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Nonequilibrium ab initio molecular dynamics determination of Ti monovacancy
migration rates in B1 TiN
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We use the color diffusion (CD) algorithm in nonequilibrium (accelerated) ab initio molecular dynamics
simulations to determine Ti monovacancy jump frequencies in NaCl-structure titanium nitride (TiN), at
temperatures ranging from 2200 to 3000 K. Our results show that the CD method extended beyond the linear-fitting
rate-versus-force regime [Sangiovanni et al., Phys. Rev. B 93, 094305 (2016)] can efficiently determine metal
vacancy migration rates in TiN, despite the low mobilities of lattice defects in this type of ceramic compound.
We propose a computational method based on gamma-distribution statistics, which provides unambiguous
definition of nonequilibrium and equilibrium (extrapolated) vacancy jump rates with corresponding statistical
uncertainties. The acceleration-factor achieved in our implementation of nonequilibrium molecular dynamics
increases dramatically for decreasing temperatures from 500 for T close to the melting point Tm, up to 33 000
for T ≈ 0.7 Tm.
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I. INTRODUCTION

Transition-metal (TM) nitride refractory ceramics possess
outstanding physical and mechanical properties, including
extreme hardness [1–3], high toughness [4–6], thermal sta-
bility [7,8], chemical inertness [9,10], and good electrical
conductivity [2,11], which renders them important for a large
variety of applications ranging from wear-resistant protective
coatings on tools employed in industrial machining [12,13] to
diffusion barrier in electronic devices [14,15].

TM nitride binary systems can maintain the NaCl structure
even for large deviations from stoichiometry [16,17], which
is primarily regulated by the concentration of nitrogen and/or
metal vacancies [18]. Kinetic control of (N/TM) ratios during
crystal growth is exploited to tune the structural [19,20],
electrical [21,22], optical [23,24], and mechanical proper-
ties [25–27] of these ceramics. Hence, clarification of the
mechanisms governing vacancy formation and evaluation of
vacancy diffusivities as a function of temperature may allow
determining optimal synthesis conditions to deposit TM nitride
thin films with desired properties.

To date, mass transport in TM nitride systems is poorly un-
derstood. Experimental measurements of atomic diffusivities
generally employ isotopes. Although scattered over several
orders of magnitude, values for nitrogen defect diffusion
parameters in TM nitrides have been reported in various
experimental works [8,28,29]. In contrast, experimental data
for metal-element self-diffusivities are lacking for most of
these ceramics. This motivates us to undertake computational
investigation of these challenging problems. Moreover, even
though nitrogen vacancies are the most common type of defect
in binary TM nitrides, experiments indicate that migration
of metal vacancies may be the mechanism which primarily
controls spinodal decomposition of (Ti,Al)N pseudobinary
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alloys at high (>1000 K) temperatures [30,31]. Titanium
nitride (TiN), the prototype and most studied among all TM
nitrides [32], crystallizes in the cubic B1 lattice structure over
a wide range of temperatures (from 0 K up to its melting
point, Tm ≈ 3250 K [33]) and a wide range of stoichiometries
TiNx , with 0.6 < x < 1.2 [16]. In this work, TiN is chosen as
representative TM nitride system to investigate the diffusion
properties of metal monovacancies in the dilute limit.

Ab initio density functional theory (DFT) calculations
combined with the nudged elastic band (NEB) [34,35] or
the string method [36,37] are typically employed to estimate
minimum energy paths and migration energies at 0 K [38–43].
Kinetic properties are extrapolated to finite temperatures using
transition state theory (TST) [44] by assuming essentially
fully harmonic lattice vibrations, or employing quasiharmonic
approximations [45,46]. These approaches, however, are not
applicable to crystal phases which are unstable at 0 K (e.g.,
Group-VB TM nitrides [47,48]) and may yield inaccurate
predictions when the role of anharmonic lattice vibrations
becomes relevant [49–51]. Quantitatively reliable evaluation
of kinetically controlled properties at given temperatures
and pressures of interest necessarily requires the use of
computer simulations reproducing atomic trajectories. Ab
initio molecular dynamics (AIMD) inherently addresses the
problems mentioned above by integrating Newton’s equations
of motion for each atom in a system, obtaining reliable
interatomic forces using DFT [52]. AIMD allows for direct
visualization of reaction pathways and provides corresponding
kinetic rates. In addition, this technique has revealed nonin-
tuitive system configurations and reaction pathways at finite
temperatures [53–55]. Nevertheless, given that AIMD is highly
computationally-intensive, it has been employed in very few
theoretical studies of mass transport in TM nitrides [53–58],
materials characterized by inherently low defect mobilities, at
least within the metal sublattice [8].

The problem of evaluating vacancy migration frequencies
via computer simulations has been undertaken decades ago
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by Charles Bennett [59]. Subsequently, several theoretical
methods have been developed with the aim of determining the
rate of rare events within feasible computational times [60].
These approaches are often based on phase-space sampling
(PSS) or selective acceleration of a process of interest. Some
of these techniques give direct access to kinetic properties,
while others as, e.g., the string method at 0 K [36] and
finite temperatures [61,62], metadynamics [63], and canonical
adiabatic free-energy sampling [64], which are useful for
accurately determining minimum-energy paths and activation
energies, need to be combined with TST or other theories [61]
to extract reaction rates.

Transition path sampling (TPS) [65–67] and transition in-
terface sampling (TIS) [68,69] are examples of techniques em-
ploying the PSS. Both can provide the occurrence-probability
of reaction pathways connecting known initial and final
states by following any possible trajectory. TPS and TIS are
practically useful to identify transition-state configurations on
complex energy landscapes and/or when various competitive
reactions may take place [70]. Other methods based on the PSS
are, e.g., forward flux sampling [71–73], partial path sampling
[74], and (based on similar principles) milestoning [75,76].

Techniques based on the acceleration of a process of interest
through a fictitious bias can yield speed-up factors of up to
×109 [77], but may also be affected by nonphysical behaviors
or require non-trivial definition of collective variables [77].
Among these, we find metadynamics-based approaches [78],
hyperdynamics [79], a combination of the latter two methods
[77], temperature-accelerated molecular dynamics [80], and
the color diffusion (CD) algorithm [81,82], which is an
extension of the tagged-particle method [83].

