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Willis fluids, or more generally Willis materials, are homogenized composites that exhibit coupling between
momentum and strain. This coupling is intrinsic to inhomogeneous media and can play a significant role
in the overall response in acoustic metamaterials. In this paper, we draw connections between bianisotropy
in electromagnetism and Willis coupling in elastodynamics to provide a qualitative understanding. Building
upon these analogies, we introduce a homogenization technique for acoustic metamaterials based on a source-
driven, multiple scattering approach that highlights the physical origins of Willis coupling. Moreover, through
numerical examples, we compare several macroscopic material descriptions of acoustic metamaterials with non-
negligible Willis coupling. The descriptions neglecting Willis coupling may not satisfy restrictions stemming from
reciprocity, passivity, and causality, which suggests that including Willis coupling in macroscopic descriptions
is necessary to realize physically meaningful macroscopic parameters.
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I. INTRODUCTION AND MOTIVATION

The emergence of metamaterials in electromagnetism,
elastodynamics, and acoustics has provided new impetus for
homogenization schemes accounting for multiscale dynamics
[1–11]. A valid homogenization scheme must accurately relate
the dynamic response of microscopic inhomogeneities and
their interactions at the mesoscale to realize metamaterials
with exotic macroscopic parameters exhibiting very large, near
zero, and even negative values, while also being physically
meaningful and independent of the specific setup in which the
material is tested [12–14]. One critical result of dynamic ho-
mogenization, often neglected due to quasistatic assumptions,
is the existence of coupling terms in constitutive relations
[6]. The concept of coupled constitutive relations is well
known in electromagnetism, and it is generally referred to as
bianisotropy or magnetoelectric coupling [15–17]. In contrast,
field coupling in elastodynamics and acoustics, commonly
referred to as Willis coupling, has only recently begun to
receive attention [18,19].

In traditional media, constitutive relations associate fields
whose inner product yields either the potential or kinetic
energy at a material point. Potential energy is calculated from
the inner product of the electric field and electric displacement
in electromagnetism, of the stress and strain in elastodynamics,
and of the pressure and volume strain in acoustics. Kinetic
energy is calculated from the inner product of the magnetic
field and magnetic flux in electromagnetism and of the
particle velocity and momentum density in elastodynamics
and acoustics. Additionally, energy is converted from one form
to the other in wave propagation, guided by the differential
equations that couple fields related to potential energy and
those related to kinetic energy, such as the conservation of
momentum.

In bianisotropic or Willis media, however, the constitutive
relations are coupled and therefore contain fields associated
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with both potential and kinetic energy. This coupling between
constitutive relations implies energy conversion in the ma-
terial response to a particular field, which is distinct from
the exchange of energy that occurs in wave propagation.
Macroscopic coupled constitutive relations may result from
multiple microscale and mesoscale effects including chiral
inhomogeneities [17,20,21], asymmetric inhomogeneities and
substrate effects [5,7,14,22–28], nonlocal effects due to a finite
unit cell and multiple scattering [5,9,10,29,30], and in the
presence of nonreciprocal biases [15–17,28,31–33].

Despite the prevalence of published work in bianisotropy
and Willis coupling, the physical analogies between the origins
of these effects in electromagnetic and elastic systems have
not been fully discussed. Additionally, while a few works
have provided exact theoretical validations of Willis coupling
[7,9,25,26], the methods used do not provide a clear picture
of the underlying physics. Finally, in order to uniquely define
the macroscopic response of an inhomogeneous medium, one
must be able to generate fields independently via sources [4–6].
If one attempts to infer the macroscopic response only from
free waves (as in most experiments), the resulting parameters
are nonunique and may not be physically meaningful [12–14].
This work addresses these considerations by (i) highlighting
useful analogies between electrodynamic, elastodynamic, and
acoustic systems, (ii) deriving a source-driven, multiple
scattering homogenization procedure demonstrating physical
origins of Willis coupling in acoustic metamaterials, and
(iii) providing numerical examples demonstrating that Willis
coupling must be taken into account in order for macroscopic
parameters to be physically meaningful.

This work is organized as follows. Section II provides
a brief perspective on the connection between bianisotropy
in electromagnetism and Willis coupling in elastodynamics
and acoustics, highlighting important physical analogies and
qualitative examples. The remainder of this work focuses on
Willis coupling in acoustic metamaterials, which was inspired
and guided by the analogous work in electromagnetism,
particularly the works of Alù [5] and Simovski [12]. In
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Sec. III, a source-driven, multiple scattering homogenization
procedure for acoustic metamaterials provides an intuitive
demonstration of the origins of macroscopic coupling in
acoustic metamaterials. The homogenization procedure re-
sults in exact solutions for one-dimensional (1D) periodic
media, which are discussed in detail in Sec. IV. Due to the
nonuniqueness of macroscopic parameters in the absence of
sources, the derived effective parameters are compared to two
additional macroscopic descriptions that one might propose to
model free waves in the metamaterial: equivalent parameters
which neglect Willis coupling, and Bloch parameters which
relate microscopic fields rather than effective fields. Three
example 1D periodic media are considered, and the effective,
equivalent, and Bloch parameters are discussed in light of
physical restrictions on values.

II. BIANISOTROPY AND WILLIS COUPLING

This section provides an introduction to bianisotropy in
electromagnetism and analogous effects in acoustic/elastic
wave systems and qualitatively demonstrates field coupling
using fundamental physics. Section II A provides a brief
introduction and history of the known physical mechanisms
leading to macroscopically observable bianisotropy in elec-
tromagnetism and an example of how bianisotropy may be
introduced at the microscale by an asymmetric inhomogeneity.
Section II B provides an overview of work in elastodynamics
and acoustics involving coupled constitutive relations, an
example of a coupled response from an asymmetric inho-
mogeneity in an acoustic pressure field, and a qualitative
discussion of nonlocal coupling. Finally, Sec. II C reviews
the general restrictions on macroscopic material parameters
through the expressions of reciprocity, passivity, and causality
in homogeneous acoustic media [14].

In order to clarify the discussion, the authors tried to
use common variables in each of the disciplines: electro-
magnetism, elastodynamics, and acoustics. As such, variables
only in Sec. II A will refer to the electromagnetic definitions;
variables only in Sec. II B will refer to elastodynamics;
and variables in the remainder of this work will refer to
acoustic definitions provided wherever defined. Additionally,
the forms of the constitutive relations presented in Eqs. (1), (3),
and (4) were chosen based on convenience of comparison and
tradition, rather than being expressed in terms of the primary
fields of their corresponding disciplines [34,35].

A. Bianisotropy in electromagnetism

The study of bianisotropic media in electromagnetism
has a long history, with inquiry stretching back over 200
years [17,20]. The term “bianisotropic” was proposed in
1968 by Cheng and Kong [15] to describe a material that
displays an electrical response resulting from both electric
and magnetic excitation and a magnetic response resulting
from both magnetic and electric excitation and, in general, the
response is not parallel to either excitation. This behavior is
represented by the constitutive relations provided in Eq. (1).
A variety of physical effects may be efficiently modeled in the
frequency domain using bianisotropic constitutive relations,
and knowledge of their origins provides key insight into

understanding the so-called Willis coupling in elastodynamics
and acoustics.

The general bianisotropic constitutive relations in electro-
magnetism can be expressed in indical notation as

Di = εijEj + ζijHj ,

Bi = ξijEj + μijHj ,
(1)

where the electric and magnetic field strengths, E and H ,
and the electric and magnetic displacements, D and B,
are all vectors, and the four material parameters, electric
permittivity ε, magnetic permeability μ, and two coupling
parameters ζ and ξ , are all second-order tensors. Restrictions
on the parameter tensors based on symmetry, time, and spatial
inversion, reciprocity, and passivity were formally expressed
by Kong [16].

The earliest observed effect that can be modeled with
bianisotropic constitutive relations dates back more than 200
years and is known as optical activity [17,20]. This phe-
nomenon occurs naturally in some crystals and is marked by
the rotation of linearly polarized light as it propagates through a
material [17,20]. Media with optical activity are reciprocal, and
materials demonstrating this response are generally referred to
as chiral media. (An often used alternative formalism of optical
activity presents the electric displacement as a function of the
electric field and its curl [36].) In the mid-20th century, it was
shown that certain magnetic materials exhibit magnetization
proportional to electrical excitation. This became known as
the magnetoelectric effect, and it is nonreciprocal [17]. Both
of these effects were demonstrated in engineered materials
in the first half of the 20th century, chirality by Lindman
in 1914 using subwavelength microstructures composed of
copper helices [37] and the magnetoelectric effect by Tellegen
in 1948 using the nonreciprocal circuit element he called
a gyrator [31]. Propagation in general bianisotropic media
continued to be studied extensively throughout the second half
of the 20th century [17,20].

For propagation in isotropic media with magnetoelectric
coupling (known as bi-isotropic media), all the material
parameters presented in Eq. (1) can be represented by scalars,
and the coupling coefficients take the form

ζ = κnr + κor + iκer,

ξ = κnr + κor − iκer.
(2)

In these expressions, κer contains the chirality of the medium,
and κnr contains the nonreciprocal magnetoelectric effect,
also known as the Tellegen parameter. More generally, κnr

describes coupling due to many other nonreciprocal effects
including modeling moving media in a stationary reference
frame and time-varying media [15,16]. In contrast, κer contains
contributions from coupling mechanisms which are even in
wave vector and reciprocal, hereafter referred to as even
coupling. In addition to chirality, even coupling mechanisms
common in metamaterials include substrate effects [23] and
asymmetric microstructures such as split-ring resonators and
� particles [22]. The third parameter contributing to coupling,
κor, accounts for reciprocal effects which are odd in wave
vector, hereafter referred to as odd coupling. κor was recently
demonstrated to occur in periodic lattices, and it is due to the
finite phase velocity over a unit cell and multiple scattering
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FIG. 1. � particle demonstrating a microscopic origin of even
coupling κer in electromagnetism. (a) A perfectly conducting �

particle with height h produces electric Ds and magnetic Bs dipole
scattering when located at a local electric field Eloc maximum and
magnetic field null. (b) The operation of the � particle may be
explained by its equivalent circuit [38,39], where the response of the
arms is modeled with reactance XD , the response of the loop by XB ,
and the coupling between the arms and loop by Xc. The resistances
represent the scattered fields by the electric RD and magnetic RB

dipoles due to the excitation by the local electric field and current
around the loop.

effects, i.e., nonlocal effects, which will be discussed here
as mesoscale effects. A major result of these findings is that
neglecting κor in the homogenization of periodic arrays can
result in effective properties that do not satisfy the restrictions
imposed by passivity and causality on the response of a
material when subjected to external fields [4,5,13].

