major challenge to understanding the
energy cascade is the highly excited nature of the relevant
degrees of freedom. In contrast to situations arising from
the application of low-energy electromagnetic fields and
temperature gradients (e.g., as encountered in the design of
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electronic devices), the energy cascade involves carriers with
kinetic energy comparable to the band gap of the material (i.e.,
several eV). This implies that carriers are not well described
by quasiparticles near band extrema.

In an effort to direct searches for improved scintillators and
shed light on these questions, we have recently developed a
semiclassical theory [21] to estimate the rate of energy transfer
between hot electrons produced in the cascade initiated by the
absorption or Compton scattering of a gamma-ray photon.
In the present paper we describe refinements to this theory
that improve the accuracy and computational feasibility of
the method. We provide updated results for CsI, new results
for NaI, and new results for two complex polar scintillators:
strontium iodide (SrI2) and yttrium aluminum perovskite
(YAP,YAlO3). The first two materials are included because
they have been extensively studied and are widely used;
they also have simple two-atom cubic unit cells. The other
two materials are more complex structurally (with 24 and
20 atoms in their primitive unit cells) and representative of
materials considered in the search for improved scintillators.
The low-energy carrier transport in SrI2 is of current interest
because SrI2 is a bright and proportional scintillator [22].
The fundamental reasons for this high performance are still
unknown [23,24]. YAP is interesting because it has excellent
nonproportionality characteristics [25,26]. Of the two complex
materials, SrI2 has soft phonon modes typical of ionic alkali-
and alkaline earth halides while YAP, a representative oxide,
exhibits very stiff vibrations. These different phonon proper-
ties lead to different scintillation behavior, and a description
of both types of materials within a common framework is
desirable. This paper joins a growing body of work [27–29]
using ab initio methods to understand atomic-scale phenomena
and their relation to radiation detector performance.

II. COMPUTATIONAL METHODS

In Ref. [21] we formulated a semiclassical theory of the
electron-phonon interaction. This theory was derived from
a viewpoint complementary to the standard, fully quantum
formulation of the electron-phonon interaction [30–35] in
which the fundamental quantity is the coupling gk,k′ =
〈k′|Hep|k〉 between electronic quasiparticle states |k〉 and |k′〉.
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The quasiparticles are described as Bloch waves (with band
and crystal momentum indices in the composite k) resulting
from density functional theory (DFT) calculations, sometimes
with quasiparticle effects beyond DFT included (e.g., in the
GW framework). Hep is a coupling Hamiltonian that must
be specified. The advent of robust implementations of density
functional perturbation theory allowed the ab initio calculation
of both phonon structures and the electron-phonon interaction
[36–38]. In this context, Hep is taken as the first-order change
in the Kohn-Sham (KS) Hamiltonian in response to deforma-
tion of the structure corresponding to excitation of a phonon.
This choice is intuitive and theoretically justified by Giustino
[39]. This quantum theory of the electron-phonon interaction
has been applied to a variety of systems including metals [40],
semiconductors [41,42], and even hot carrier thermalization in
insulators [43]. These calculations have been found to require
dense sampling in reciprocal space; practical access to useful
results was greatly improved by the application of Fourier
interpolation of the phonon structures and matrix elements to
achieve sufficient sampling of the Brillouin zone. Approaches
representing the electronic orbitals in terms of maximally
localized Wannier functions have made converged results more
accessible [42,44–46].

The approach developed here is motivated by a desire to get
away from a band-structure description of the quasiparticles.
Such descriptions become increasingly complicated as the
quasiparticle kinetic energy grows beyond the first band
crossing and more bands become accessible. Energy cascades
produce quasiparticles of very high energy which decay by a
variety of processes. For quasiparticles with kinetic energy
similar to and lower than the band gap of the material,
the quasiparticle-phonon interaction is the primary relaxation
channel. The model of the current paper is targeted at quasi-
particle kinetic energies of several eVs in complex systems, a
regime where there are many bands throughout the Brillouin
zone accessible to the carriers. A quantum description of the
quasiparticles is hampered by the large number of bands. When
there is only one band available, the direction of the crystal
momentum and its magnitude (or, equivalently, the energy)
determine the quasiparticle wave function and the physical
properties of the quasiparticle. When there are many bands
available, eigenstates are in general linear combinations of
many Bloch waves. In this case tabulation of the gk,k′ =
〈k′|Hep|k〉 becomes cumbersome, as does application of the
matrix elements in mesoscale simulations which require some
kind of averaging over the available states or an explicit
description of the carrier wave function.