Supercomputer simulations can be parallelized to inves-
tigate the physical properties of relatively large systems.
However, supercomputing capacity alone cannot circumvent
the limits of time scales. For this, the parallel replica method
[84] offers a strategy in which, by exploiting the properties of
stochastic processes, efficient evaluation of kinetic rates of rare
events can be accomplished without having to apply external
biases.

Some of the techniques listed above, implemented in the
framework of AIMD, provide considerable gain in compu-
tational efficiency in comparison with nonaccelerated brute-
force AIMD simulations, while maintaining the same level
of accuracy. The convenience of using one or the other
acceleration method may vary depending on time and length
scales involved, as well as on the complexity of the process
under investigation [60]. In particular, we have recently
proposed a development for the CD algorithm [85], which
allows to retrieve monovacancy migration rates in crystalline
solids at much lower computational efforts in comparison with
the former (yet more general) application [81].

Nonequilibrium molecular dynamics schemes, including
CD simulations, entail applying external bias constraints to
assist diffusion of species of interest, while rapidly dissipating
the excess energy introduced in the system by controlling
(rescaling) the kinetic energies of the unbiased particles.
Thus, knowing the dependence of accelerated reaction rates
on the magnitude of the external constraint allows retrieving
equilibrium properties at the limit for vanishing biases. In the
original formulation of CD-accelerated dynamics [81,82,86],

the migration velocities of diffusing species of interest
are boosted by mean of an external constant force field
�F , using in most cases force intensities F for which the

nonequilibrium jump frequency kNE(F ) dependence on F

remains linear. Equilibrium diffusivities are retrieved to zero
field by linear fitting of kNE(F ) versus F data. The method
allows discovering diffusion pathways without any initial
assumption.

The technique that we describe in Ref. [85] is instead
specifically tailored to determining the kinetics of monoatomic
mass-transport pathways occurring over a single energy
barrier, where initial and final states are known a priori.
Our implementation of CD in nonequilibrium AIMD (NE-
AIMD) yields accurate results for vacancy diffusion in bcc
Mo and, by exploiting force-field intensities well beyond
the linear-response regime [81], provides speed-up factors
which increase by several order of magnitudes with decreasing
simulation temperatures [85]. The fact that our current method
is focused on quantifying the kinetics of a relatively narrow
class of diffusion processes does not preclude the possibility of
extending its usage to a broader range of problems in practical
applications.

The rapid increase in computational efficiency achieved
via CD simulations for decreasing temperatures [85] comes to
the cost of much broader uncertainty ranges on extrapolated
equilibrium-rate values. Thus, it is necessary to provide an
unambiguous and reliable definition of statistical error bars.
In Ref. [85], we do not include any rigorous treatment of
statistical uncertainties on accelerated kNE(F ) rates which, in
turn, affect the predictions of lattice-defect jump frequencies
kNE→E. Here, we propose a procedure based on gamma-
distribution statistics which provides unambiguous definition
of kNE(F ) and kNE→E average values with corresponding
confidence ranges. Results of the present work show that
our implementation of the CD formalism in AIMD (i) allows
calculating metal-vacancy migration rates in TiN, a binary
compound material characterized by high thermal stability,
within reasonable computational times, (ii) provides system-
atic reductions on the uncertainty of equilibrium jump fre-
quencies kNE→E upon increasing the number and/or accuracy
of kNE interpolation points, and (iii) enhances the efficiency
of AIMD simulations by several orders of magnitude for eval-
uation of vacancy migration rates at temperatures well below
melting.

The paper is organized as follows. Section II A describes
the DFT computational methods employed for calculating
metal vacancy formation and interaction energies, as well as
0 K vacancy diffusion pathways with corresponding migration
energies in bulk TiN. Section II B briefly presents the CD
algorithm and summarizes the scheme used in equilibrium
and non-equilibrium AIMD simulations of vacancy diffu-
sion. Sections II C and II D detail the statistical analysis
and computational procedure employed for determination of
non-equilibrium jump rates with corresponding uncertainties.
Section III A presents DFT results of vacancy formation and
interaction energies, whereas Sec. III B is dedicated to the
results of non-equilibrium AIMD simulations. In Sec. III C,
we discuss the gain in computational efficiency provided by
our implementation of the CD algorithm. The conclusions of
this work are presented in Sec. IV.
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II. COMPUTATIONAL DETAILS
AND THEORETICAL METHODS

DFT calculations and DFT-based AIMD simulations are
carried out using the Projector Augmented Wave (PAW)
method [87] as implemented in the Vienna ab initio simulation
package (VASP) and the Armiento-Mattsson (AM05) func-
tional for the description of one-electron exchange-correlation
potential and energy [88]. The accuracy of self-consistent
calculations is 10−5 eV/supercell. The energy cutoff used for
the plane-wave basis set and the density of k-point grids
employed for Brillouin-zone sampling depend on the property
under analysis (see below). In static calculations, atomic
positions and cell shape are optimized via conjugate-gradient
energy minimization. Equilibrium volumes are obtained by
least squares fitting of energy versus volume curves.

A. Vacancy formation, interaction, and migration
energies at temperature T = 0 K

DFT calculations of vacancy formation and interaction
energies, as well as Ti vacancy migration, employ defect-free
and defective TiN supercell structures consisting of 4 × 4 ×
4 B1 conventional unit cells, for a total of 256 metal and 256
nitrogen sites. The use of an energy cutoff of 400 eV and
3 × 3 × 3 Monkhorst-Pack [90] k-point meshes for Brillouin
zone integration ensures convergence of calculated energies
within ∼0.1 meV/atom. As shown below (see Sec. III A),
our supercells should be large enough to avoid vacancy
self-interactions.