As mentioned above, asymmetric microstructures can lead
to bi(an)isotropy at the macroscale. Since microstructural
asymmetries lead to bianisotropy in electromagnetic meta-
materials, which this paper will show has an acoustic analog,
it is informative to introduce an example physical response
at the microscale leading to coupled field behavior. One such
structure is the so-called � particle [22], which is illustrated
in Fig. 1(a) and described here. Given a perfectly conducting,
�-shaped microstructure located at a local electric field Eloc

maximum and magnetic field null, the microscopic particle
responds like the RLC circuit shown in Fig. 1(b), where the
reactances XD , XB , and Xc are provided in Refs. [38,39].
The local electric field induces a charge separation, or a voltage
source hEloc, in the arms of the � particle that respond as a
perfectly conducting rod of length h modeled by XD . The
charge separation in turn results in a current around the loop,
which may be modeled by XB , and Xc models the coupling
between the arms and loop. Energy is dissipated through
reradiation in the form of a scattered electric dipole Ds along
the arms and a scattered magnetic dipole Bs through the loop
due to the time-varying current. These two forms of radiation
are represented by red vectors in Fig. 1(a) and as the resistances
RD and RB in Fig. 1(b). In this manner, a microscopic particle
may have a magnetic response to an electrical stimulus or

an electric response due to a magnetic stimulus, i.e., the �

particle may be excited by an incident magnetic field through
the loop. Because this microstructure partially converts a
stimulus of potential (kinetic) energy to a kinetic (potential)
response, an inhomogeneous medium composed of many such
subwavelength microstructures embedded in a background
medium will exhibit macroscopic field coupling represented
by constitutive relations with the form of Eq. (1) [22].

In electromagnetism, materials are characterized by their
electric and magnetic responses, which are coupled in the
case of bianisotropic media. The analogous responses in
elastodymanics correspond to relations between stress and
strain and between velocity and momentum. In the following,
a class of materials known as Willis media will be discussed,
which are analogous to bianisotropic media due to coupling
between stress-strain and momentum-velocity relations [19].

B. Willis coupling in elastodynamics and acoustics

In the 1960s, several groups independently proposed that
“acoustical activity” (analog to optical activity) would exist
in noncentrosymmetric crystals [40–43]. This effect was
measured in α quartz by Pine in 1970 [44], and acoustic
chirality was later proposed and demonstrated in engineered
composites in the 1980s [20,21]. Chirality, which requires
that the medium support transverse wave propagation with
rotationally polarized fields, can only occur in elastic media,
but will be absent in fluids which only support longitudinal
motion. In mechanics, the term chirality also often refers to
the related static effect whereby a uniform strain results in
a torque, and chiral geometries can be used to achieve a
negative Poisson’s ratio [45]. Additionally, chiral elements
have recently been used as spiral phase plates to produce
acoustic orbital momentum [46], in which case the emergent
acoustic beam from the plate has an azimuthal dependence,
but the wave motion is still longitudinal.

Apart from the studies of chirality, Willis demonstrated
in the 1980s that field coupling is a general result of dy-
namic homogenization of inhomogeneous media [18,47,48].
A surprising result of Willis’ work was the prediction of
coupled constitutive relations in the form of Eq. (3) for both
transverse and longitudinal waves, regardless if media supports
rotational fields [1,19,24]. This coupling as a result of dynamic
homogenization has therefore come to be referred to as Willis
coupling. Given that fluids only support longitudinal waves,
one must therefore conclude that the analog of bianisotropic
coupling exists in fluid acoustics. Recent work by Milton and
Willis [19] outline the development of Willis’ theory, and a
recent review by Srivastava [49] highlights much of the work
thus far in this area.

The so-called Willis constitutive relations are generally
presented as

σij = Cijklεkl + Sijkξ̇k,

μi = S̃ijkεjk + ρ̃ij ξ̇j ,
(3)

where the Cauchy stress tensor σ is proportional to not only
the infinitesimal strain tensor ε via the fourth-order stiffness
tensor C but also to the time derivative of the displacement
vector ξ̇ via a third-order coupling tensor S. Similarly, the
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momentum density vector μ is also proportional to the strain
via a third-order coupling tensor S̃ and the time derivative
of the displacement vector via the mass density tensor ρ̃

[1,19]. The general result provided by Willis was that dynamic
homogenization leads to coupled constitutive relations with
material properties that are temporally and spatially dispersive
[1,6,19]. Recent work by Nassar et al. [26] provides a detailed
account of the necessary conditions for the application of
Willis’ homogenization theory to periodic media.

For 1D propagation, the constitutive parameters C, S, S̃ ,
and ρ̃ reduce to scalars C, S, S̃, and ρ̃, and for periodic
media that are lossless and reciprocal, the coupling coefficients
have been shown to be related by S̃ = −conj(S) for purely
longitudinal propagation [25], purely shear propagation [7],
and discrete systems [26] [note that constitutive relations in
references may be in a complementary form compared to
Eq. (3), which will result in slightly different expressions for
C, S, S̃ , and ρ̃]. This is consistent with the relation between
the even and odd reciprocal coupling parameters κer and κor in
Eq. (2). Additionally, Nemat-Nasser and Srivastava [25] noted
that Im(S) is only nonzero when the unit cell is asymmetric
and that Re(S) is finite (except in the static limit) regardless
of unit-cell symmetry. It has recently been demonstrated that
Re(S) in lossless composites is due to nonlocal effects and has
been shown to exist in periodic media with symmetric unit
cells in 1D [29] and 2D [30] for acoustics and in 2D [9] for
elastic waves. This work will show that for lossless composites
Im(S) is due to asymmetric microstructures (even coupling)
and Re(S) is the result of mesoscale effects associated with the
finite phase velocity across the unit cell and multiple scattering
in the lattice (odd coupling).

Independent of the works discussing Willis coupling, Koo
et al. [27] recently demonstrated numerically and exper-
imentally the use of acoustic bianisotropy to impedance
match waveguides with different cross-sectional areas and
to independently control reflection and transmission angles
from a metasurface with a normally incident plane wave.
Their demonstrations provide the first experimental evidence
of acoustic bianisotropy and were inspired by the analogs to
bianisotropy in electromagnetism. The experimental demon-
strations were recently explained in terms of Willis coupling
by Muhlestein et al. [50] who provided detailed theoretical
and experimental evidence of Willis coupling in a small asym-
metric metamaterial sample. Also independently, Shui et al.
[32] demonstrated nonreciprocal coupling for elastic waves
using a layered medium with time-varying properties, which
appears to be analogous to nonreciprocal coupling κnr in elec-
tromagnetism, though it was not described in this manner. A
similar effect was recently discussed by Nassar et al. [33] who
explained the effect as nonreciprocal Willis coupling. Moving
elastic media may also be represented as a medium with non-
reciprocal Willis coupling in a stationary reference frame [28].

The frequency domain coupled constitutive relations for
fluid acoustics may be expressed as

μ = ρ · u − ηp,

ε = γ · u − βp,
(4)

where vector fields are momentum density μ and acoustic
particle velocity u and scalar fields are volume strain ε and

acoustic pressure p. The fields are related by the anisotropic
mass density tensor ρ, adiabatic compressibility scalar β,
and coupling vectors η and γ . Consistent with the origins
of bianisotropy in electromagnetism presented in Eq. (2) and
the observation that S̃ = −conj(S) in reciprocal, lossless, 1D
elastodynamic studies [7,25,26], this work demonstrates that
for reciprocal fluids

η = χo + iχ e,

γ = χo − iχ e,
(5)

where χo is odd coupling, i.e., odd in wave vector k such that
χo(k) = −χo(−k), and χ e is even coupling, i.e., even in wave
vector k such that χ e(k) = χ e(−k).

In Eq. (4), the momentum density and volume strain have
been expressed in terms of acoustic particle velocity and
pressure, as opposed to being a limiting case of Eq. (3) as was
discussed in Ref. [14]. Therefore, the dynamic mass density
tensors ρ̃ and ρ in Eqs. (3) and (4), respectively, are slightly
different parameters. ρ̃ is the dynamic density one would
measure if inertial effects were determined with the sample
held at constant strain, whereas ρ is the dynamic density of
the same measurement but with the sample under constant
pressure.

Although elastic material behavior is often described using
the kinematic field (usually ξ ) as the independent variable, the
independent variable in acoustics is often assumed to be the
pressure p. The difference is clearly illustrated by the fact that
the wave equations for elastic media and fluids are usually
derived for ξ and p, respectively. This follows from the natural
description of the physical processes underlying wave motion
in elastic and fluid media. Stress is assumed to be related to
strain via Hooke’s law in linear elasticity through an idealized
quadratic strain energy density function (rather than a stress
energy density function), but in fluids, the pressure variations
are related to changes in density via thermodynamic relations
(isentropic pressure variations). The description of wave
propagation in terms of volume strain as a dependent field
of the pressure via the compressibility β = ρ−1

0 ∂ρ/∂p|
s=0 is

therefore the more natural representation for acoustic waves.
Additionally, the formulation presented in Eq. (4) is more
convenient for the homogenization derviation in Sec. III and
is directly analogous to the commonly used E − H form
of electromagnetism presented in Eq. (1). However, despite
the convenience and tradition, we note that E and B are
actually the fundamental fields in electromagnetism [34], and
fluctuating enthalpy has been suggested as the fundamental
acoustic field [35].

As discussed in the previous section, coupling in elec-
tromagnetism occurs between electric and magnetic material
responses, two distinct phenomena. The origins of coupling in
acoustics and elastodynamics are not as obvious because all
the fields are thermodynamic in nature; however, the origins
become more evident from the acoustic constitutive relations
[Eq. (4)]. In the absence of coupling, i.e., γ = η = 0, the
first expression of Eq. (4) is the definition of momentum, a
vector equation representing purely translational motion at a
vanishingly small material point. The velocity and momentum
density at this field point are related to the local kinetic energy.
A particle demonstrating this type of motion is associated with
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FIG. 2. Asymmetric acoustic inhomogeneity demonstrating the
microscopic origin of even coupling. (a) Inhomogeneity with cross-
sectional area A consisting of two masses m1 and m2 separated by
a spring with stiffness s and located at a local acoustic pressure
maximum and particle velocity null. (b) Equivalent circuit model
demonstrating that the local pressure acts as force sources Aploc

in series with the masses m1 and m2, separated by the compliance
1/s. The resistors R represent the scattered acoustic field due to
the motion of the masses. For m1 �= m2, u1 �= u2 implying that
the inhomogeneity response is not purely monopolar despite the
monopole nature of the source. Thus, the scattered wave will contain
monopole and dipole components.

acoustic dipolar radiation and is therefore often referred to as
a dipole. Similarly, in the absence of coupling, the second
expression of Eq. (4) is a Hookean relation and the equation
of state for an isentropic fluid, which is a scalar equation
representing purely compressional motion at a vanishingly
small material point. The pressure and volume strain at this
field point are related to the local potential energy. A particle
demonstrating this type of motion is associated with acoustic
monopolar radiation and is therefore often referred to as a
monopole. It is the coupling between monopole and dipole
motion at the microscale and/or mesoscale of inhomogeneous
fluids that leads to macroscopic Willis constitutive relations.