Since significant modeling of energy cascade events has
been performed using a classical description of the quasipar-
ticles produced by high-energy (MeV) excitation [2–8,47,48],
we have chosen to use the same description in this work.
This means the energy and momentum of the quasiparticle
follow the classical dispersion E = k2/2, and the carrier’s
trajectory r(t) is a succession of constant-velocity ballistic
legs interrupted by scatterings from phonons. The rate and
distribution of energy transfers of such scatterings are the main
quantities sought in this work. To make a useful model that
can be applied when only the particle velocity is known, we
average over initial positions r(0) of the trajectories uniformly
distributed in the unit cell of the crystal. As in the conventional

theory of the electron-phonon interaction, the quantum nature
of the phonon structure is kept in the current theory. We use
standard density functional perturbation theoretic (DFPT) cal-
culations of the phonons and the first-order induced densities
associated with lattice distortions and static homogeneous
applied electric fields. Since this approach is different than
the conventional one, we will note the relationship between
expressions encountered in our semiclassical theory to their
counterparts in the conventional, fully quantum one which is
described well in Refs. [39,49].

To derive expressions for the scattering rate � suffered by
our classical point particle, we assume that it interacts with the
lattice vibrations of an insulating crystal via a simple screened
Coulomb interaction

vsc = 4π

(
ε−1
∞
q2

+ 1 − ε−1
∞

q2 + k2
tf

)
(1)

that goes to the bare Coulomb interaction 4π/q2 at large
momentum transfers q and to an interaction 4πε−1

∞ /q2

screened by the frozen-lattice dielectric constant ε∞ at small
q. The crossover wave vector is taken as the Thomas-Fermi
wave vector ktf of the homogeneous electron gas with the same
average density as the valence electrons in the crystal.

We then treat this interaction as a perturbation to the phonon
system. We derive the following golden-rule type expression
for the rate of excitation (upper sign) or deexcitation (lower
sign) of the λ,q phonon mode by a charged particle traveling
through a crystal:

�
(±)
λ,q = 2πN

V

∑
G

|vsc(q + G)nλ(q + G)|2

× δ

(
±ωλ,q − (q + G) · v + 1

2
(q + G)2

)
. (2)

In our notation, λ indexes the phonon branch, q and G are
momenta from the first Brillouin zone and the reciprocal
lattice, respectively, V/N is the volume of the unit cell of
the crystal, v is the velocity of the charged particle that is
traversing the material, and ωλ,q is the phonon energy. We use
Hartree atomic units (e2 = h̄ = m = 1).

Equation (2) is based on the electrostatic interaction
between two charge distributions: the perturbing charge [taken
as a point charge screened by the sample electrons via Eq. (1)]
and the density nλ induced by the excitation of the phonon
branch λ. This interaction is then averaged over positions of
the perturbing point charge in the crystal.

In the conventional, quantum formulation of the electron-
phonon interaction, an expression very similar to Eq. (2) is
derived from a different perspective. In this case, the electrons
are treated quantum mechanically as well as the phonons.
A complete field-theoretic derivation of an expression of the
form of Eq. (2) is given by Giustino [39] in Eq. (169). A
thorough discussion of the derivation lists all the approxi-
mations involved. Inspection shows that this expression is
identical to Eq. (2) except that the electron-phonon matrix
elements gk,k′ = 〈k′|Hep|k〉 of Ref. [39] are replaced by
vsc(q + G)nλ(q + G) here, and the particle energies (which
are usually taken as eigenvalues of KS or GW quasiparticles
in the quantum theory) are replaced with their free-electron
values E(k) = k2/2. The physical meanings of these terms is
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clear: The electron-phonon coupling scatters (quasi)particles
from one state to another by the absorption or emission of a
phonon.

The semiclassical theory evaluated in this work has as
quasiparticles classical point charges that are screened by the
dielectric response of the host material in the role played by
the computed KS orbitals in ab initio approaches. This is a
key difference that makes the current theory compatible with
existing kinetic Monte Carlo (KMC) descriptions of the energy
cascade in scintillators [6,7,48,50,51] which use a classical
description of the electrons and holes. Also, fully quantum
theories of the electron-phonon interaction contain exchange-
correlation contributions to the interaction Hamiltonian which
are absent in the theory of this work. While the difference in the
representation of the quasiparticles is stark, the semiclassical
theory used here is equivalent to one in which free electrons
occupy plane-wave orbitals and interact via the effective
interaction

∑
q,λ vscnq,λ.

For materials in their ground state there is no thermal
population of phonons and only phonon emission [upper sign
in Eq. (2)] needs to be considered. At finite temperature
the rates of emission and absorption of phonons through the
λ,q channel are

[N (T ,ωλ,q) + 1]�(+)
λ,q and N (T ,ωλ,q)�(−)

λ,q, (3)

respectively. Here N (T ,E) is the normal Bose occupation
factor, which is given in terms of the Boltzmann constant kB

by

N (T ,E) = (eE/(kBT ) − 1)−1. (4)

The total rates of phonon emission or absorption are obtained
by summing over the various phonon modes:

�(±) =
∑
λ,q

�
(±)
λ,q =

∑
λ

∫
BZ

dq

(2π )3 �
(±)
λ,q

= 8π2Z2N

V

∑
λ

∫
dQ

(2π )3
|vsc(Q)nλ(Q)|2

× δ

(
±ωλ,q − Q · v + Q2

2

)
. (5)