The formation energy E
f

nV of n Ti vacancies in B1 TiN is
calculated as

E
f

nV = EnV + n · Ehcp Ti − E0, (1)

where EnV is the total energy of the system with n vacancies,
Ehcp Ti is the energy of one Ti atom in hexagonal close-packed
(hcp) titanium (ground-state structure of titanium), and E0 is
the total energy of the defect-free TiN system. The interaction
energy Ei

2V between two Ti vacancies in TiN is obtained as
a function of the vacancy/vacancy separation distance dV by
using the expression

Ei
2V (dV ) = E

f

2V (dV ) − 2 · E
f

1V . (2)

Positive (negative) interaction energy values indicate repul-
sive (attractive) vacancy/vacancy interactions.

Recent classical and ab initio molecular dynamics simu-
lations of N point-defect diffusion in bulk TiN demonstrated
that N monovacancy migration is the primary mechanism for
transport of N atoms [54]. Our present theoretical investiga-
tions focus on migration of Ti monovacancies at the dilute
limit, as this is expected to be the most important reaction
pathway for diffusion of metal atoms in overstoichiometric
(TM/N ratio < 1) bulk TiN. It should be noted, however, that
previous 0 K ab initio calculations indicate that the formation
of a Ti-N divacancy complex is energetically more favored
with respect to a pair of isolated N and Ti monovacancies [91].
Our work is a necessary prestep for any study of more complex
types of diffusion.

The minimum energy path with corresponding migration
energy of a Ti lattice-atom moving to a neighboring metal

vacancy is evaluated at 0 K through NEB [34,35] calculations
as implemented in VASP. We employ the default spring
parameter and nine images between prerelaxed initial and
final states. For these calculations, we use an energy cutoff
of 500 eV.

B. AIMD and NE-AIMD simulations

Equilibrium and nonequilibrium AIMD is carried out in
the NVT canonical ensemble, integrating the equations of
motion at 1-fs time steps, while sampling the Brillouin zone �

point. Simulation supercells contain 215 atoms (3 × 3 × 3 TiN
conventional B1 unit cells with one Ti vacancy). We notice that
TiN is an electrical conductor [89]. This implies long correla-
tion lengths in the electronic structure of the system. Thus, one
cannot rule-out the possibility that increasing supercell sizes
and/or k-point mesh densities would have some quantitative
effect on our results. However, this should not qualitatively
affect the conclusions obtained from AIMD and NE-AIMD
simulations. At each investigated temperature T , the supercell
lattice parameter a0(T ) is obtained by rescaling the 0 K DFT
value [a0(0 K) = 4.214 Å] accounting for the experimental
linear thermal expansion coefficient αL ≈ 9 × 10−6 K−1 [33].

Prior to counting migration events in nonequilibrium
simulations, AIMD system equilibration is performed for
∼3 ps controlling the temperature T via the Nosé-Hoover
thermostat. Thus, the system is immersed in a 〈110〉-oriented
constant force-field, which is used to accelerate one Ti lattice
atom (colored-atom) toward the neighboring vacancy site (see
details in Ref. [85]). The force-field acts on the colored-atom
with intensity F and on each other atom in the simulation
box with opposite forces of intensities F/(N -1) (where N is
the total number of atoms in the supercell), thus maintaining
the system in mechanical equilibrium (Fig. 1). The energy
increase due to external work is rapidly dissipated by rescaling
the velocities of all atoms but the colored one at each time step.

Equilibrium jump rates kNE→E(T ) are extrapolated at the
limit F → 0 by fitting nonequilibrium jump rates kNE(F,T )
determined at different force field intensities F with the
expression (see Supplemental Material in Ref. [85] for the
derivation):

ln[kNE(F, T )]= ln[kNE→E(T )]+xTS0(T )

kBT
F−α(T ) · F 2. (3)

In Eq. (3), kB is the Boltzmann’s constant, xTS0(T ) is
the equilibrium transition-state position at a temperature T ,
and α(T ) is a fitting parameter. Under the assumption that
the effective potential energy landscape along the migration
path remains approximately sinusoidal at any T , xTS0(T )
is conveniently set to half of the distance between the
initial and final states of the diffusion process: xTS0(T ) =
a0(T )/(2

√
2). Having fixed the parameter xTS0(T ) reduces

the minimum number (from three to two) of kNE(F,T )
interpolation points needed to retrieve kNE→E(T ) [see Eq. (3)].
kNE→E(T ) are extrapolated to zero force-field at temperatures
T = 2200,2400,2600,2800, and 3000 K from kNE(F,T ) val-
ues calculated by employing 〈110〉-oriented force-fields with
the two 〈100〉 force-components F 〈100〉 of equal intensities 1.4,
1.6, 1.8, 2.0, and 2.2 eV/Å.
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FIG. 1. Schematic illustration of the color-diffusion method
applied to monovacancy migration in the metal fcc sublattice of
B1 TiN. The colored-atom (green circle) is accelerated toward the
neighboring vacancy (empty circle) by a constant force of magnitude
F (red arrow oriented along the [110] direction). Balancing forces
(smaller red arrows) are applied to all other lattice atoms (black filled
circles) to yield zero total force and zero torque on the system.

C. Statistical analysis: Determination of kNE values
and corresponding uncertainties

In Ref. [85], we presented a scheme to calculate nonequi-
librium vacancy jump rates kNE(F,T ). For each given F ,
kNE(F,T ) was obtained as the ratio between the number
of colored-atom jumps recorded over a set of independent
sample-runs and the total simulation time, regardless of
whether colored-atom jump was observed in all runs or not.
Such scheme yields statistically meaningful average jump rates
(as demonstrated in Appendix A), but does not provide clear
definition of uncertainties on nonequilibrium migration fre-
quencies, which ultimately determine the uncertainty σNE→E

on extrapolated equilibrium kNE→E values. Obtaining reliable
σNE→E error bars is of critical importance when studying
reactions characterized by relatively large activation energies
Ea/T (i.e., low T and/or high Ea). For these cases, accelerated
rates kNE can be computed over feasible times only for F

values close to Fmax. This poses a question mark on the
trustworthiness of extrapolated kNE→E values. In this paper,
we introduce a method to define confidence ranges on kNE and
kNE→E via usage of gamma-distribution statistics.