In the previous section, it was demonstrated that macro-
scopic even coupling can result from the asymmetry present in
microscopic inhomogeneities such as � particles due to their
coupled scattering. Even coupling has been demonstrated in
Willis media using systems of unequal masses and springs
[14,28,51]. It is shown here that inhomogeneities consisting of
unequal masses separated by a spring produce the analogous
effect of � particles. An asymmetric acoustic inhomogeneity
and equivalent circuit are presented in Fig. 2. Consider a micro-
scopic inhomogeneity with cross-sectional area A consisting
of two masses m1 and m2, separated by an ideal spring with
stiffness s, and located at a local acoustic pressure maximum
and particle velocity null as shown in Fig. 2(a). Scattered
acoustic waves, represented by red curves, will radiate from
both masses. Since a pressure maximum coincides with a par-
ticle velocity null, i.e., uloc = 0, then the local field imposes a
purely monopole excitation. The monopolar excitation is indi-
cated by force sources in series with the masses and in parallel
with the compliance 1/s as shown in the equivalent circuit in
Fig. 2(b). In the equivalent circuit, the velocities of the masses

are labeled as u1 and u2, which are positive for the masses
moving towards each other with positive pressure, and the
resistances R represent the acoustic field radiated into the back-
ground fluid from the motion of the masses. Purely monopolar
motion of the inhomogeneity requires u1 = u2, and purely
dipolar motion of the inhomogeneity requires u1 = −u2. From
the equivalent circuit, for a monopole excitation and m1 �= m2,
the inhomogeneity responds with a combination of monopolar
and dipolar motion because u1 �= u2 and u1 �= −u2. This
simple model demonstrates the origins of even coupling at
the microscale due to the presence of asymmetric microscopic
inhomogeneities. An inhomogeneous medium consisting of
many such microstructures will exhibit some amount of
coupling in effective parameters as in Eqs. (3) and (4).

While even coupling can originate from asymmetry at the
microscale, odd coupling arises at the mesoscale. For example,
consider an array of inhomogeneities with feature size l and
periodicity L in a background fluid with wave number k0 =
ω/c0 = 2π/λ0. Dispersion of the acoustic waves propagating
in this array can be described with the macroscopic wave num-
ber k = ω/c = 2π/λ. Even though the inhomogeneity may
indeed be small compared to the wavelength in the background
media, the phase change over a unit cell may be significant
due to resonances, i.e., even though k0l < 0.1 in many cases
kL > 1, which is often the case for metamaterials with c → 0,
because for c → 0 then λ → 0 at finite frequency. The finite
phase change over the distance of a unit cell, i.e., kL > 0,
demonstrates that there is an exchange between kinetic and
potential energy due to effective wave propagation over the
finite unit cell. In the macroscopic constitutive relations,
the phase change leads to odd coupling, odd because the phase
change over the unit cell will change sign with the opposite
propagation direction. This provides a qualitative argument
for considering odd coupling, which quantifies the exchange
between monopolar and dipolar motion due to finite phase
change over the length of the unit cell. Odd coupling becomes
particularly profound in slow phase speed metamaterials. As c

tends to zero, so does λ, and when λ becomes comparable to L,
the macroscopic description of the inhomogeneous medium as
a single homogeneous material with effective properties begins
to lose physical meaning. The mesoscopic origins of odd
coupling are demonstrated in the homogenization procedure
derived in Sec. III, and the impact of neglecting odd coupling
in 1D examples is discussed in Sec. IV.

Sections II A and II B have provided an overview and
simple examples illustrating the physical basis for coupled
constitutive relations. The next section provides motivation for
considering these more general constitutive relations based on
the desire for physically meaningful macroscopic descriptions
of inhomogeneous media.

C. Physically meaningful macroscopic parameters

The purpose of the previous sections was to provide a
background on the development and use of bianisotropy
and Willis coupling and to provide analogies between the
behavior in electromagnetic and elastic systems. In addition to
understanding the origins of these coupling terms, a primary
motivation for this work is to derive macroscopic material pa-
rameters that satisfy restrictions based on passivity, causality,
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and reciprocity for homogenized systems. These restrictions
have received considerable attention in electromagnetism
[12,13,16], and recent work by Muhlestein et al. [14] derived
restrictions for Willis solids with even coupling and considered
the implications of these restrictions for acoustics as a special
limit of elastodynamics. Here, only restrictions on the acoustic
parameters introduced in Eqs. (4) and (5) are reviewed.

Reciprocity requires symmetry in the mass density tensor
ρij = ρji , if it has a local response. It also requires that
the coupling parameters take the form of Eq. (5) when odd
and even components are considered. If the medium can
be assumed to be reciprocal and passive, restrictions on the
imaginary parts of material parameters are also imposed. The
imaginary parts of the mass density and compressibility must
satisfy

Im(ρij ) � 0, Im(β) � 0, (6)

when using the e−iωt time convention, which is used through-
out this work. Passivity also places restrictions on the magni-
tude of the imaginary parts of χo and χ e [14,52].

Additionally, causality dictates that in a frequency band
with negligible loss and away from resonances,

∂ρij /∂ω � 0, ∂β/∂ω � 0. (7)

Although consistent with electromagnetism [12,13,53], this
is nonintuitive since usually in elastodynamics and acoustics
one is confronted with a relaxing media for which ∂β/∂ω � 0.
The two limiting cases of low-loss media with resonances and
relaxing media are discussed in detail by Muhlestein et al. [14].
Generally, low losses are assumed in metamaterial models and
applications, so the inequalities in Eq. (7) are valid away from
resonances.

It is important to note that metamaterial parameters are
often reported that do not satisfy the restrictions presented in
Eqs. (6) and (7), yet the combination of these parameters in
the characteristic impedance and wave number demonstrate
passive and causal energy propagation. In Sec. IV, we discuss
the extraction of the wave impedance Z = √

ρeq/βeq and wave
number k = ω

√
ρeqβeq from an inhomogeneous sample, which

has been modeled as being equivalent to a homogeneous fluid
with parameters ρeq and βeq. Such a model does not consider
Willis coupling. If the sample is reciprocal and passive, the
extracted Z and k should be chosen such that they satisfy
passivity and causality. However, this does not guarantee that
ρeq and βeq will satisfy Eqs. (6) and (7), and if coupling is
present one (or both) of the equivalent parameters will likely
not satisfy passivity and causality. Because Z and k satisfy
passivity and causality, it is a model that can still capture the
wave motion, but the homogenized properties lose physical
meaning, giving the appearance of local gain even when all of
the constituents are purely passive.

Koschny et al. [54] pointed out in electromagnetism that,
due to nonlocal effects, antiresonant behavior was observed
in extracted metamaterial properties which violated passivity.
Later, it was shown that the nonlocal effects could be accounted
for with bianisotropy [4], and Alù discussed the relation
between neglecting bianisotropy and acausal metamaterial
properties [5,13]. If one wishes to describe the overall
response of inhomogeneous acoustic and elastic media with

macroscopic parameters, it is necessary that the resulting
macroscopic parameters strictly obey reciprocity, causality,
and passivity on their own, rather than in combination. This
is one of the primary motivations of this work, and the
implications of the model developed in Sec. III on these
restrictions will be explored further in Sec. IV C for 1D lattices.

III. HOMOGENIZATION PROCEDURE

Acoustic wave propagation is described through the appro-
priate application of the Navier-Stokes equation (conservation
of momentum), the continuity equation (conservation of mass),
entropy equation (internal energy), and an equation of state
(constitutive equation) [55]. For a linear, locally reacting fluid,
the conservation of momentum expression simplifies to

∇p = −μ̇ + f . (8)

In this expression, the scalar p represents the acoustic pressure.
The vector μ = ρ0u is the momentum density with ρ0 repre-
senting the density of the fluid supporting the acoustic wave
and the vector u representing the acoustic particle velocity,
and the overdot represents the time-derivative operation. The
vector f represents body forces, which can also be described
as dipole sources, at the point of evaluation.

The linearized form of the continuity equation is usually
expressed as ∂ρ/∂t = q − ρ0∇ · u [55], where ρ is the
instantaneous density and q represents volume, or monopole,
sources. However, from an analysis of strain rate on a volume
element, Hunt [56] demonstrated that

∇ · u = ε̇ + q (9)

is an equivalent form of the equation of continuity, where
ε is the volume strain (dilatation [56]). For linear acoustics,
volume strain is proportional acoustic pressure via a Hookean
relation ε = −β0p. Here, β0 is the adiabatic compressibility
of the fluid and the inverse of the bulk modulus.

This section outlines a source-driven homogenization
theory based on multiple scattering modeled after analogous
work in electromagnetism [5]. It differs from previous
acoustic multiple scattering homogenization approaches,
e.g., Twersky [57,58] and Torrent and Sánchez-Dehesa [59]
and references therein, by taking a source-driven approach,
which is necessary to guarantee a unique effective response
through independently imposed pressure and velocity fields
[4–6], and by allowing for coupling between monopole
and dipole responses. The homogenization procedure
will be introduced as follows. In Sec. III A, equations of
conservation of momentum (8) and mass (9) will be used to
determine microscopic and macroscopic fields due to a source
distribution with an eik·xe−iωt dependence, with and without
inhomogeneities. In Sec. III B, macroscopic effective fields
will be related to the scattering properties of inhomogeneities
(microscopic effects). The relation of macroscopic fields to
mesoscopic effects due to finite phase velocity along the array
and inhomogeneity interaction from multiple scattering will be
introduced in Secs. III A and III C, respectively. The responses
of the inhomogeneities, their long-range interaction, and
finite unit-cell effects will be expressed in terms of monopole,
dipole, and coupled coefficients. The homogenized, effective
material parameters will be explicitly solved for in the cases
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FIG. 3. Conceptual illustration of source-driven homogenization
procedure: (a) background fluid with externally controlled body
forces and volume velocity sources imposing an arbitrary (ω,k) pair.
(b) The introduction of inhomogeneities result in a total field that is a
combination of scattered and externally imposed fields. The scattered
fields are not shown to minimize clutter, and the unit cell analyzed
in Sec. III is denoted by the red box. (c) The effective media can be
described with dynamic effective properties and same imposed (ω,k)
dependence.

of periodic arrays of identical inhomogeneities for 1D, 2D,
and 3D space in Sec. III E. The procedure may be generalized
to random arrays and the point of departure from general
arrays to periodic arrays will be highlighted in Sec. III C.

A. Source-driven homogenization theory

Consider a homogeneous fluid characterized by mass
density ρ0 and adiabatic compressibility β0, which contains an
arbitrary, externally controlled source distribution. The acous-
tic pressure field that results from such a source distribution
is shown in Fig. 3(a). The source distribution exists at every
point and can be modeled with time-harmonic body forces
(dipole sources) with strength f ext and time-harmonic volume
velocity (monopole sources) with strength qext. The source
distribution imposes an arbitrary eik·xe−iωt dependence in the
background medium. Although fictitious in practice, a contin-
uous source distribution permits the ability to independently
impose acoustic pressure and velocity fields with any desired
(ω,k) pair, which makes it possible to uniquely determine the
constitutive properties for any (ω,k) combination [4–6] This
is the basis of the so-called “source-driven” homogenization
approach.

The inhomogeneous linear acoustic equations for conserva-
tion of momentum (8) and mass (9) under an eik·xe−iωt driven
condition become

ikpext = iωρ0uext + f ext,

ik · uext = iωβ0pext + qext,
(10)

where pext and uext are the complex amplitudes of the acoustic
pressure and particle velocity fields, respectively, that result
from the externally controlled dipole f exte

ik·x and monopole
qexte

ik·x source distributions. The space and time dependencies
eik·xe−iωt have been suppressed in Eq. (10).