The first integral in Eq. (5) is over the Brillouin zone, and
the second is extended to all of reciprocal space by the sum
over the reciprocal lattice. We use the shorthand that q is the
unique momentum from the first Brillouin zone that differs
from Q by a reciprocal lattice vector. The integrand in Eq. (5)
is the probability density for a phonon scattering event that
transfers energy ±ωλ,q and momentum ±Q from the particle
to the vibrational modes of the crystal. The energy-conserving
δ function in Eq. (5) yields a 2d integral over a surface that
is a sphere of radius

√
v2 ∓ 2ωλ,q centered at v when ωλ,q is

constant. Averages of the quantity X over the scattering events
can be found using similar integrals:

〈X(±)〉 = 8π2Z2N

�(±)V

∑
λ

∫
dQ

(2π )3
|vsc(Q)nλ(Q)|2X(v,Q)

× δ

(
±ωλ,q − Q · v + Q2

2

)
. (6)

Our strategy is to use Eq. (5) to find �(±) and then use
Eq. (6) with X being, e.g., the cosine of the scattering angle.
The integrals are completed numerically using techniques
described in Ref. [21] and below. These results then provide
an average picture of the scattering that can be parameterized
in simplified microscopic models such as KMC simulations:
�(±) determines how often the particles scatter, and 〈cos θ〉
and 〈ωλ,q〉 determine how fast the propagation direction and
speed, respectively, relax.

In Ref. [21], we calculated nλ numerically on a grid
in reciprocal space within the plane-wave framework of
the ABINIT code [36,37,52,53]. Subsequent experience has
shown that it is difficult to produce the correct small-q
behavior in such calculations. The acoustic modes at the zone
center correspond to phonons with vanishing frequency: The
crystal is simply translated in space with constant velocity. An
electron drifting with such a crystal should not be scattered.
Mathematically, this situation corresponds to the small-q limit.
This limit is important because the factors of q + G in the de-
nominator heavily weight small-q scattering events; the
numerator needs to vanish sufficiently fast to ensure that the
q = 0 acoustic modes do not introduce unphysical scattering.
This is related to the acoustic sum rule [34] as described
below.

A. Effective charge approximation

To arrive at a numerical procedure that is stable, tractable,
and well-behaved near �, we have calculated the induced
density in response to atomic displacements from the Born
effective charge tensor Z∗

κ,βα . This quantity can be equivalently
defined as the force on an atom in the κ sublattice under a
macroscopic electric field (per unit applied field) or the linear
coefficient in an expansion of the macroscopic polarization (in
the direction β) per unit cell in response to displacement (in
the direction α) of the κ sublattice [34,36]. In this formulation,
we take

nλ(q + G) =
∑
κ,α

u∗
κ,α,λ(q)√
2Mκωλ,q

×
⎛
⎝−ie−iτ κ ·(q+G)

∑
β

Z∗
κ,αβ × (q + G)β

⎞
⎠

=
∑

β

Z∗
λ,β(q + G) × (q + G)β. (7)

The phonon vibrations are described by the eigenvectors
u∗

κ,α,λ(q) of the dynamical matrix, and τ κ is the equilibrium
position in the central unit cell of the atom belonging to the
κ sublattice. For an effective charge tensor proportional to the
identity (Z∗

κ,αβ = Z∗
κδα,β), the term in parentheses in Eq. (7)

reduces to the first-order density response of a point charge Z∗
κ .

When we describe a material as polar, we mean it possesses a
nonzero Z∗

κ,αβ .
An advantage of this approach is that the acoustic sum rule

can be enforced by adjusting the computed effective charge
tensor following Gonze and Lee [36]. This avoids spurious
contributions from the acoustic modes near �. Acoustic modes
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should obey Z∗
λ,β (q + G) → 0 as q → 0 [54]. The effective

charge approximation guarantees this is so. Comparison of
Eqs. (7) and (2) to Eqs. (S4) and (4) of Ref. [46] shows
that the current theory corresponds (up to differences in the
descriptions of the electrons) to the long-range part of the
electron-phonon vertex in that work. As those authors point
out, the long-range part in Ref. [46] away from � can be
defined in any smooth way that preserves the long-wavelength
limit. For example, Vogl [54] defines the short-ranged part of
the electron-phonon interactions to be the part that survives
if the macroscopic electric field is canceled by an appropriate
uniform external field. The long-range part is the remainder.
This definition differs from that of Ref. [46] but has the
same long-wavelength limit. Both the scattering potential here
and the long-range contributions of Verdi et al. contribute to
scatterings when the macroscopic field vanishes. A more
refined theory would include higher order contributions with
terms proportional to (q + G)α(q + G)β and higher powers of
the momentum. Such a theory would recover the full Hartree
response, including all the short-ranged contributions. This
neglect is likely to cause our electron-phonon scattering rates
to be underestimated.