In vacancy-mediated diffusion processes, one often con-
siders atomic jumps as independent and uncorrelated events.
The distribution of jump occurrence-times t , that is, time in-
tervening between consecutive migration events, is described
by an exponential probability density function exp[−t] as
numerically demonstrated in, for example, Ref. [92]. Here, we
show that the distribution of colored-atom jump occurrence-

FIG. 2. Examples of gamma probability density functions with
different shape (λ) and scale (θ ) parameters used to model the
distribution of Ti vacancy jump occurrence-times t obtained from
NE-AIMD simulations. Panel (a) shows an exponential distribution
(λ = 1) with θ = 3 time-units. The curve in panel (b) has shape
and scale parameters λ = 1.5 and θ = 2 time-units. Uncensored and
censored data occupy different domains on the time scale t (between 0
and t ′ and from t ′ to +∞, respectively). The value of t ′ is chosen such
that the area delimiting uncensored data corresponds to 75% of the
total probability. This ensures that the average occurrence-time 〈t〉 is
within the range of uncensored data. The insets in (a) and (b) illustrate
PDF obtained from NE-AIMD results at 2800 K for the smallest
(1.4 eV/Å) and largest (2.2 eV/Å) force-field 〈100〉-components
F 〈100〉 employed in this work. Jump occurrence-times ti (uncensored
data) and the simulation times tj of unsuccessful runs (censored data)
are marked by black and red solid vertical tics on the time axis,
respectively.

times obtained at force fields of modestly low intensities is
well represented by exponential curves. However, for forces
of intensities approaching the maximum value employed
in the present simulations, the spread of t values, which
clearly deviates from an exponential probability trend, closely
resembles a gamma distribution, indicating that strong external
biases increase the degree of correlation on migration times
(Fig. 2).

The exponential distribution is a special case of the gamma
distribution, a family of probability density functions (PDF)
defined on domains t := (0,+∞) [93,94] and characterized by
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a shape parameter λ and a scale parameter θ (θ is expressed in
units of time):

PDFλ,θ (t) = tλ−1 · e−t/θ

θλ · �(λ)
, (4)

where � (λ) is the gamma function �(λ) = ∫ +∞
0 xλ−1 · e−xdx.

For λ = 1, an exponential PDF is recovered, and θ remains
the only fitting parameter. For λ > 1, the gamma distribution
has 0 probability density at t = 0, exhibits a maximum for
t > 0 and vanishes at the limit for t → +∞. For λ � 0,
the distribution becomes approximately symmetric, that is,
similar to a standard distribution. The mean value of gamma
distributions 〈t〉 (average occurrence time of the process
considered) is given by 〈t〉 = λ θ .

Let us assume that performing n independent simulations
(or experiments), one records a process of interest in m (<n)
of the cases, while no event of interest is observed in
the remaining [n–m] cases. The m successful observations
(labeled as uncensored data, set of runs i) occur with
times ti := {t1,t2, . . . ,tm}, whereas [n–m] unsuccessful tests
(censored data, set of simulations j ) are terminated after
times tj := {tm+1,tm+2, . . . ,tn}. Average occurrence times 〈t〉
and corresponding uncertainties σ〈t〉 can be evaluated via
fitting the distribution of ti and tj values, with a gamma
PDF. Determination of λ and θ parameters based on the n

collected tests is performed with the Maximum Likelihood
Estimation (MLE). A MLE entails solving a system of equa-
tions ∂[ln(L)]/∂λ = 0 �∂[ln(L)]/∂θ = 0 [93] to maximize
the logarithm of the likelihood function

L(λ,θ ) =
m∏

i=1

[PDFλ,θ (ti)]

︸ ︷︷ ︸
	i

·
n∏

j=m+1

[
1−

∫ tj

0
PDFλ,θ (t) · dt

]
︸ ︷︷ ︸

	j

.

(5)
In Eq. (5), the products 	i and 	j implicitly assign

different statistical meaning to the outcome of i and j sets
of simulations.

Imposing λ = 1 in MLE, as done in Ref. [92], corresponds
to evaluating kNE via exponential distribution statistics. The
mathematical demonstration contained in Appendix A shows
that average occurrence times calculated as the mean of an ex-
ponential PDF are equivalent to the 〈t〉 values obtained with the
scheme employed in our previous work [85]. Letting, instead,
both θ and λ in Eq. (5) as free adjustable parameters provides
higher degrees of freedom for optimizing the representation of
NE-AIMD jump occurrence-time distributions at any F .

D. Evaluation of nonequilibrium jump rates
and corresponding uncertainties

This subsection details the procedure used to calculate
accelerated jump frequencies kNE and related confidence
ranges σNE via NE-AIMD.

For each force field intensity F , average accelerated jump
rates

kNE(F ) ∝ 〈t(F )〉−1 = [λ(F )θ (F )]−1, (6)

with corresponding uncertainties

σNE(F ) = kNE[(σλ/λ)2 + (σθ/θ )2 + 2σλθ/(λ θ )]1/2, (7)

where σλθ is a covariance, are evaluated from the outcome of
n NE-AIMD runs, which satisfy

n � 15, (8a)

m � 0.75 n, (8b)

tj > t ′ � ti∀{i ∈ [1,m] � j ∈ [m + 1,n]}. (8c)

We remind the reader that m is the number of runs terminat-
ing with the colored-atom jumping into the vacancy at times ti ,
with i := {1, . . . ,m}. The remaining (n–m) unsuccessful runs
end at times tj , with j := {m + 1, . . . ,n}. Imposing condition
(8c) comports that censored and uncensored data collected by
NE-AIMD simulations are represented on two distinguished t

domains (see Fig. 2). Colored-atom jump occurrence-times
ti are represented by the gamma distribution curve within
a (0, t′] interval, while the simulation times in which no
colored-atom jump has occurred are gathered in the (t′, +�)
curve tail. Overall, requiring that NE-AIMD runs satisfy
condition (8a)–(8c) renders 〈t〉 < t ′ and ensures accuracy of
estimated kNE(F ) values.