Introducing a random array of small inhomogeneities into
the fluid with the same externally controlled source distribu-
tion, as illustrated in Fig. 3(b), the conservation equations can
be expressed as

∇p(x) = iωρ0u(x) + iωD(x) + f exte
ik·x,

∇ · u(x) = iωβ0p(x) − iωM(x) + qexte
ik·x .

(11)

These relationships determine the microscopic fields at every
point in the medium in terms of the dipole polarization
D(x) = [ρ(x) − ρ0]u(x) and monopole polarization M(x) =
−[β(x) − β0]p(x). The polarizations account for the con-
trast in density and compressibility between the background
medium and the inhomogeneities.

Using continuous source distributions to impose an arbi-
trary (ω,k) pair, one may assume that the effective field am-
plitudes for a representative unit cell are uniquely determined
[4–6] by

ikpeff = iωρ0ueff + iωDeff + f ext,

ik · ueff = iωβ0peff − iωMeff + qext,
(12)

where Deff and Meff are the effective dipole and monopole
polarizations, respectively. This form is guaranteed for peri-
odic arrays. An effective field distribution in the homogenized
media is shown in Fig. 3(c), which has the same spatial de-
pendence as the homogeneous background media [Fig. 3(a)],
however, the field amplitudes are different, i.e., pext �= peff, due
to the presence of microscale inhomogeneities. By comparing
Eq. (12) and the conventional continuity expressions (8)
and (9), the constitutive relations relating effective fields in
the homogenized medium can be written as

μeff = ρ0ueff + Deff,

εeff = −β0peff + Meff,
(13)

where μeff and εeff are the effective momentum density and
volume strain field amplitudes, respectively. The challenge
of determining the effective parameters of the homogenized
medium, therefore, lies in relating the polarizations Deff and
Meff to the properties of the inhomogeneities, their distribution
in the background fluid, and the effective fields peff and ueff.

A number of procedures to reduce Eq. (11) to a set of
macroscopic dynamic equations [Eq. (12)], which describe an
effective medium, involve field averaging over a representative
unit cell, illustrated by the red box in Fig. 3(b), have been
proposed in the literature [1–7,9–11,25,26]. Of particular
interest, Alù [5] demonstrated in the analogous case in
electromagnetism that a simple volume average removing the
dominant Fourier components from Eq. (11) is not sufficient
to account for nonlocal effects. Since nonlocal effects are
important in determining the effective dynamic properties of
metamaterials, a Taylor expansion procedure was developed
that does account for nonlocal effects. An important result of
this procedure is that it demonstrates explicitly that D(x) = 0
does not imply Deff = 0, likewise, M(x) = 0 does not imply
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Meff = 0. If the analogy holds for acoustic wave phenomena,
one would expect, for example, a uniform waveguide lined
with array of shunt Helmholtz resonators will result in an
effective compressibility and density different from the fluid
in the waveguide, contrary to what is commonly presented
in the literature. This is a result of nonlocal effects, which
are demonstrated in the derivation and results that follow in
this work. The Taylor expansion method has recently been
partially adopted for acoustic systems to demonstrate acoustic
bianisotropy [27].

A relation between effective and externally imposed fields
is found by subtracting Eq. (10) from Eq. (12) and by solvimg
for the effective field amplitudes, which yields

ueff = uext + K d · Deff

ρ0
− K c

1

Z0

Meff

β0
,

peff = pext + K c · Z0
Deff

ρ0
− Km

Meff

β0
,

(14)

where polarization weights (K terms) are defined by

K d =
(
k2

0 − k · k
)
I + k ⊗ k

k · k − k2
0

,

Km = k2
0

k · k − k2
0

, K c = k0k

k · k − k2
0

.

(15)

Here, I is the identity matrix, and k0 = ω
√

ρ0β0 and Z0 =√
ρ0/β0 are the characteristic wave number and impedance of

the background medium, respectively.
In Eq. (14), peff is a function of dipole polarization due to the

presence of K c, and ueff is a function of monopole polarization
because of K c. For k → 0, the quasistatic limit, K d = −I ,
Km = −1, and K c = 0. Only in this limit, the effective velocity
field is proportional to only the dipole polarization, and the
effective pressure field is proportional only to the monopole
polarization. As pointed out by Alù [5] in electromagnetism,
“an inherent form of [Willis] coupling at the unit cell level
stems from weak spatial dispersion effects when [k �= 0],
associated with finite phase velocity across each unit cell.” As
discussed in Sec. II B, Willis coupling in acoustics is coupling
between monopole and dipole motion in the material response,
which for metamaterials is the unit cell. Noting that K c is
odd in k, it will contribute to the macroscopic parameters
accounting for odd coupling.

Beginning with the polarization weights in Eq. (14) and
throughout the paper, subscript “d” will be used to identify
dipole quantities that relate dipole response contributions to
particle velocity (dipole) fields, subscript “m” will be used to
identify monopole quantities that relate monopole response
contributions to pressure (monopole) fields, and subscript
“c” will be used to identify coupling quantities that relate
monopole response contributions to dipole fields and dipole
response contributions to monopole fields.

The analysis above has shown that Willis coupling will
exist in acoustics if the coupled polarization weight K c �= 0,
which is due to the nonzero phase across the unit cell.
However, neither the composition nor the locations of the
inhomogeneities have been investigated. The response and
interaction of the inhomogeneities will be considered in the

sections that follow in order to derive the effective material
parameters of the acoustic metamaterial.

B. Microscale effects: Inhomogeneity response

Beginning with the microscale, inhomogeneities will be
assumed (i) to satisfy reciprocity, (ii) to be acoustically small,
i.e., k0l � 1, where l is its representative length, and (iii)
to be well represented by point dipole dn and monopole
mn moments, i.e., quadrapole and higher-order responses are
negligible. The subscript n is a vector identifying a particular
inhomogeneity. The dipole moment dn represents the dipole
scattering strength of the nth inhomogeneity, and the monopole
moment mn represents the monopole scattering strength.

Consider the inhomogeneity located at the origin. The
local fields ploc and uloc are defined as the pressure and
velocity fields that would exist at the origin in the absence
of the inhomogeneity. The dipole and monopole moments of
the inhomogeneity are related to the local fields via polar-
izabilities, which depend on the composition and geometry
of the inhomogeneity. The dipole and monopole moments
of this inhomogeneity are given by

d0

ρ0
= αd · uloc − iαc

1

Z0
ploc,

m0

β0
= −iαc · Z0uloc − αmploc,

(16)

where αd is the dipole polarizability that relates the local
particle velocity to the dipole moment, αm is the monopole
polarizability that relates the local pressure to the monopole
moment, and αc is the coupled polarizability that relates the
local particle velocity to the monopole moment and the local
pressure to the dipole moment. The polarizabilities αd and
αm represent the pure dipole and monopole responses of
the inhomogeneity, respectively. The coupled polarizability
αc is only nonzero when the inhomogeneity has some form
of asymmetry (parameter distribution or geometric) and
embodies the coupled scattering demonstrated in Fig. 2 and
discussed in Sec. II B for an isolated inhomogeneity. The
polarizabilities have units of volume and can be determined
from the scattering matrix of a single inhomogeneity.

In order to solve for effective material properties, Eq. (16)
must be inverted, such that the local fields are expressed as

uloc = α̃d · d0

ρ0
− iα̃c

1

Z0

m0

β0
,

ploc = −iα̃c · Z0
d0

ρ0
− α̃m

m0

β0
,

(17)

where complementary polarizabilities are defined as

α̃d = α−1
d [I + αc ⊗ α̃c],

α̃m = α−1
m /�α,

α̃c = αc · (αmαd)−1/�α,

(18)

and �α = 1 − αc · (αmαd)−1 · αc. If the inhomogeneity is
symmetric, α̃c = αc = 0, α̃d = α−1

d , and α̃m = α−1
m , and only

in the symmetric case, α̃d and α̃m represent pure dipole and
monopole responses, respectively. For α̃c �= 0, dipole and
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monopole responses are not separable, as indicated by the
presence of �α in Eq. (18).

Like the polarizabilities, the components of the comple-
mentary polarizabilities α̃d, α̃m, and α̃c are functions of
the geometry and the material parameters that make up
the inhomogeneities. The complementary polarizabilities are
therefore independent of the direction of the imposed wave
vector, k, and thus even in k. As one may therefore expect, the
sections that follow demonstrate that α̃c is directly related to
macroscopic even coupling as described in Secs. II A and II B.

C. Mesoscale effects: Multiple scattering

Having defined the monopole and dipole moments of a
single inhomogeneity in the previous section, their contribu-
tions to the local fields of all other inhomogeneities must be
determined in order to accurately represent the response of
the entire inhomogeneous medium. This is very difficult in
general since the local fields are the result of summations of
the scattered fields from all inhomogeneities and the imposed
fields pext and uext. In order to make it possible to calculate the
local fields, inhomogeneities are assumed to be acoustically
small (k0l � 1) and spaced sufficiently far apart such that
near field scattering effects between inhomogeneities are
negligible. For the initial formulation, the locations of the
inhomogeneities are arbitrary, but the inhomogeneities are
assumed to be identical in composition and orientation with
respect to the global coordinate system. The latter assumptions
(identical inhomogeneities) allow one to assume that the
polarizabilities defined in the previous section are the same
for each inhomogeneity. The derivation of the local fields as
a function of the imposed and scattered fields up to Eq. (21)
is otherwise general and may be specialized to 1D, 2D, or 3D
depending on the choice of scalar Green’s function g(x|xn),
which is defined in Appendix A. The results of this section
will be specialized to periodic lattices in Sec. III D.

For acoustically small inhomogeneities in the presence of
an incident acoustic field, the scattered fields at a point xm

due to an inhomogeneity located at xn may be expressed
in terms of the dipole and monopole moments of the nth
inhomogeneity and modified Green’s functions with the
following expressions:

us(xm) = Gmn
d · dn

ρ0
− Gmn

c
1

Z0

mn

β0
,

ps(xm) = Gmn
c · Z0

dn

ρ0
− Gmn

m
mn

β0
.

(19)

In Eq. (19), the modified Green’s functions are defined in
Eq. (20) in terms of the scalar Green’s function for a reciprocal
background medium g(x|xn):

Gmn
d = −∇∇g(x|xn)|x=xm

= Gnm
d = (

Gmn
d

)T
,

Gmn
m = k2

0g(xm|xn) = Gnm
m ,

Gmn
c = −ik0∇g(x|xn)|x=xm

= −Gnm
c .

(20)

In the expressions above, the dipole modified Green’s tensor
Gmn

d relates the inhomogeneity’s dipole moment to the
scattered particle velocity; the monopole modified Green’s
scalar Gmn

m relates the inhomogeneity’s monopole moment

to the scattered pressure; and the coupled modified Green’s
vector Gmn

c relates the inhomogeneity’s dipole moment to
the scattered pressure and monopole moment to the scattered
particle velocity.

The exchange of locations xn ↔ xm represents scattering
in the opposite direction. The corresponding changes to the
modified Green’s functions are expressed in Eq. (20). Gmn

d
and Gmn

m are unchanged; however, Gmn
c undergoes a sign

change due to the gradient operation. The sign change for
a corresponding change in scattering direction indicates that
this component of mesoscale interaction will be odd in wave
vector. It will be shown in the following sections that Gmn

c
contributes to macroscopic odd coupling.