A further advantage of using the Born effective charges
to estimate the density response is that they can be found
by considering the response of the energy to a homogeneous
electric field [37] instead of collective atomic displacements.
This is possible because both responses (to an electric field or
to atomic displacements) are related through the dielectric
tensor. Since the effective charges are found through the
response to a homogeneous electric field, within the effective
charge approximation the density response can be found with
�-point calculations for fields in (at most) three directions. Our
previous efforts relied on calculations of the induced density
on a grid spanning the (irreducible wedge of the) Brillouin
zone, leading to the storage of many large density files for fine
grids in reciprocal space. Of course the phonon eigenvectors
u∗

κ,α,λ(q) still need to be calculated throughout the Brillouin
zone, but this can be efficiently accomplished using Fourier
interpolation of the dynamical matrices [36], which only need
to be directly computed on modest k grids (8 × 8 × 8 was
the largest used in this work). We used 24 × 24 × 24 fine
grids for calculation of the phonon structure throughout this
work.

Figure 1 shows the effective charge approximation (inferred
from an electric-field perturbation at �) with direct calculations
using atomic-displacement perturbations in CsI. We see that
the real and imaginary parts of the induced density (especially
at small Q) are well reproduced by the effective charge
approximation. The diagonal part of the computed effective
charges used in this work are reported in Table I. For the simple
systems (CsI, NaI) the effective charge tensor is proportional
to the identity matrix by symmetry. Here the acoustic sum
rule reduces to one the number of independent degrees of
freedom in the calculation of the effective charges. In contrast,
the lower symmetry systems (YAP, SrI2) have different
diagonal elements in different directions and nontrivial off-
diagonal elements (e.g., the I1 sublattice in SrI2 moved in the
xy plane has a response in the orthogonal in-plane direction
of 0.412 elementary charges compared to the diagonal value
of −1.24).

FIG. 1. Computed electronic first-order density response (smooth
lines) and the corresponding effective charge approximation (dec-
orated lines) in CsI. The imaginary part of the induced density
in response to displacing Cs is in blue (the real part vanishes by
symmetry); the real part of the response to I displacements is in
yellow; the imaginary part of the I response is in purple.

A drawback of the effective charge approximation de-
scribed here is that it predicts no induced density (and
hence no electron-phonon interaction) in nonpolar materials
(e.g., Si where the effective charges vanish by symmetry).
In materials with nonvanishing Born effective charge tensors
all modes generally contribute, including acoustic modes and
optical modes that are transverse at �. A further drawback is
that the effective charge approximation fails for large wave
vectors. The term in parentheses in Eq. (7) (representing the
Q = q + G Fourier component of the density response to a
‘primitive’ perturbation of the κ sublattice in the α direction)
is linear in the wave vector Q = |q + G| with coefficient
Z∗

κ,αβ whereas a more realistic model with distributed electron
density and a point nucleus will have the same coefficient
equal to Zκδαβ where Zκ is the atomic number of the
atoms occupying sublattice κ . Since Z∗

κ,αβ < Zκ , the induced
density at large wave vector is underestimated in the effective
charge approximation. This will reduce the scattering rates
of Umklapp processes in our results. An investigation of the
magnitude of this effect utilizing the all-electron density and its
response to atomic displacements is envisioned for the future.

TABLE I. Diagonal elements of the Born effective charge tensor.

Material Sublattice Z∗
αα Z∗

ββ Z∗
γ γ

CsI Cs 1.32 1.32 1.32
I −1.32 −1.32 −1.32

NaI Na 1.16 1.16 1.16
I −1.16 −1.16 −1.16

SrI2 Sr 2.56 2.70 2.56
I1 −1.47 −1.24 −1.23
I2 −1.09 −1.45 −1.32

YAP O1 −2.28 −2.35 −2.15
O2 −2.38 −2.13 −2.31
Y 4.00 3.87 3.70
Al 2.93 2.96 2.95
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B. Adaptive integration

The adaptive integration method used here was described
in Ref. [21]. The method is based on partitioning a bounded
volume of reciprocal space into cubes in reduced coordinates
(corresponding to parallelepipeds in Cartesian coordinates)
which are iteratively subdivided into smaller cubes. This
subdivision process continues until all contributions to the
integral in Eq. (2) are found to sufficient accuracy. In the
course of this integration, cubes that do not intersect the surface
defined by