For each simulation temperature T , 50 AIMD runs are
initialized with atomic velocities randomly selected from the
Boltzmann-Maxwell distribution, requiring null drift for the
center of mass and zero torque acting on the system. After
equilibration (∼3 ps), the TiN+vacancy system is immersed
in an external constant force field F . At each force field
intensity, nonequilibrium simulations are performed for 15 (or
more) configurations [condition (8a)] randomly chosen from
the 50 equilibrated states. The simulations are restarted until
colored-atom jump is recorded in (at least) 75% of the cases
[condition (8b)]. In addition, each NE-AIMD run j̃ in which
colored-atom jump is not observed is continued until either (i)
colored-atom migration occurs or (ii) tj̃ > ti ∀ i ∈ [1, m]
[see condition (8c)].

ti and tj data collected during n NE-AIMD simulations
are fitted with the censored-gamma distribution by setting the
lower boundary of the censored-data interval t′ equal to the
largest among all recorded ti values (note that t′ varies with F ).
At all simulation temperatures, the curves resulting from MLE
are typically close to exponential distributions for low F 〈100〉
values (see, for example, the inset of Fig. 2(a), where λ =
0.894 and θ = 11.6 ps), while deviate from exponential trends
at high F 〈100〉 (see the inset of Fig. 2(b), where λ = 1.69 and
θ = 0.164 ps). For this reason, we retain appropriate to leave
both λ and θ as free adjustable PDF parameters. Nevertheless,
as described in Appendix B, constraining λ = 1 (as done in
Ref. [92]) returns essentially the same 〈t〉 results. MLE are
carried out with the software Rstudio [95].

Nonequilibrium jump rates can be calculated as kNE(F ) =
12〈t(F )〉−1, where the factor 12 is the number of nearest
neighbors in a face-centered-cubic (fcc) lattice. This factor
accounts for the fact that, in a real system, all nearest neighbors
have equal probability of diffusing to the vacancy, whereas in
our NE-AIMD runs, only colored atom jumps are statistically
relevant. Equilibrium jump rates kNE→E are extrapolated from
nonequilibrium kNE(F ) data [Eq. (3)]. Confidence ranges
σNE→E are evaluated by projection of σNE(F ) uncertainties
[53]. Briefly, ln[σNE→E] correspond to the widths of ln[kNE→E]
normal distributions obtained via Eq. (3) by fitting a large
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TABLE I. DFT formation energies Ef calculated for one and two
Ti vacancies placed on first, second, third, and fourth neighboring
metal-sublattice shells with corresponding interaction energies Ei .
Our results are compared with those of previous DFT investigations
[91,97].

Ef (eV) Ei(eV)

One Ti vacancy 2.86 (2.76 [91]) –
Two Ti vacancies

First neighbors 6.37 0.66 (0.68 [97])
Second neighbors 5.92 0.21 (0.31 [97])
Third neighbors 5.79 0.07
Fourth neighbors 5.78 0.06

number of accelerated rates εi versus F data sets, where εi

values are picked in the range ln[kNE(Fi)/σNE(Fi)] � εi �
ln[kNE(Fi) × σNE(Fi)] with probabilities given by Gaussian
distributions centered at ln[kNE(Fi)] and of standard deviations
ln[σNE(Fi)]. All the uncertainty intervals presented below for
ln[k] rates correspond to twice standard deviations, i.e., rate
values are expressed as ln[k] ± 2 · ln[σ ].

Diffusion of atoms other than the colored one is extremely
unlikely for systems, such as TiN, characterized by high
thermal stability. In cases for which this occurs, the times
tq(q = m + 1, . . . ,m + ε � n) at which an atom migrates into
the vacancy are conveniently considered as censored data.

III. RESULTS AND DISCUSSION

A. 0 K Ti vacancy formation and interaction energies in TiN

For compound materials such as TiN, metal vacancy
formation energy values depend on the choice of the reference
chemical potential μ(Ti), energy of the reservoir of metal
atoms with which the binary system exchanges particles
at the equilibrium. μ(Ti) varies, in turn, as a function of
the environmental conditions. By setting μ(Ti) = Ehcp Ti, we
obtain a 0 K DFT Ti vacancy (TiV) formation energy E

f

V

of 2.86 eV, in good agreement with another ab initio result,
2.76 eV, reported in the literature [91]. Comparison of E

f

V with
E

f

2V or, more in general, with E
f

nV values allows predicting
whether vacancy clustering is likely to occur.

Estimated Ti monovacancy (TiV) formation energies E
f

V

and TiV/TiV interaction energies Ei
2V in TiN are presented in

Table I. DFT Ei
2V values, calculated with the two vacancies

placed at first-, second-, third-, and fourth-neighbor metal-
sublattice positions, are positive for any TiV/TiV separation
distance dV and decrease monotonically as ∼d−1

V (Fig. 3). The
fact that Ti vacancies repel each other indicates instability of
TiV/TiV pairs in bulk TiN. For distances dV corresponding
to TiV/TiV third and fourth neighbor configurations, the
interaction energy reaches a saturation value close to zero.
This means that, for dV � 5 Å, the two Ti vacancies can be
effectively considered as isolated/uncorrelated.

Although lattice vibrations induce variations in point-defect
formation free-energies [49,96], thus affecting the relative
stability of vacancies vs. interstitials, as well as the magnitude
of vacancy/vacancy interaction energies at finite temperatures,
the observed strong short-range TiV/TiV repulsion energy

FIG. 3. TiV/TiV repulsion energies in TiN (Table I) plotted as a
function of the vacancy/vacancy distance dV .

(Fig. 3) suggests that TiV agglomeration in TiN is unlikely
to occur at any temperature. In addition, considering that
self-interstitial formation is thermodynamically much less
favored than monovacancy formation in TM nitrides [97], it
is reasonable to assume that TiV are the most common metal
point-defect in bulk TiN at any temperature.