The local fields may now be determined by the summation
of the externally imposed fields and the fields scattered from all
other inhomogeneities. It is most straightforward to consider
an inhomogeneity located at the origin n = 0, where the local
particle velocity and pressure, uloc and ploc, may be expressed
as

uloc = uext +
∑
n �=0

(
G0n

d · dn

ρ0
− G0n

c
1

Z0

mn

β0

)
,

ploc = pext +
∑
n �=0

(
G0n

c · Z0
dn

ρ0
− G0n

m
mn

β0

)
.

(21)

In order to quantify the scattering interaction between unit
cells, one must determine the relation between moments of
a pair of inhomogeneities, i.e., the relations between the
moments of the i th and j th inhomogeneities: di and d j , di

and m j , and mi and m j . For an arbitrary array, this requires
knowledge of the local fields at every inhomogeneity location,
which is not possible in general. However, as demonstrated
in the next section, the case of periodic arrays results in
converging lattice sums, which significantly simplifies the
procedure to quantify unit-cell interaction.

D. Periodic array

The existence of an infinite periodic lattice of inhomo-
geneities significantly reduces the problem of quantifying the
interaction between unit cells, and it suffices to proceed with
the analysis on a single unit cell, which for simplicity will
be centered on the origin. For the case of periodic arrays,
the dipole and monopole moments of the nth inhomogeneity
are directly related to the moments of the inhomogeneity
at the origin through application of the Floquet condition:
dn = d0e

ik·xn and mn = m0e
ik·xn . Equation (21) are then given

by

uloc = uext + Cd · d0

ρ0
− Cc

1

Z0

m0

β0
,

ploc = pext + Cc · Z0
d0

ρ0
− Cm

m0

β0
,

(22)
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where the interaction coefficients are defined by

Cd =
∑
n �=0

eik·xn G0n
d ,

Cm =
∑
n �=0

eik·xnG0n
m ,

Cc =
∑
n �=0

eik·xn G0n
c .

(23)

Each interaction coefficient in Eq. (22) quantifies a different
contribution to the local fields from the fields scattered by
an infinite periodic array of inhomogeneities. The dipole
interaction tensor of coefficients Cd quantifies the contri-
butions to the local velocity at the origin related to the
dipole moments dn resulting from the local fields at locations
xn of all other inhomogeneities. Similarly, the monopole
interaction coefficient Cm quantifies the contributions to the
local pressure at the origin related to the monopole moments
mn resulting from the local fields at locations xn of all
other inhomogeneities, and the coupled interaction vector
of coefficients Cc quantifies the contributions to the local
velocity at the origin related to the monopole moments mn

and contributions to the local pressure at the origin related
to the dipole moments dn resulting from the local fields at
locations xn of all other inhomogeneities. It is important to note
that these interaction coefficients are purely a function of the
modified Green’s functions, the periodic spatial distribution
of the inhomogeneities, and the imposed wave vector. One
can therefore determine these coefficients for any given lattice
arrangement assuming that a convergent lattice sum can be
found.

The externally imposed field amplitudes may now be
expressed in terms of the complementary polarizabilities,
interaction coefficients, and dipole and monopole moments
by eliminating the local fields in Eqs. (17) and (22) to yield

uext = (α̃d − Cd) · d0

ρ0
− (iα̃c − Cc)

1

Z0

m0

β0
,

pext = (−iα̃c − Cc) · Z0
d0

ρ0
− (α̃m − Cm)

m0

β0
.

(24)

In the absence of the imposed fields, i.e., pext = 0 and uext = 0,
Eq. (24) can be rearranged into the following transcendental
equation:

det[(α̃m − Cm)(α̃d − Cd)

− (iα̃c − Cc) ⊗ (−iα̃c − Cc)] = 0. (25)

The solutions to Eq. (25) provide the eigenmodal pairs (ω,k)
for any periodic array described by complementary polariz-
abilities and interaction coefficients. Although this expression
is compact, it is important to reiterate that it includes both
microscale and mesoscale effects to determine macroscopic
eigenmodal pairs. In other words, both the local response
of the inhomogeneity and the nonlocal multiple scattering
lattice contributions are included in this formulation. Only
a few assumptions have been made to achieve the compact
representation in Eq. (25): (i) the background medium satisfies
reciprocity, and the inhomogeneities (ii) satisify reciprocity,
are (iii) acoustically small, (iv) identically oriented, and (v)

arranged periodically. Complementary polarizabilities and
interaction coefficients are not trivial to find, but the derivation
up to this point is exceptionally general.

Although the interaction coefficients contain infinite sum-
mations, they all have analytic representations for 1D periodic
systems. To the authors’ knowledge, rapidly convergent series
have been found for Cm and Cd for 2D and 3D cubic arrays
[60], but are yet to be determined for Cc or more general
periodic lattices. For simplicity, the results presented here
will be restricted to the 1D case, leaving more general cases
for future work. It is important to emphasize, however, that
the model derived here is completely general for 1D, 2D,
and 3D periodic lattices and, therefore, the observations and
the physical phenomena they illustrate apply to all cases
where inhomogeneities are acoustically small and periodically
distributed in a background medium.

E. Effective material parameters

As discussed in Sec. III A and exemplified by the con-
stitutive relations (13), the effective polarizations Deff and
Meff demonstrate how the effective media differ from the
background fluid, where Deff is the additional momentum
density and Meff is the additional volume strain of the unit
cell. The total response of the inhomogeneity quantifies
this additional momentum density and volume strain. It
was assumed in Sec. III B that this total response could be
represented by monopole and dipole motion [Eq. (16)], which
were quantified in terms of the composition and geometry
of the inhomogeneity via polarizabilities and the total local
field due to externally imposed fields and scattered fields via
interaction coefficients. Generally, Deff is the density of dipole
moments in the unit cell, implying Deff = d0/V ; Meff is the
density of monopole moments, or Meff = m0/V ; and V is the
volume of the unit cell.

Combining Eqs. (14) and (24) and eliminating the imposed
fields, the effective fields in terms of the polarizations are given
by

ueff = �̃d · Deff

ρ0
− (

�̃
o
c + i�̃

e
c

) 1

Z0

Meff

β0
,

peff = (
�̃

o
c − i�̃

e
c

) · Z0
Deff

ρ0
− �̃m

Meff

β0
,

(26)

where

�̃d = V α̃d − V Cd + K d,

�̃m = V α̃m − V Cm + Km,

�̃
o
c = −V Cc + K c,

�̃
e
c = V α̃c.

(27)

The tensor �̃d only consists of terms relating dipole fields,
and the scalar �̃m only consists of terms relating monopole
fields. All of the components of �̃d and �̃m are even with
respect to propagation direction. Noting the signs in front of
the two vectors containing coupling terms �̃

o
c and �̃

e
c, in both

Eq. (26), one might naturally separate the terms comprising
these vectors. However, from the detailed analysis of the
preceding sections, the components of �̃

o
c are both mesoscale

effects and odd with respect to a reversal of propagation,
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whereas �̃
e
c is due asymmetry at the microscale and even with

respect to propagation, as presented in Eq. (27).
To determine effective parameters, Eq. (26) must be in-

verted, expressing effective polarizations in terms of effective
fields as

Deff

ρ0
= �d · ueff − (

�o
c + i�e

c

) 1

Z0
peff,

Meff

β0
= (

�o
c − i�e

c

) · Z0ueff − �mpeff,

(28)

where

�d = �̃
−1
d

[
I + (

�̃
o
c + i�̃

e
c

) ⊗ (
�o

c − i�e
c

)]
,

�m = �̃−1
m /��̃,

�o
c = �̃

o
c · (�̃m�̃d)−1/��̃,

�e
c = �̃

e
c · (�̃m�̃d)−1/��̃,

(29)

and ��̃ = 1 − (�̃
o
c − i�̃

e
c) · (�̃m�̃d)−1 · (�̃

o
c + i�̃

e
c).

Equations (16) and (28) may be thought of as macro-
micro pairs where the macroscopic expression (28) contains
information about the microscale and mesoscale physics.
Substituting the polarizations provided by Eq. (28) into the
constitutive relations (13) yields

μeff = ρeff · ueff − (
χo

eff + iχ e
eff

)
peff,

εeff = (
χo

eff − iχ e
eff

) · ueff − βeffpeff,
(30)

where
ρ

eff

ρ0
= I + �d,

βeff

β0
= 1 + �m,

c0χ
o
eff = �o

c, c0χ
e
eff = �e

c.

(31)

Equation (30) demonstrates the same coupled form as the
bianisotropic relations in electromagnetism [Eq. (1)] and
the Willis relations in elastodynamics [Eq. (3)]. The effective
density tensor ρ

eff
relates the effective velocity to the effective

momentum; the effective compressibility scalar βeff relates
the effective pressure to the effective volume strain; and the
odd and even effective coupling vectors χo

eff and χ e
eff relate the

effective pressure to the effective momentum and the effective
velocity to the effective volume strain.

Due to the inversion required to derive Eq. (28), all the
effective parameters are, to some order, a function of every
microscale response and mesoscale interaction. Although to
first order, ��̃ ≈ 1, which leads to �d ≈ �̃

−1
d , �m ≈ �̃−1

m ,
�o

c ≈ �̃
o
c · (�̃m�̃d)−1, and �e

c ≈ �̃
e
c · (�̃m�̃d)−1. Therefore,

in this limit, the effective density is only related to dipole
effects; effective compressibility only related to monopole
effects; odd coupling is related to mesoscale effects and
monopole and dipole effects; and even coupling is related
to microscale effects and monopole and dipole effects. As
discussed in Sec. III B, a symmetric inhomogeneity results in
α̃c = 0 and, therefore, from Eqs. (27), (29), and (31), χ e

eff = 0.
However, there will still be odd coupling, χo

eff �= 0, due to
unit-cell interaction and finite phase speed across the unit cell,
which in general may not be neglected. If it is neglected, the
calculated effective parameters may lose physical meaning
[5,13], which is demonstrated in the following section.

FIG. 4. Schematic of source-free 1D periodic medium with plane-
wave propagation along the x axis, period L, background parameters
β0 and ρ0, total inhomogeneity size l, and inhomogeneity properties
ρj (ω) and βj (ω).

The homogenization procedure presented in this section
was quite general, with only a few simplifying assumptions.
The polarizabilities of a few canonical geometries are available
analytically, and for more complex inhomogeneities, polariz-
abilities may be calculated from full-wave simulations. Also,
the interaction coefficients are available in closed form for only
a few periodic lattice geometries. In Sec. IV, exact solutions
for polarizabilities and interaction coefficients are obtained for
1D, and examples are considered that demonstrate the utility
of the approach and the need to include effective material
properties with coupled constitutive relationships.