±ωλ,q − (q + G) · v + 1
2 (q + G)2 = 0 (8)

are discarded from the list since they do not contribute to
the integral. We previously discarded cubes if the left-hand
side of Eq. (8) had the same sign at all eight vertices,
implying that all of the vertices are either inside (negative sign)
or outside (positive sign) the kinematically-allowed surface.
This procedure can underestimate the integral by dropping
cubes whose vertices all take the same sign but still intersect
the kinematically-allowed surface (e.g., if the intersection is
confined to one face of the cube). To avoid this kind of error, we
have introduced bounding spheres in reciprocal space obtained
by setting the phonon frequency in Eq. (8) to 0 (giving a
sphere interior to the actual surface) or to the maximum
phonon frequency in the material (giving a sphere exterior
to the actual surface). The convexity of the parallelepipeds
and the spheres implies that any parallelepiped that has all
vertices strictly inside the interior sphere does not intersect the
interior sphere or the actual surface. Hence any such cubes
are dropped from our integration scheme. The bigger problem
occurs for parallelepipeds with all vertices exterior. For this
case we test for a pair of parallel faces of the parallelepiped
that define two planes that do not intersect the exterior sphere.
This criterion will always find intersections with the exterior
sphere for parallelepipeds whose side length is less than the
diameter of the exterior sphere. In practice we have found it to
be an effective culling criterion.

Our adaptive integration method has been tested by re-
producing analytic results and generally works well. It does,
however, leave some very sharp dips and peaks (visible in
Figs. 6–9, 11, and 12) that are due to using a finite, constant
stopping criterion.

C. Approximations of the current work compared to
conventional ab initio approaches

Conventional ab initio approaches to electron-phonon
interactions are based on matrix elements gk,k′ between Bloch
Kohn-Sham states |k〉 of the first-order change to the Kohn-
Sham Hamiltonian induced by phonon excitation [39]. The
theory evaluated here differs in the following ways.

(1) The electrons that are scattered are classical particles
whose energy is k2/2.

(2) The interaction Hamiltonian is based on the induced
Hartree potential and thus neglects exchange-correlation con-
tributions.

(3) The induced Hartree potential itself is calculated
according to the effective charge approximation and hence
neglects some short-ranged contributions, including the entire
electron-phonon interaction for nonpolar materials.

FIG. 2. Computed phonon density of states.

III. RESULTS AND DISCUSSION

This paper includes calculations of four polar scintillating
crystals. Two of these are simple (binary) alkali halide systems,
and two are more complicated systems of lower symmetry.
This selection of materials allows us to make detailed compar-
isons to existing models (which are only available for small,
high-symmetry materials) and explore the effects of lowering
symmetry on the electron-phonon interaction. The energy
distribution of the phonon modes in the materials studied in
the current work is shown in Fig. 2. Experimental data are
available for momentum-resolved phonon band structures of
CsI [57] and NaI [55,56]. These are compared with theoretical
predictions in Ref. [21] (CsI) and Fig. 3 (NaI). We find good
agreement with the measured phonon frequencies in these two
systems giving us confidence that our numerical approach
is accurately capturing the phonon physics. The computed
phonon band structures for YAP (Fig. 4) and SrI2 (Fig. 5) are
also shown.

FIG. 3. Computed phonon band structure (in cm−1) along high-
symmetry directions in NaI compared to the experimental data of
Melvin [55] (+’s) and Woods [56] (x’s).
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FIG. 4. Phonon band structure (in cm−1) along high-symmetry
directions in YAP. The color of the lines indicates the degree to which
the mode is longitudinal: Red corresponds to longitudinal modes and
black to purely transverse modes.

A. Simple alkali halides: CsI and NaI

In our CsI calculations, Troullier-Martins [58] type pseu-
dopotentials obtained from the ABINIT website were used.
The Teter parametrization [59] of the local density approxi-
mation was employed to calculate the exchange-correlation en-
ergy. An 8 × 8 × 8 k grid was used resulting in 35 symmetry-
inequivalent k points. Good results can be obtained with
substantially fewer k points. The NaI system was treated with
PBE [60]. Norm-conserving pseudopotentials [61] and a 20 Ha
energy cutoff were employed.

Our previous work [21] found that the acoustic modes
in CsI contributed significantly to the energy relaxation of
fast particles. Through subsequent analysis of those results
we have attributed the strong acoustic mode scattering to the
failure of the numerical calculations to obey the acoustic sum
rule discussed in Sec. II A. Our updated results for scattering
rate are shown in Fig. 6, which shows the rates of phonon
emission and absorption at two temperatures as a function of

FIG. 5. Phonon band structure (in cm−1) along high-symmetry
directions in SrI2. The color of the lines indicates the degree to which
the mode is longitudinal: Red corresponds to longitudinal modes and
black to purely transverse modes.

FIG. 6. Total phonon scattering rates in CsI and NaI and the
contribution of the acoustic modes at zero and room temperature.

particle energy. In these improved calculations, the acoustic
modes contribute hardly at all at low energies and only
moderately at higher energies. As can be seen in Fig. 6,
the acoustic modes contribute at most around 15% of the
total scattering at relevant energies at T = 0. At higher
temperatures, stimulated processes involving acoustic modes
become more important since the Bose occupation factors
for these low-energy modes turn on at lower temperatures.
A similar situation is found in NaI. For these systems, the
scattering is dominated by the single longitudinal-optical
(LO) phonon mode. At low temperature, the electron-phonon
coupling is stronger in NaI than CsI, but the softer longitudinal
optical phonon in CsI acquires appreciable thermal population
at lower temperature, and stimulated emission and absorption
are more important in CsI. Hence, at room temperature, CsI
and NaI have similar phonon emission rates.