B. Ti vacancy equilibrium jump rates

DFT + NEB calculations carried out at T = 0 K confirm
that the energy landscape probed by a Ti lattice atom travelling
toward a neighboring vacancy exhibits a sinusoidal-like curva-
ture with a single transition state located half way between the
initial and final configurations (Fig. 4). The NEB minimum
energy path indicates that TiV migration in TiN is a straight
jump along a 〈110〉 direction. Assuming that the shape of

FIG. 4. DFT + NEB 0 K energy profile for Ti atom 〈110〉 jump to
a neighboring vacancy site. The reaction coordinate on the horizontal
axis represents the fractional displacement of the Ti atom from its
initial to final position. The 0 K activation energy along the minimum
energy path is 4.26 eV.
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the migration energy landscape is not qualitatively modified
by lattice vibrations, the implementation of CD in AIMD
simulations proposed in Ref. [85] can therefore be used to
efficiently retrieve equilibrium jump frequencies as a function
of temperature. Indeed, the CD algorithm [85] allows one to
efficiently determine monovacancy equilibrium diffusivities
kNE→E in crystalline solids via fitting nonequilibrium jump
frequencies kNE which increase exponentially with F [see
Eq. (3) in Sec. II B]. Being often point-defect migration
in crystalline solids a simple process involving a single
saddle-point in energy along the reaction coordinate [98–101],
Eq. (3) is based on the assumption that the potential energy
landscape along the migration path has a sinusoidal-like shape
(see supplemental material in Ref. [85]). Note, however, that
the implementation of CD proposed in Ref. [85] may not
be directly applicable to cases for which atomic diffusion
is characterized by complex energy profiles and/or involves
concerted migration of several atoms [102]. Results presented
in Fig. 4 confirm that this is not the case for the diffusion
process investigated here.

The DFT + NEB activation energy E0K
a estimated at T =

0 K for TiV diffusion, 4.26 eV, is larger than the ab initio value,
3.8 eV, obtained for N vacancy (NV) jump in TiN [40]. Using
Ea = 4.26 eV in the expression Fmax ≈ 0.75 πEa/(2xTS0), we
estimate that the maximum force-field intensity Fmax to be used
in the present NE-AIMD simulations is ∼3.3 eV/Å (see details
in the Supplemental Material of Ref. [85]).

NE-AIMD accelerated jump rates kNE are computed at
temperatures of 2200, 2400, 2600, 2800, and 3000 K (the
TiN melting temperature is ∼3250 K) using 〈110〉-oriented
constant force fields at five different intensities: the 〈100〉 force
components range from 1.4 to 2.2 eV/Å in steps of 0.2 eV/Å.
Fig. 5 shows that ln[kNE(F )] versus F data follow a parabolic
trend. Irrespective of the temperature T , for F close to
Fmax(≈3.3 eV/Å) all ln[kNE(T ,F )] values are approximately
equal to 31.5 ln(s−1). These results are consistent with our
theoretical description of CD accelerated-dynamics of vacancy
migration [85].

The uncertainty on the extrapolated jump rate values σNE→E

is highly sensitive to the number of non-equilibrium jump
rate interpolation points ip. In Fig. 6, equilibrium jump rates
kNE→E are represented as a function of ip. Five different
force-field intensities nf are employed in this study. Thus,
the number of extrapolated kNE→E values varies with ip
as nf ! /[ip! (nf − ip)!]. As expected, σNE→E (interpreted as
scatter of kNE→E rates) progressively decreases for increasing
ip. This can be understood by noting that the frequency-
intervals which include all kNE→E(T ) values narrow down for
larger ip while maintaining approximately constant means.
This confirms that σNE→E can be systematically reduced
upon increasing the number of interpolated points and/or the
accuracy of each individual kNE value.

The downward curvature α(T ) of ln[kNE(F, T )] =
ln[kNE→E(T )] + xTS0(T )

kBT
F − α(T ) · F 2 parabolas increases

very rapidly for decreasing temperatures (see Fig. 5). This
implies that the extrapolated equilibrium rates kNE→E and their
uncertainties σNE→E become progressively more sensitive to
the number of interpolation points and to the accuracy of kNE

values as T is reduced. Nevertheless, as demonstrated in Ap-
pendix B, both gamma and exponential distribution statistics

FIG. 5. (a) Accelerated vacancy jump rates kNE plotted as a
function of the force field intensity F at different temperatures
and corresponding equilibrium kNE→E values extrapolated to zero
force-intensity via Eq. (3). (b) Enlarged view of ln[kNE] ± 2 · ln[σNE]
values calculated at 3000 K. For calculation of kNE and σNE values,
MLE are performed by optimizing both λ and θ � -PDF parameters.
To facilitate visualization, in panel (a), rates at the same force-field
intensity are slightly laterally-shifted with respect to each other.

provide reliable estimations of vacancy jump frequencies (i.e.,
kNE→E ± σNE→E results overlap with the uncertainty intervals
of equilibrium nonaccelerated rates) even when only two
kNE(F ) values (with F close to the limit Fmax) are used for
extrapolation of equilibrium rates.

Equilibrium Ti vacancy jump rates kNE→E are plotted as a
function of the inverse temperature 1/T in Fig. 7. These are
approximately one order of magnitude smaller than N vacancy
migration rates, obtained from classical molecular dynamics
simulations [54], at all investigated temperatures (see Fig. 7
and Table II). The kNE→E values shown in Fig. 7 are calculated
from kNE(F ) results which, in turn, are obtained by maximizing
ln[L(λ,θ )] [Eq. (5)] with respect to λ and θ . Modeling the
distribution of nonequilibrium jump occurrence times with an
exponential PDF yields kNE→E values which are essentially
equivalent to those shown in Fig. 7 (see Table II for com-
parison of exponential-versus-gamma-distribution results). Ti
vacancy jump activation energies Ea and attempt frequencies
A obtained by Arrhenius linear regression of ln[kNE→E(T )]
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FIG. 6. Spread of extrapolated kNE→E values as a function of the
number of interpolated kNE data. The number of kNE→E results is
equal to the binomial coefficient nf ! /[ip! (nf − ip)!], for which ip
is the number of interpolation points, while nf is the total number, 5,
of kNE points available. For clarity, points corresponding to different
temperatures are slightly laterally shifted.

versus 1/T data yield Ea = (3.78 ± 0.56) eV and A =
4.45(×13±1) × 1014 s−1 for gamma-distribution statistics and
Ea = (3.77 ± 0.64) eV and A = 4.65(×16±1) × 1014 s−1 for
exponential-distribution statistics. Calculated Ea values are
consistent with those (3.6 ± 1.0 eV) experimentally deter-
mined for metal-atom migration across single-crystal B1
TiN/B1 NbN superlattice interfaces at temperatures ranging
from 1100 to 1200 K (see Fig. 8 in Ref. [103]).