IV. SOURCE-FREE 1D INSIGHTS

A primary drawback of multiple scattering models is
the difficulty in evaluating the polarizabilities introduced in
Eq. (16) and the interaction coefficients introduced in Eq. (23).
However, for 1D periodic media, these features have exact,
closed-form expressions that reveal the odd and even nature
of coupling. Additionally, 1D acoustics experiments may be
easily developed, simulated, and solved analytically using
scalar transmission line techniques, such as transmission and
scattering matrices [61]. An example, source-free, 1D periodic
medium with period L is depicted in Fig. 4, where longitudinal
plane-wave propagation is assumed along the x axis, which is
indicated by the unit vector x̂. The background media have
properties ρ0 and β0 and representative cross-sectional area
A, and the inhomogeneities are composed of N layers with
the j th layer characterized by ρj (ω) and βj (ω), length lj ,
and cross section Aj , where

∑N
j=1 lj = l. The cross-sectional

area A cancels out in the parameter derivation, and the cross
section of the inhomogeneity layers is allowed to differ from
the background region because changes of cross section are
commonly used in acoustic waveguide experiments.

This section proceeds as follows. Section IV A introduces
the 1D effective parameters based on the derivation of the
previous section. In the absence of sources, the macroscopic
parameters are nonunique [4–6] and, therefore, Sec. IV B
serves to introduce two alternative macroscopic descriptions
referred to as equivalent and Bloch. In Sec. IV C, parameters
are numerically calculated for three example periodic media,
and the effective, equivalent, and Bloch macroscopic descrip-
tions are presented and discussed in light of the restrictions
on macroscopic material parameters, which were introduced
in Sec. II C. The results are summarized in Sec. IV D.
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A. 1D effective material parameters

The following sections provide insight into effective ma-
terial parameters derived in Sec. III. The even and odd
natures of the two coupling parameters stemming from the
polarizabilities and interaction coefficients are verified; the
specific acoustic impedance and effective wave number are
defined in terms of effective parameters; and leading-order
terms are derived.

1. Polarizabilities and interaction coefficients

The polarizabilities for a 1D, N -layer inhomogeneity may
be exactly determined from the scattering matrix of a single
inhomogeneity in the background medium. The derivation is
outlined in Appendix B, and the polarizabilities defined in
Eq. (16) are given by

αd = S12 − eik0l − (S22 + S11)/2

ik0/A
e−ik0l ,

αm = S12 − eik0l + (S22 + S11)/2

ik0/A
e−ik0l ,

αc = x̂
(S22 − S11)/2

k0/A
e−ik0l = x̂αc,

(32)

where x̂ is the unit vector for the propagation axis. There are
two important takeaways from Eq. (32). First, because l is
finite, the presence of e−ik0l demonstrates that polarizabilities
map the exact scattered fields from a finite inhomogeneity
to its center thereby representing the inhomogeneity as an
infinitesimal point scatterer. Representing the finite inhomo-
geneity as a point introduces a violation of causality for
the polarizabilities, which can be corrected [62]; however,
this effect is negligible for small inhomogeneities compared
to the violations of causality introduced by ignoring even
and odd coupling [5]. The analysis of the causality of the
polarizabilities is beyond the scope of this work. Second, the
expression for αc explicitly shows that the vector nature of
this term is defined by the coordinate system, and that it is
even in wave vector. This confirms the statements made in
the previous section. Using Eq. (18), the 1D complementary
polarizabilities are given by

α̃d = α−1
d /

(
1 − α−1

d α−1
m α2

c

)
,

α̃m = α−1
m /

(
1 − α−1

d α−1
m α2

c

)
,

α̃c = x̂αcα
−1
d α−1

m /
(
1 − α−1

d α−1
m α2

c

) = x̂α̃c.

(33)

The interaction coefficients defined in Eq. (23) also may
be solved exactly in 1D. If inhomogeneities are located
at positions xn = x̂nL, where n is an integer (−∞,∞),
interaction coefficients (23) reduce to

Cd = Cm = k0

2A

sin (k0L)

cos (k0L) − cos (x̂ · kL)
− i

k0

2A
,

Cc = x̂
k0

2A

sin (x̂ · kL)

cos (k0L) − cos (x̂ · kL)
,

(34)

as shown in Appendix C. The dependencies on kL in Eq. (34)
clearly demonstrate that monopole and dipole interaction coef-
ficients are independent of propagation direction, whereas the
coupled interaction coefficient is indeed odd in k. Additionally,

the expressions for Cd and Cm are always complex, but Cc is
purely real for real k0 and k.

For passive inhomogeneities, Im(α̃d) � −k0/2A and
Im(α̃m) � −k0/2A, where equality occurs when the inho-
mogeneity is lossless and in this case Im(α̃c) = 0 (see
Appendix D). The factor −k0/2A in Im(α̃d) and Im(α̃m)
represents the reradiation from the inhomogeneity, and for
lossless inhomogeneities in a periodic array, this term cancels
the identical term in the interaction coefficients due to coherent
scattering in Eq. (24). In fact, the imaginary parts of the
complementary polarizabilities and interaction coefficients
cancel for any lossless periodic media in 1D, 2D, or 3D. For
nonperiodic inhomogeneous media, the imaginary parts will
not cancel and scattering losses [57] will be present in effective
parameters, even if all constituents are lossless.

2. Wave number and impedance

For periodic media in the absence of sources, the (ω,k)
solutions are the eigenvalues of Eq. (25), and for 1D, k = x̂k,
where k is the Bloch wave number of the array. Suppressing
the unit vector x̂, the constitutive relations for 1D become

μeff = ρeffueff − (
χo

eff + iχ e
eff

)
peff,

εeff = (
χo

eff − iχ e
eff

)
ueff − βeffpeff.

(35)

The relation between the effective parameters and the wave
number may be determined from the conservation equa-
tions (8) and (9), which leads to(

k/ω + χo
eff

)2 = ρeffβeff − (
χ e

eff

)2
(36)

in the absence of sources and, therefore,

k±/ω = ±
√

ρeffβeff − (
χ e

eff

)2 − χo±
eff , (37)

where ± correspond to waves traveling in ±x̂ directions.
Notice that for the representation of constitutive relations
in Eq. (35), the wave number is a function of all effective
parameters (this is not the case for other forms of the
constitutive relations, e.g., Refs. [7,14,50]), and odd coupling
is direction dependent.

The specific acoustic impedance, derived from the conser-
vation of momentum, may be expressed as

Z± = peff

ueff
= ρeff(

k/ω + χo
eff

) + iχ e
eff

= ±
√

ρeff

βeff
−

(
χ e

eff

βeff

)2

− i
χ e

eff

βeff
, (38)

which for a passive medium must satisfy Re(Z+) � 0 and
Re(Z−) � 0. Surprisingly, Eq. (38) indicates that if even
coupling exists, the impedance will be complex, even if the
medium is lossless, and that the phase angle changes with
direction, all of which is not intuitive. However, periodic media
with asymmetric unit cells are known to have complex Bloch
impedances [63], which will be discussed in more detail in
Sec. IV B, and it has previously been demonstrated that the
specific acoustic impedance must always be complex in Willis
materials with even coupling [27,50,64]. The complex nature
of the impedance make Willis materials with even coupling
ideal for impedance-matching applications, as demonstrated
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by Koo et al. [27]. Additionally, Eqs. (37) and (38) demonstrate
that one cannot determine density and compressibility from
only impedance and wave number when there exists nonzero
coupling, i.e., ρeff �= Z±k±/ω and βeff �= k±/ωZ±, which
is counter to general assumptions in reflection/transmission
acoustical parameter extraction methods [65].

3. Leading-order terms

At this point, it is informative to provide some insight into
the relationships between the effective material parameters
and the volume-averaged parameters, which are often used to
estimate the overall response of an inhomogeneous medium.
Specifically, it is of interest to understand how the coupling
terms relate to the volume-averaged density and compressibil-
ity to demonstrate that these terms may not be negligible in the
long-wavelength limit. Leading-order terms for the quasistatic
limit k0L → 0 and kL → 0 were determined for the effective
material parameters from Taylor expansions of polarizabilities
and interaction coefficients. In this limit, the j th material of a
multimaterial inhomogeneity may be described by the lumped
acoustic mass MA

j = ρj lj /Aj and acoustic compliance CA
j =

βj ljAj . For this case, leading-order terms of the effective
parameters in terms of acoustic mass and compliance are

ρeff/ρ0 → 1 − l/L +
N∑

j=1

MA
j

MA
0

= 〈ρ〉
ρ0

,

βeff/β0 → 1 − l/L +
N∑

j=1

CA
j

CA
0

= 〈β〉
β0

,

c0χ
e
eff → k0L

2

N−1∑
i=1

N∑
j=i+1

MA
i CA

j − MA
j CA

i

MA
0 CA

0

,

c0χ
o
eff → (k0L)(kL)

12

( 〈ρ〉
ρ0

− 1

)( 〈β〉
β0

− 1

)
,

(39)

where MA
0 = ρ0L/A and CA

0 = β0LA are the acoustic mass
and compliance of the unit cell in the absence of the
inhomogeneity, i.e., a volume V = LA of the background
media. As might be expected, the effective density and
compressibility are constants in the quasistatic limit given by
their volume-averaged quantities. However, the leading terms
of the coupling parameters are not constants. Even coupling is
proportional to frequency, k0L = ω

√
ρ0β0L, and odd coupling

is proportional to frequency multiplied by the macroscopic
wave number, (k0L)(kL). Because χo

eff provides a metric of the
influence of nonlocal effects on the effective response, when
the product (k0L)(kL) is small, nonlocal effects are likely to
be negligible. In Sec. IV C, the examples presented suggest
that for (k0L)(kL) < 0.1 nonlocal effects are negligible. The
leading terms in Eq. (39) verify that odd and even coupling are
indeed higher-order effects.

Additionally, the frequency dependence of even coupling
suggests that time derivative −iω has been absorbed into
χ e

eff, due to the way the constitutive relations are expressed
in Eq. (35). Nassar et al. [26] and Muhlestein et al. [14]
noticed similar results and suggested that modified constitutive
relations would be more meaningful for time-domain studies.
Additionally, the frequency and wave-number dependence of

odd coupling suggests that both time and spatial derivatives
have been absorbed into χo

eff. As suggested by Muhlestein et al.
[14], causality would suggest that parameters be constant in
the quasistatic limit. Thus, a more meaningful form of the
constitutive relations for time-domain study may be

μeff = ρ
eff

· ueff − (φ
eff

· ∇ṗeff − θ effṗeff),

εeff = (φ
eff

: ∇u̇eff + θ eff · u̇eff) − βeffpeff,
(40)

which are related to the previously defined coefficients by
χ e

eff = ωθ eff and χo
eff = ωφ

eff
· k, and θ eff and φ

eff
are both

even functions in wave number and constant in the quasistatic
limit. Often in the frequency domain, the form of the
constitutive relations is chosen out of convenience. For this
work, constitutive relations were expressed in terms of p

and u because these variables are most commonly used in
acoustics, and this form is analogous to the E − H convention
in electromagnetism [36].

B. Alternative macroscopic descriptions

In the absence of sources, the constitutive relations are
nonunique, allowing for alternative macroscopic descriptions.
The following sections provide a description that relates
effective fields but neglects coupling, referred to as equivalent
parameters, and a description related to the microscopic fields,
referred to as Bloch parameters.