1. Optical modes in NaI and CsI

As pointed out above, most of the scattering in the current
results involves the long-wavelength LO modes. Although
the Fröhlich problem has been considered solved since the
1950’s, authoritative, quantitative predictions are not available
for hot particles in real systems. A fundamental problem is that
the effective mass approximation relating quasiparticle energy
and momentum, implicit in the Fröhlich Hamiltonian, is only
valid for low-energy particles. Hence, to apply this model, one
must choose an effective mass or, at least, some dispersion
relation. The dependence of the phonon scattering rate on the
quasiparticle dispersion arises from the conservation of energy
and momentum: Different phonon processes are allowed for
different dispersion relations.

In previous work, we have tried the bare electron mass
m∗ = 1 [7], including the real part of the polaron self-energy
in the Fröhlich model itself [6], and using predictions derived
from DFT band structures [51]. We compare a Fröhlich model
with m∗ = 1 (as assumed in the current work) and the dielectric
constants ε0 and ε∞ from our calculations in Fig. 7. Our
calculated dielectric constants are compared to experimental
values in Table II. We point out that the current work assumes
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FIG. 7. Scattering rates from the single LO mode in CsI and
NaI at room temperature from the current work and the usual
phenomenological model evaluated at parameters from our DFT
calculations (i.e., m∗ = 1 and ε0, ε∞ listed in Table II).

m∗ = 1 in Eq. (2), although other dispersion relations could
be implemented in a straightforward way.

2. Scattering from acoustic and transverse modes in NaI and CsI

The exchange of energy and momentum between hot
electrons and acoustic phonons has been a major challenge
limiting simulations of electron transport up to the present.
Sparks et al. [20] developed the first detailed models of
acoustic phonon scattering for hot electron transport that
included Umklapp processes. This model was based on the
work of Holway and Fradin [63] who used the deformation
potential approximation. Holway and Fradin found scattering
rates that decreased with increasing particle energy; Sparks
and later work by Fischetti et al., [64] on the other hand,
found that the inclusion of Umklapp processes gave scattering
rates that were much larger at high energies and increased
rapidly (like E3/2) at high energy. As the experimental picture
of hot electron transport in SiO2 became more established,
Bradford and Woolf [62] noted that the high energy behavior
of the scattering from acoustic modes in the Sparks and
Fischetti models was unphysical. They proposed a model
based on a pseudopotential that added a screening term that
suppressed Umklapp events and yielded smaller scattering
rates. Although originally derived for modeling avalanche
breakdown in solids (principally SiO2), this model and closely

TABLE II. Computed and experimental [18] dielectric constants.
The theoretical numbers were used in the phenomenological model
plotted in Fig. 7.

NaI CsI

Theory Expt. Theory Expt.

ε0 6.63 7.3 6.99 5.65
ε∞ 3.47 2.9 3.65 3.0
1/ε∞ − 1/ε0 0.14 0.21 0.13 0.16

related ones have been used for Monte Carlo modeling of scin-
tillator performance in our group [6,7,51] and others [2,8–11].
All these models of acoustic mode scattering are based on
the deformation potential approximation which is derived by
considering perturbations to the band structure by acoustic
vibrations and the subsequent effects on low-energy electrons
in a parabolic band. These conditions are not representative of
high-energy electrons. To arrive at integrals that can be eval-
uated analytically for high-energy particles, the above authors
were forced to make ad hoc and unsatisfying assumptions
about the electron-phonon Hamiltonian. In particular, only
a single longitudinal acoustic (LA) mode was considered.
This is because, for binary systems, the six long-wavelength
vibrations are split into four transverse modes (i.e., the dot
product of the phonon eigenvectors and q vanishes as q → 0)
and two completely longitudinal ones: LO and LA branches.
Since, in acoustic vibrations, the atoms move sympathetically,
the electron-phonon coupling ε−1

∞ nλ(Q)(4π/Q2) is nonsingu-
lar at the origin, and the scattering-rate integral Eq. (5) gets
the largest contributions away from �. This is why Umklapp
processes are important for the acoustic modes. In contrast, for
LO phonons, the coupling is singular near �, and Fröhlich type
scattering is dominated by long-wavelength contributions. The
classification into longitudinal and transverse modes cannot
be made away from � where the modes have mixed character.
Since the longitudinal part of the induced density interacts
with the longitudinal field of the thermalizing particle, all
modes (not just the LA mode) contribute to this type of
scattering.