We suggest that the discrepancy between Ti vacancy migra-
tion energies extracted from linear regression of ln[kNE→E(T )]
versus 1/T AIMD data (Ea = 3.78 ± 0.56 eV) and the one
obtained from 0 K DFT+NEB calculations (E0K

a = 4.26 eV)

FIG. 7. Arrhenius plot of the migration of Ti (red, present work)
and N (blue, from [54]) vacancies in TiN, i.e., the logarithm of the
extrapolated jump rate as a function of the inverse of the temperature.
Rate values are expressed as ln[k] ± 2 · ln[σ ], with σ equal to one
standard deviation.

TABLE II. Comparison between Ti vacancy jump rates (obtained
by gamma and exponential distribution statistics) and N vacancy jump
rates from Ref. [54].

k
TiV
NE→E (μs−1)

T (K) Gamma Exponential k
NV
CMD(μs−1) [54]

2200 1.03(×2.0±1) 1.15(×2.0±1) 11.62
2400 6.30(×1.7±1) 6.12(×2.0±1) 57.79
2600 15.4(×2.3±1) 17.8(×2.0±1) 224.6
2800 63.0(×2.0±1) 64.5(×2.0±1) 719.1
3000 253(×2.0±1) 274(×2.0±1) 2370 (∼3000, AIMD)

is due to lattice vibrations. More specifically, the effect may be
due to differences in vibrational frequencies (within the plane
normal to the migration path) at the initial position and/or at
the transition state of the diffusion reaction. This is indeed
associated with temperature variations of the vibrational
entropy in the plane orthogonal to the migration path. Lattice
vibrations are known to affect the shape of the effective
potential energy landscape, especially at temperatures close
to melting [49,50,96].

A separate quantification of the effects of harmonic and
anharmonic vibrations on temperature-induced variations in
migration energies is a challenging research topic that deserves
thoughtful investigation. Confining ourselves, for the moment,
to estimating the contribution of thermal expansion, we carry
out additional static DFT+NEB calculations of TiV migration
energies, in which B1 TiN is fixed at its equilibrium volumes
at 2200 and 3000 K, i.e., lowest and highest AIMD simulation
temperatures. The equilibrium lattice parameter at a tempera-
ture T is obtained as a0(T ) = a0(0 K) × (αL × T + 1).

The NEB energy landscapes of expanded cells exhibit
transition-states located midway between the initial and final
positions of the diffusing Ti atom, as also seen for the
energy-profile calculated for the 0-Kelvin equilibrium volume
(see Fig. 4). The energy barriers E0 K, a0(2200 K)

a = 3.67 eV
and E0 K, a0(3000 K)

a = 3.50 eV are both smaller than the finite-
temperature Ea value, but yet well within the uncertainty
range [Ea–2 · σEa,Ea]. These results indicate that, in B1
TiN, the modifications induced by lattice vibrations on the
effective potential energy landscape stem in large part from
thermal expansion effects, which reduce the migration energy.
We cannot exclude, however, that part of the difference
between finite-temperature versus 0-Kelvin results may arise
from different k-space-sampling employed in AIMD versus
DFT+NEB calculations (see Sec. II).

C. Computational efficiency gain

The use of the CD algorithm, extended well beyond the
linear-fitting rate vs. force regime [85], speeds-up AIMD times
required to estimate vacancy migration rates by several orders
of magnitude. Table III summarizes the gain in computational
efficiency as a function of temperature. The gain factor tE/tNE

is expressed as ratio between an estimate of the simulation
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TABLE III. Comparison between computational times tNE and
tE required for obtaining accurate estimates of Ti vacancy jump
rates in TiN via non-equilibrium versus equilibrium AIMD. The CD
method provides acceleration factors tE/tNE, which increase rapidly
for decreasing simulation temperature T .

T (K) tNE(ns) tE(ns) Gain factor tE/tNE

3000 0.115 61.66 537
2800 0.174 257.1 1470
2600 0.246 1091 4430
2400 0.359 2984 8310
2200 0.587 19417 33100

time (tE) necessary to obtain well-converged equilibrium jump
rates via nonaccelerated AIMD, and the total simulation time
(tNE) employed in NE-AIMD at all force field intensities: tNE =∑nf

l=1

∑n(Fl )
k=1 tk(Fl). tE(T ) can be approximated as

tE(T ) = n̄ · [kNE→E(T )]−1, (9)

where n̄ is the mean number of runs performed at each F

and kNE→E(T ) is the equilibrium jump rate extrapolated at
temperature T . The use of a factor n̄ for the estimation of
tE in Eq. (7) is motivated by the fact that approximately n̄

vacancy migration events are to be recorded during nonaccel-
erated AIMD simulations to achieve average jump rates with
confidence ranges σE comparable to σNE→E.

As shown in Table III, NE-AIMD simulations are five
hundreds times faster than equilibrium AIMD at 3000 K. The
speed-up factor increases rapidly for decreasing temperatures,
and reaches a value of ∼3 × 104 at the lowest T (2200 K)
considered in our investigations.