1. Equivalent parameters

The constitutive relations for equivalent parameters have
the same form as a traditional homogeneous fluid (as briefly
introduced in Sec. II C), i.e.,

μeff = ρequeff, εeff = −βeqpeff, (41)

and, correspondingly,

k±/ω = ±
√

ρ±
eqβ

±
eq, (42)

Z± = ±
√

ρ±
eq/β

±
eq. (43)

As indicated, the equivalent parameters are directionally
dependent. This can be seen more clearly by considering the
relation between effective and equivalent parameters, which
by using Eqs. (35) and (41) and the conservation equations
leads to

ρ±
eq = ρeff

(
1 + χo±

eff + iχ e
eff

k±/ω

)−1

= Z±k±/ω,

β±
eq = βeff

(
1 + χo±

eff − iχ e
eff

k±/ω

)−1

= k±/ωZ±.

(44)

Equation (44) provides several insights. First, equiva-
lent parameters are determined directly from wave number
and impedance. Second, in the absence of even coupling,
equivalent density and compressibility are not directionally
dependent but still differ from the effective properties due to
finite odd coupling. However, for nonzero even coupling, both
equivalent density and compressibility will be directionally
dependent and complex even for lossless media, in which case
the imaginary part of one will be greater than zero (normally

104303-13



SIECK, ALÙ, AND HABERMAN PHYSICAL REVIEW B 96, 104303 (2017)

indicative of loss) and the imaginary part of the other will be
less than zero (normally indicative of gain) depending on the
sign of χ e

eff in Eq. (44).
These observations suggest that, while equivalent parame-

ters provide knowledge of wave propagation by their relation
to impedance and wave number, the equivalent parameters
themselves lack physical meaning by violating passivity and
possibly causality (Sec. II C).

2. Bloch parameters

Transmission line analogs have been widely used in the
development and understanding of 1D periodic acoustic meta-
materials, e.g., Refs. [64,66,67]. Because they maintain the
microscopic fields at the boundary of a defined unit cell [64],
transmission line models lend themselves well to measurement
via the reflection/transmission method popularized by Fokin
et al. [65], which was recently extended to account for
asymmetry [27,50]. However, homogenization schemes, such
as those developed in Sec. III, determine effective fields that do
not equal microscopic fields at any point in general. Therefore,
the parameters determined using transmission line techniques
and reflection/transmission measurements are not effective or
equivalent parameters, as defined in this work, but are Bloch
parameters relating the fields at the boundary of a unit cell
defined by a transmission matrix [64] or measurement sample
[50,65]. As Bloch parameters do not relate effective fields
but instead microscopic fields at a point, they cannot account
for nonlocal effects, and will not generally satisfy restrictions
based on causality [Eq. (7)] [12].

It was demonstrated in the classic work by Brillouin [63]
that the Bloch impedance changes with position, and if the
position results in an asymmetric unit cell, it will be complex.
In 1D periodic acoustic media, the microscopic field patterns
due to time-harmonic waves are Bloch waves [63]. This was
demonstrated in 1D periodic acoustic media by Bradley both
theoretically [68] and experimentally [69]. Therefore, one may
express the Bloch impedance, which is the ratio of the micro-
scopic pressure and particle velocity at a point, as [12,63,64]

Z±
B(x) = p(x)

u(x)
= ±

√
ρB(x)

βB(x)
−

(
χ e

B(x)

βB(x)

)2

− i
χ e

B(x)

βB(x)
. (45)

In periodic media, the Bloch wave number is the solution
to the transcendental equation (25), and is related to Bloch
parameters via

k±/ω = ±
√

ρB(x)βB(x) − (
χ e

B(x)

)2
. (46)

In summary, unlike effective and equivalent properties,
Bloch properties (i) only exist for periodic media and (ii) relate
the microscopic fields at a point rather than effective fields.
While it is convenient for measurements to relate parameters
to boundary fields, such an approach does not necessarily lead
to physically meaningful parameters that satisfy passivity and
causality, as is demonstrated in the following section.

C. Numerical examples

This section presents three 1D periodic media examples
without embedded sources. Therefore, macroscopic param-
eters are nonunique, and wave numbers are the eigenvalues

FIG. 5. Normalized macroscopic wave number (top), mass den-
sity (middle), and compressibility (bottom) plotted versus normalized
frequency for a 1D periodic medium with lead inhomogeneities in
an aluminum background, and l/L = 0.1. Two different unit cells
were used to determine Bloch parameters: Bloch (1) corresponds
to the inhomogeneity being centered in the unit cell, and Bloch
(2) corresponds to the inhomogeneity at the unit-cell boundary, as
depicted in the inset of the top panel.

of the lattice, which may be determined from Eq. (25) or
using transmission matrices [61]. Under these conditions,
the effective material parameters (Sec. IV A) may be directly
compared to the alternative descriptions (Sec. IV B) referred
to as equivalent material parameters, which relate effective
fields but neglect coupling, and Bloch material parameters,
which relate microscopic fields at a particular point that
define a specific unit cell and cannot account for nonlocal
effects. The solutions are presented for longitudinal plane-
wave propagation normal to the layers, in the x̂ direction, as
indicated in Fig. 4. For this case, transverse-to-longitudinal
field coupling elastic wave motion may be neglected, and
the longitudinal elastic wave behavior can be described by
a plane-wave compliance βPW = (ρc2

L)−1, which is consistent
with the acoustic analysis of this work. Therefore, the 1D
homogenization derived in Sec. IV A can be used to compare
with the results of Refs. [7,25].

Figures 5–8, 10, and 11 present normalized macroscopic
material parameters plotted versus normalized frequency,
k0L = ω

√
ρ0β0L, and obtained using the effective (solid

lines), equivalent (dashed-dotted lines), and Bloch (dashed
lines) models for forward propagation in the +x̂ direction.
In all of these figures, the background shading highlights
frequency ranges of interest: (i) white for |Re(kL)| < 1
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FIG. 6. Normalized macroscopic coupling, even (top) and odd
(bottom), plotted versus normalized frequency for a 1D periodic
medium with lead inhomogeneities in an aluminum background, and
l/L = 0.1.

corresponding to wave numbers for which dynamic ho-
mogenization is generally accepted [12]; (ii) light gray for
1 � Re(kL) < π corresponding to wave numbers that some
suggest [26,70] are reasonable to apply dynamic homoge-
nization; and (iii) dark gray corresponding to stop bands.
Unless otherwise noted, material properties were obtained
from Appendix A of Ref. [55], and material compressibility
was calculated using β = 1/ρc2. The results are discussed in
light of the physical restrictions introduced in Sec. II C.

1. Lead inhomogeneities in aluminum

The first example was a two-phase composite consisting of
lead inhomogeneities (ρPb = 11 300 kg/m3, cPb = 2050 m/s)
embedded in aluminum (ρAl = 2700 kg/m3, cAl = 6300 m/s)
with filling fraction l/L = 0.1. Additionally, both lead and
aluminum are assumed lossless; therefore, in propagating
bands, all macroscopic material parameters should be purely
real.

Figure 5 presents the normalized wave number (top),
density (middle), and compressibility (bottom). Two unit-
cell configurations were used to calculate Bloch parameters,
which were depicted in the inset in the top panel of Fig. 5.
Configuration (1) corresponded to the inhomogeneity being
centered in the unit cell, and configuration (2) corresponded
to an asymmetric cell configuration with the inhomogeneity
on the right. As suggested in Sec. IV A, the dependence of
odd coupling on the product (k0L)(kL) suggests that when
this product is small, nonlocal effects may be neglected. For
the present example, the macroscopic density and compress-
ibility for the four models converged to volume-averaged
quantities for k0L < 0.3, which approximately corresponds
to (k0L)(kL) < 0.1, but the models diverge for k0L > 0.3
due to the influence of nonlocal effects. Additionally, negative
slopes were observed in the density computed using the Bloch
(2) model and in the compressibility computed using the
equivalent and Bloch (1) models, even in the quasistatic limit.

FIG. 7. Normalized macroscopic wave number (top), mass den-
sity (middle), and compressibility (bottom) plotted versus normalized
frequency for a 1D periodic medium with inhomogeneities consisting
of equal parts steel and rubber in an aqueous background, and
l/L = 0.2. The Bloch parameters correspond to the inhomogeneity
being centered in the unit cell, as depicted in the inset of the top
panel. Additionally, the inset between the middle and bottom panels
presents the normalized imaginary parts of the equivalent density and
compressibility. The presence of even coupling results in complex ρeq

and βeq despite the composite being lossless.

Therefore, only the effective model satisfied causality for this
medium, as defined in Eq. (7).

Normalized even and odd coupling are presented in the
top and bottom panels of Fig. 6, respectively. Because the
presence of asymmetry in a two-phase medium is a feature
of a particularly defined unit cell, χ e = 0 for the effective
and Bloch (1) models but is finite for the Bloch (2) model.
Only the effective model can account for nonlocal effects, and
even though χo

eff is small, it is nonzero and grows rapidly for
k0L > 2.

2. Steel and rubber inhomogeneities in water

The second example was a three-phase composite con-
sisting of steel (ρst = 7700 kg/m3, cst = 6100 m/s) and
rubber (ρru = 1100 kg/m3, cru = 2400 m/s) inhomogeneities
embedded in water (ρw = 998 kg/m3, cw = 1481 m/s), where
all materials were assumed to be lossless. The inhomogeneities
consisted of equal parts steel and rubber, i.e., lst = lru, and the
total size of the inhomogeneities, l = lst + lru, was varied from
l/L = 0.01 to 0.5. A 1D three-phase composite always has an
asymmetric unit cell regardless of where the unit cell is drawn
and, therefore, even coupling should be observed.
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FIG. 8. Normalized macroscopic even coupling (top) and odd
coupling (bottom) plotted versus normalized frequency for a 1D
periodic medium with inhomogeneities consisting of equal parts steel
and rubber in an aqueous background, and l/L = 0.2.

The normalized wave number (top), density (middle), and
compressibility (bottom) for l/L = 0.2 are presented in Fig. 7,
and the Bloch parameters were calculated with inhomogeneity
centered in the unit cell as depicted in the inset in the top panel.
Similar to the first example, the product (k0L)(kL) < 0.1
approximately corresponded to k0L < 0.3 and, again, the
models converged on the same values for the macroscopic
density and compressibility and diverged for k0L > 0.3 due
to odd coupling from nonlocal effects. The only apparent
causality violation, denoted by a negative slope, occurred in
the compressibility calculated using the Bloch model.

Because the equivalent model does not account for even
coupling, it appears through complex parameters, which is
counter to the fact that the composite is lossless. The inset be-
tween the middle and bottom panels of Fig. 7 demonstrates that
the imaginary parts of equivalent density and compressibility
are nonzero. Additionally, Im(βeq) < 0 which violates passiv-
ity, as shown in Eq. (6), but the combination of equivalent den-
sity and compressibility result in passive k and Z, as discussed
in Sec. II C. Again, only the effective density and compress-
ibility satisfy causality and passivity for this composite.

Figure 8 presents normalized even (top) and odd (bottom)
coupling plotted versus normalized frequency. The Bloch
even coupling determined from the unit cell centered on the
inhomogeneity matches the effective even coupling in the
quasistatic limit but diverges for k0L > 0.3 similar to density
and compressibility. Again, χo

eff is small, but nonzero, and
grows rapidly for k0L > 1.5.