The strategy employed here is complementary to these
efforts. We do not use any separate approximations for trans-
verse and acoustic modes: All phonons are treated identically.
Instead of relying on models based on zone-center quantities
like the speed of sound, we explicitly calculate the phonon
eigenvectors. This work is based on detailed calculations of the
phonon properties throughout the Brillouin zone. Hence our
approach can provide additional information on the nature of
the thermalization of hot electrons. Of course the current work
also employs approximations. The most severe one for acoustic
phonons is probably the effective charge approximation of
Eq. (7). Another major approximation is the dispersion relation
implicit in the energy-conserving δ function in Eq. (2).
However we believe the current work is an improvement on
the deformation potential based approximations, is suitable
for semiquantitative predictions, and amenable to systematic
improvement.

Our results for CsI and NaI are displayed in Fig. 8 which
also includes phenomenological models similar to those used
in Refs. [6,7] appropriate for these materials. Both of these
models use m∗ = 1 as we have assumed in this work. One of
these models includes the screening correction of Bradford
and Woolf using a value of α = 24.3 nm−1 calculated for
CsI by Boutboul et al. [65]. The main conclusion from this
comparison is that the scattering from non-LO modes for
high energy (above 3 eV, e.g.) is predicted to be weaker in
our semiclassical calculations compared to the Sparks model
and shows behavior comparable to the Bradford and Woolf
model. The increasingly large scattering rates at high energy
that Bradford and Woolf worked to tame are absent in our
numerical results, which tend to nearly constant values at high
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FIG. 8. Scattering rates from the acoustic and transverse optical
modes in CsI and NaI at room temperature. The current semiclassical
results are compared to phenomenological models following the work
of Sparks [20] and Llacer and Garwin [19]. Models are shown with
and without the correction proposed by Bradford and Woolf [62].

energies. For low electron energies, our numerical simulations
show more electron scattering than any of the deformation
potential-based models. We stress that our semiclassical
method requires only the atomic structure for input and treats
all phonon modes identically.

3. Average scattering angle

Besides the scattering rate, information about the momen-
tum relaxation is needed for KMC simulations. For LO modes,
predictions can be made from the Fröhlich model [19] about
the scattering angle. For other modes, the final momentum
of the particle is typically taken in a random direction (or,
equivalently, the motion is treated as diffusion with diffusion
constant D = v2/(3�) where v is the particle speed) [5].
We are interested in how these approximations compare to
numerical results in the theory presented here. To this end
we show (in Fig. 9) the average cosine of the scattering

FIG. 9. Average cosine of the scattering angle as a function of
particle energy. Results from the phenomenological model for the
LO modes of Ref. [51] are also shown.

angle for scattering at T = 0 K in NaI and CsI computed
via Eq. (6). Also shown are the Fröhlich model results. For
the common approximation of a uniformly distributed random
direction after scattering the average cosine vanishes. As
for the scattering rates, the numerical results are in better
agreement with the phenomenological ones for LO modes.
At low energies, electrons are seen to mostly backscatter
(〈cos(θ )〉 < 0) in CsI while in NaI the scattering is mostly
forward. In these calculations, however, the scattering rate
for acoustic phonons is small and serves as the denominator
in Eq. (6). Hence these results should be viewed skepti-
cally. At higher energies (where non-LO modes are more
relevant) our method does not suffer from this problem and
predicts scattering that is significantly biased in the forward
direction.

B. Complex polar crystals: YAP and SrI2

Our YAP calculations are based on the structure reported
by Ross et al. [66]. An energy cutoff of 30 Ha was used; the
Brillouin zone was sampled with a 4 × 4 × 4 grid (resulting
in 27 k points). As for NaI, the PBE [60] exchange-correlation
functional and norm-conserving pseudopotentials [61] were
employed. As mentioned above, ABINIT was used for all DFT
calculations. Our calculations of SrI2 are based on the structure
reported by Barnighausen and Schulz [67] as obtained from
the Crystallography Open Database [68]. Approximations
similar to those used for YAP were employed in our cal-
culations for SrI2. Troullier-Martins type pseudopotentials
obtained from the ABINIT website were used. The Teter
parametrization [59] of the local density approximation was
employed to calculate the exchange-correlation energy. The
energy cutoff was set to 10 Ha, and a 8 × 4 × 4 grid of k

points was used. Responses to all 72 atomic displacements
were considered over the 68 symmetry-inequivalent k points;
homogeneous (�-point) electric fields in all three directions
were also calculated to find the LO-TO splitting in all three
directions.

The resulting phonon band structures (Figs. 4 and 5)
comprise a rich set of excitations available to the material
and lead to multiple pathways for energy and momentum
transfer between thermalizing particles and these materials.
Full numerical calculations of the scattering rates as a function
of the energy of the scattering particle were calculated using the
methods described in Sec. II for velocities with no component
in the x direction and a y component twice the z component.
The total scattering rates for all four materials at T = 0 are
plotted in Fig. 10.