IV. CONCLUSIONS

Nonequilibrium ab initio molecular dynamics simulations
based on the color-diffusion algorithm are used to calculate Ti
monovacancy jump rates in B1 TiN at temperatures ranging
from 2200 to 3000 K. We propose a scheme based on
gamma-distribution statistics which provides quantitatively
reliable confidence-ranges on extrapolated vacancy migration
rates. Within the investigated temperature range, migration
frequencies are well described by an Arrhenius trend with ac-
tivation energy Ea = (3.78 ± 0.56) eV and attempt frequency
A = 4.45(×13±1) × 1014 s−1. We suggest that the difference
between the finite-temperature Ea value and the DFT mi-
gration energy calculated at 0 K (E0 K

a = 4.26 eV) is to be
primarily attributed to thermal expansion effects. The results
presented in this work demonstrate that the color-diffusion
algorithm can be used to efficiently determine metal vacancy
migration rates in binary systems characterized by inherently
low mobilities of lattice defects. The gain in computational
efficiency compared to equilibrium (non-accelerated) ab initio
molecular dynamics increases for decreasing temperatures
from a factor of five hundreds for T = 3000 K up to a factor
of 33 thousands for T = 2200 K.
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APPENDIX A

The exponential PDF is commonly considered in the form

PDFk(t) = k · e−k· t , (A1)

where k is the rate of the process under consideration. The
relation with the gamma distribution is easily obtained from
Eq. (4), setting λ = 1 and θ = k−1. This means that θ , the sole
adjustable parameter, determines the average occurrence time
〈t〉. For practical convenience, the expressions contained in this
appendix employ a rate k in place of an occurrence-time θ . The
likelihood function [Eq. (5)] for an exponential distribution
applied to a set i of uncensored data (m occurrence-times ti)
and a set j of censored data (n–m occurrence-times tj ) is

L(k) =
m∏

i=1

[k · exp(−k · ti)]

·
n∏

j=m+1

[
1 −

∫ tj

0
k · exp(−k · t) · dt

]

=
m∏

i=1

[k · exp(−k · ti)] ·
n∏

j=m+1

[exp(−k · tj )]. (A2)

Taking the logarithm of L(k) yields

ln[L(k)] =
m∑

i=1

[ln(k) − k · ti] − k ·
n∑

j=m+1

[tj ]. (A3)
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ln[L(k)] is maximized for

∂ln[L(k)]

∂k
= m

k
−

m∑
i=1

[ti] −
n∑

j=m+1

[tj ] = 0

⇒ m

k
=

m∑
i=1

[ti] +
n∑

j=m+1

[tj ]

⇒ k = m∑m
i=1 [ti] + ∑n

j=m+1 [tj ]
, (A4)

where Eq. (A4) corresponds to the formula used in Ref. [85]
to calculate kNE. Thus, the procedure used in our previous
work [85] corresponds to calculating average jump rates via
exponential-distribution statistics, as also applied to analyze
results of atomic diffusivities in Ref. [92].

APPENDIX B

In this Appendix, we describe the performances of gamma
versus exponential distribution statistics in estimating non-
equilibrium rates (with corresponding error bars) as a function
of the relative occurrence of unsuccessful runs (censored data).
Especially important is to verify the fidelity of error bars for
case studies in which accelerated rates can be obtained during
feasible computational time for only two or three force field
values close to the Fmax limit (e.g., at low temperatures).

Our tests are carried out employing kinetic Monte Carlo
(KMC) simulations. The accuracy of gamma- and exponential-
distribution results is quantified by comparing the rates
extrapolated to zero force F with equilibrium (nonaccelerated)
rates. TiV jump activation energies and attempt frequencies
obtained from Arrhenius linear fitting of molecular dynamics
results (Sec. III B) are used as input for KMC employing a
temperature-parameter of 3000 K. The dependence of acti-
vation energies and attempt frequencies on F is taken into
account as described in the Supplemental Material of reference
[85], imposing xTS0(3000 K) = 1.5 Å.

KMC simulations are used to calculate n = 20 occurrence
times ti at each F applied in NE-AIMD simulations, as well
as the equilibrium (nonaccelerated) rate. Average accelerated
jump rates 〈t〉−1 are obtained as a function of F via both
gamma and exponential distribution statistics by considering
different numbers of censored data (n–m = 0,4,8, and 12).
The 4, 8, and 12 longest occurrence times ti are censored at
each F according to the procedure described in Sec. II D.

KMC results demonstrate that, irrespective of the relative
occurrence (n–m)/n of unsuccessful simulations (censored
data), equilibrium rates extrapolated by both exponential and
gamma distribution nonequilibrium rates calculated at five
different F values are within, or close to, nonaccelerated
rate uncertainty intervals (Fig. 8). As expected, the degree of
agreement between extrapolated and nonaccelerated equilib-
rium jump rates decreases as the number of censored data
increases. However, the uncertainty range on extrapolated
values increases monotonically with (n–m)/n. Thus, even
censoring 60% of the total number of runs, the error bars of
extrapolated rates overlap with those of equilibrium values.
Although (n–m)/n = 0.6, the margin in logarithm scale
between extrapolated and non-accelerated rates is less than 3%.
These results prove that the procedure used in this work (see,

FIG. 8. Comparison between extrapolated and equilibrium jump
rates for different numbers of censored data, as well as comparison
between gamma and exponential fitting. Data here represented are
produced with Kinetic Monte Carlo, taking into account the effect of
the force field on activation energy and jump attempt frequency.
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for example, requirement (8b) [(n–m)/n � 0.25] in Sec. II D)
allows retrieving accurate equilibrium jump rate values.

The reliability of error bars for cases in which accelerated
rates can be obtained only at force fields of high intensities
is tested by fitting kNE values corresponding to four differ-
ent sets of forces: {F 〈100〉

a , F
〈100〉
b , F

〈100〉
c }, {F 〈100〉

a , F
〈100〉
b },

{F 〈100〉
a , F

〈100〉
c }, and {F 〈100〉

b , F
〈100〉
c }, where F

〈100〉
a = 1.8,

F
〈100〉
b = 2.0, and F

〈100〉
c = 2.2 eV/Å. For each set of forces,

we use kNE values obtained by censoring 0, 4, 8, and 12 jump
occurrence times. This yields a total of 16 combinations of data
sets with corresponding extrapolated equilibrium rates. Fig. 9
shows that irrespective of the relative number of censored data
and of the fact that only two or three nonequilibrium rate
values are used in Eq. (3), the difference between extrapolated
rates and equilibrium (nonaccelerated) rates is always smaller
than one order of magnitude for both gamma and exponential
statistics. In addition, equilibrium rates (horizontal solid black
line in Fig. 9) are, in all cases, within or close to the uncertainty
intervals of extrapolated rates.

FIG. 9. Ratio between extrapolated and equilibrium rates ob-
tained by fitting accelerated rates calculated for 2 or 3 different force
field intensities close to the limit Fmax. For convenience, the vertical
axis is in logarithmic (base 10) scale.
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