As expected from its large phonon frequencies, YAP has
high scattering rates (several times as large) compared to the
other materials considered here. The phonon scattering in YAP
along our line of velocities is dominated by a few active modes:
mostly by the stiffest LO mode (at an energy of 0.089 eV)
with significant contributions from two other optical modes
(52 and 20) at 0.089 and 0.073 eV, respectively. The total
scattering rate and the contributions from these active modes
are exhibited in Fig. 11. In SrI2, we find the strongest scattering
(at zero temperature) from the two stiffest modes and from
mode 12. At �, these modes have energies of 0.00364, 0.0197,
and 0.0208 eV. We show the total scattering rate in SrI2 and the
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FIG. 10. Total phonon emission rate in inverse seconds at T = 0
in a suite of polar crystals.

contributions from these three modes in Fig. 12. Also shown
in that plot is the sum of the scattering rates from the three
dominant modes. The remainder of the scattering is distributed
broadly among the remaining 69 modes: Some modes are not
active at all while others contribute small amounts.

In order to understand the relative magnitude of optical
modes to scattering, we define a mode-effective charge for
velocities along the three Cartesian directions by considering
Eq. (7) as q approaches � along the α axis:

Zλ,α =
∑
κ,β

Z∗
κ,βα√
2Mκ

lim
q→0

u∗
κ,β,λ√
ωλ,q

. (9)

Here the limit is meant to be taken in the α direction. For
many optical modes, the scattering rate integral Eq. (5) is
dominated by contributions from near the intersection of the
kinematically-allowed surface and the line segment connecting
the origin and the particle velocity in momentum space. Hence
this quantity gives an indication of which modes interact
strongly with particles traveling in the α direction. For both

FIG. 11. Contributions to the phonon scattering rate by the three
strongest modes in YAP as a function of the energy of the thermalizing
particle.

FIG. 12. Contributions to the phonon scattering rate by the three
strongest modes in SrI2 as a function of the energy of the thermalizing
particle for particles moving in the yz plane with a y component of
the velocity twice the z component.

cubic alkali halide systems considered above, Zλ,α vanishes for
all but the LO mode. This quantity can also be computed from
standard phonon calculations of the zone-center properties
(i.e., the LO-TO splitting and associated eigenvectors for
macroscopic polarization along the three different directions).
Hence it is computationally cheap compared to the full
Brillouin zone adaptive integration used in our full results.
We find the dominant modes listed above among those with
large Zλ,α . Of interest is the fact that a large Zλ,α is not
sufficient to ensure strong scattering. For example, Zλ=69,α=z

is 26% of the largest mode effective charge (Zλ=72,α=y), and,
based on this fact, one would expect significant scattering in
these calculations. But we find mode 69 makes a very small
contribution to the total scattering rate. This implies that a
model based on zone-center quantities like Zλ,α is insufficient
to describe the scattering because it misses the q dependence
of the phonon physics. This observation also points to the need
to use fine grids for the phonon quantities to capture the rapid
variations of the phonon eigenvectors. We propose that Eq. (9)
provides a good screening criteria for strong optical modes in
complex systems that could be used to improve the efficiency
of full calculations by avoiding large calculations of modes
with small effective charges.

In systems with simple phonon structures, all of the
low-energy scattering is from the LO mode. Thus, particles
whose energy is below the LO phonon energy do not have suf-
ficient energy to emit phonons leading to long thermalization
times and lengths when the thermal energy is much smaller
than the LO phonon energy. In more complex materials this is
no longer the case, and low-energy particles continue to have
active energy loss channels. At finite temperature, the situation
is more complicated still since a thermalizing particle can
successively absorb and emit vibrational quanta from different
modes, transferring the energy difference between the two
modes to the lattice in the process. Vasilev and co-workers
[2,5] have considered this situation and proposed that such
sequential scatterings will be more effective at thermalizing
particles if the ratio of the greater energy to the smaller one is
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less than 2. Based on this criterion, we expect the two stiffest
modes in SrI2 to provide a means for efficient cooling down
to low energies.

IV. CONCLUSIONS

We have improved our semiclassical theory of the electron-
phonon scattering rates for hot electrons by the implementation
of a smooth approximation for the first order density response
based on Born effective charges. This advance has permitted
the use of fine grids in reciprocal space and made feasible
the calculation of large systems of current research interest.
We have improved previous work in this area by imposing the
acoustic sum rule on the scattering behavior. We have investi-
gated the scattering of electrons by phonons in four important
inorganic scintillating crystals by making direct numerical
simulations of the phonon scattering rates. These calculations
are summarized in Fig. 10. We conclude, in contradiction to our
earlier work and long-used phenomenological models based

on the deformation potential, that acoustic modes are not the
dominant channel for energy relaxation for any energy in polar
materials. They are dominated either by scattering from optical
phonons or electronic processes. Our method gives a way to
calculate the strength of scattering in any polar crystal, and we
suggest a numerically cheap way to find the most important
thermalizing modes in a given material.
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