Figure 9 presents normalized effective even (top) and odd
(bottom) coupling plotted versus volume fraction l/L for
several wave numbers. Both coupling parameters increase
in magnitude as (l/L)2, and normalized forms are relatively
constant for kL � 1, suggesting that the limits for χ e

eff and χo
eff

in Eq. (39) may be valid for kL � 1. To be consistent in this
range, one must also consider second-order effects (k0L)2 and

FIG. 9. Normalized effective even coupling (top) and odd cou-
pling (bottom) plotted versus inhomogeneity size for a 1D periodic
medium with inhomogeneities consisting of equal parts steel and rub-
ber in an aqueous background. Different colored lines correspond to
coupling calculated for different wave numbers: kL = 0.25,0.5,1,2.

(kL)2 in ρeff and βeff, which are not included in the expressions
in Eq. (39).

3. Double-negative inhomogeneities in air

Lastly, a four-phase composite exhibiting a double-negative
frequency band was considered and modeled such that it could
be implemented with a rigid-walled waveguide with Helmholtz
resonators in shunt and flexible plates in series, similar to the
study by Seo et al. [67]. The inhomogeneities consisted of
three layers: (i) a region with dynamic compressibility, which
modeled a Helmholtz resonator in shunt, (ii) a segment of
air-filled waveguide, and (iii) a region with dynamic density,
which modeled a flexible plate in series with the waveguide.

A Helmholtz resonator in shunt can be modeled as a region
with dynamic compressibility [71] with properties defined by
ρH = ρair, lH/L = 0.075, and βH = β0vH/[1 − iωH/(ωQH) −
ω2/ω2

H], where vH = 10, ωHL/c0 = 0.25, and QH = 20.
The waveguide segment was modeled as air filled (ρair =
1.21 kg/m3, cair = 343 m/s) and lair/L = 0.173. The dynamic
density region modeled a Kapton R© plate [66] with 1/βpl =
E/[3(1 − ν)] = 1.3929 GPa, lpl/L = 0.002, and ρpl = ρk[1 +
iωpl/(ωQpl) − ω2

pl/ω
2], where ρk = 1420 kg/m3, ωplL/c0 =

0.5, and Qpl = 80. The total relative size of the inhomogeneity
was l/L = 0.25, where l = lH + lair + lpl.

The normalized wave number (top), density (middle), and
compressibility (bottom) are presented in Fig. 10, and Bloch
parameters were calculated with the inhomogeneity centered
in the unit cell as depicted in the inset in the top panel.
Two passbands existed for this example: a double-negative
passband for 0.258 < k0L < 0.334, and a double-positive
passband for k0L > 0.419. The inequality (k0L)|Re(kL)| <

0.1 was satisfied in passband portions of the frequency range
0.3 < k0L < 0.45. Again, it is near these bounds that the Bloch
model diverges from the effective model for both density and
compressibility. Additionally, as observed in the middle panel
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FIG. 10. Normalized macroscopic wave number (top), mass den-
sity (middle), and compressibility (bottom) plotted versus normalized
frequency for a 1D periodic medium with inhomogeneities consisting
of a Helmholtz resonator in shunt, a section of waveguide, and a
flexible plate in series in an air background, and l/L = 0.25. The
Bloch parameters correspond to the inhomogeneity being centered in
the unit cell, as depicted in the inset of the top panel.

of Fig. 10, the equivalent density differed from the Bloch and
effective densities in the double-negative band even for small
wave numbers. This was not the case in the double-positive
band k0L > 0.419, and might suggest that in highly dynamic
bands, which inevitably include double-negative bands, even
and odd coupling are not negligible.

That even and odd coupling are not negligible is confirmed
in Fig. 11. In the double-negative band, both coupling terms
significantly exceed values observed in the previous two
examples. Again, the Bloch even coupling determined from the
unit cell centered on the inhomogeneity matches the effective
even coupling for k0L|Re(kL)| < 0.1.

D. Summary of 1D examples

Three macroscopic descriptions of 1D periodic media
were considered: (i) effective parameters which were derived
in Sec. III, relate macroscopic effective fields, and account
for Willis coupling due to microscopic asymmetry and
mesoscale effects, (ii) equivalent parameters which relate
macroscopic effective fields but neglect coupling and exist due
to nonuniqueness in the absence of sources, and (iii) Bloch
parameters which relate microscopic Bloch fields at a point
in periodic media. The comparison of effective parameters
to equivalent and Bloch parameters was important because

FIG. 11. Normalized macroscopic even coupling (top) and odd
coupling (bottom) plotted versus normalized frequency for a 1D
periodic medium with inhomogeneities consisting of a Helmholtz
resonator in shunt, a section of waveguide, and a flexible plate plate
in series in an air background, and l/L = 0.25.

it is often assumed that metamaterials may be described
by the same parameters as homogeneous media leading to
equivalent parameters, and parameters are often determined by
reflection/transmission from a single unit cell or transmission
matrices, which result in Bloch parameters [12].

For symmetric examples near the quasistatic limit, all three
macroscopic descriptions provided similar results, as shown in
Fig. 5, and for asymmetric examples, Bloch parameters con-
verged to effective parameters when nonlocal effects are neg-
ligible, i.e., (k0L)|Re(kL)| < 0.1, as shown in Figs. 7, 8, 10,
and 11. Within these limits, reflection/transmission measure-
ments of a single unit cell will lead to meaningful parameters
of an infinite periodic medium consisting of the unit cell
measured, if the inhomogeneity is centered in the unit cell.
Indeed, recent experiments verified that even coupling can be
measured for an isolated element with negligible odd coupling,
and under these experimental constraints, even coupling is
given by its leading-order expression in Eq. (39) [50].

The dynamic features observed for effective, equivalent,
and Bloch parameters are consistent with other numerical
results in the published literature. When coupling parameters
are included in the homogenization models of Willis [24]
and Nemat-Nasser and Srivastava [25], the macroscopic
compliance, inverse of stiffness C−1 in Eq. (3), and density
both increase with increasing frequency, but when coupling
parameters are absorbed into density and compliance
(similar to the equivalent parameters), one of these slopes
becomes negative, indicating a violation of causality. The
homogenization model of Yang et al. [8] relies on reproducing
surface fields and does not account for bianisotropy (similar
to the Bloch parameters), and the results include parameters
whose imaginary parts and slopes change sign, indicating
causality and passivity violations.

The results of Sec. IV C demonstrate that even though
equivalent and Bloch parameters are useful to describe wave
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propagation in metamaterials, they do not always satisfy
fundamental restrictions due to causality and passivity on
macroscopic parameters and, therefore, these parameters
lack physical meaning. This suggests that the equivalent
and Bloch parameters may not be useful to describe the
metamaterial response in the presence of more complex
fields, such as in a resonator, and that the use of these
parameters could unnecessarily complicate the interpretation
of data from experiments or numerical simulations. Therefore,
while all three of the models capture wave propagation in
inhomogeneous media, one should expect that macroscopic
parameters strictly obey reciprocity, causality, and passivity
on their own, rather than in combination, to describe the
overall response of inhomogeneous media.

V. CONCLUSIONS

This work provided a brief introduction to bianisotropy
in electromagnetism and Willis coupling in elastodynamics in
order to highlight physical analogies and promote a qualitative
understanding of the origins of Willis coupling in acoustic
metamaterials. The qualitative discussions were then verified
by deriving a source-driven, self-consistent, multiple scatter-
ing homogenization procedure that highlighted the microscale
and mesoscale origins of Willis coupling. The resulting
effective parameters were then compared to two alternative
macroscopic descriptions in light of physical constraints based
on assumptions of passive and causal macroscopic wave
propagation, which only the effective parameters satisfied.
While it is meaningful to have parameters that satisfy physical
restrictions, the direct determination of nonlocal effects is
beyond the scope of current measurement techniques.
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APPENDIX A: GREEN’S FUNCTIONS

The volumetric Dirac delta may be defined for 1D, 2D, and
3D space as

δn =
⎧⎨
⎩

δ(x − xn)/A, 1D
δ(x − xn)δ(y − yn)/Lz, 2D
δ(x − xn)δ(y − yn)δ(z − zn), 3D

(A1)

where A is a representative cross-sectional area and Lz a
representative out-of-plane length such that δn has units of
inverse volume in all three cases presented. The scalar free
space Green’s function in the reciprocal background medium
g(x|xn), which evaluates the scalar field at the point x due to
a unit impulse at xn, is defined by (∇2 + k2

0)g(x|xn) = −δn.
The fields due to body force f and mass source q

distributions in a volume V are expressed in terms of the

scalar Green’s function as

u(x) = − 1

iωρ0

∫
y

f ( y) · ∇∇g(x| y)dV

−
∫

y
q( y)∇g(x| y)dV,

p(x) = − iωρ0

∫
y
q( y)g(x| y)dV −

∫
y

f ( y) · ∇g(x| y)dV.

(A2)

From these expressions, the scattered fields at a point xm

due to an inhomogeneity located at xn maybe expressed by
Eq. (19) in terms of the dipole and monopole moments of the
nth inhomogeneity by relating the dipole moment to the body
force f = iωdnδn and monopole moment to the volume source
q = −iωmnδn. The modifed Green’s functions are defined in
Eq. (20).

The scalar Green’s functions for 1D, 2D, and 3D are

g(x|xn) =
⎧⎨
⎩

ieik0|x−xn|/2k0A, 1D
iH

(1)
0 (k0R2)/4Lz, 2D

eik0R3/4πR3, 3D
(A3)

where H
(1)
0 is the zero-order Hankel function of

the first kind, R2 =
√

(x − xn)2 + (y − yn)2, and R3 =√
(x − xn)2 + (y − yn)2 + (z − zn)2. Then, for 1D, the modi-

fied Green’s functions reduce to

Gmn
d = x̂x̂

ik0

2A
eik0L|m−n| = x̂x̂Gmn

m ,

Gmn
c = ±x̂

ik0

2A
eik0L|m−n|,

(A4)

where +x̂ corresponds to m > n and −x̂ to m < n.

APPENDIX B: SCATTERING MATRIX

Consider incident and outgoing acoustic waves at the
boundaries of an inhomogeneity. The pressure amplitudes are
related via the scattering matrix as[

pout
1

pout
2

]
=

[
S11 S12

S21 S22

][
pin

1

pin
2

]
, (B1)

where the superscripts distinguish incident and outgoing and
the subscripts indicate which boundary with p1 evaluated
at x = −l/2 and p2 evaluated at x = l/2. A reciprocal
inhomogeneity exhibits S12 = S21, and if the inhomogeneity
is also symmetric, then S11 = S22. Outgoing waves may also
be expressed in terms of incident and scattered pressures:

pout
1 = pin

2 eik0l + ps(−l/2) = S11p
in
1 + S12p

in
2 ,

pout
2 = pin

1 eik0l + ps(l/2) = S21p
in
1 + S22p

in
2 .

(B2)

In the absence of the inhomogeneity, local fields at x = 0 are
given by the incident fields

ploc = pin
1 eik0l/2 + pin

2 eik0l/2,

uloc = x̂

Z0

(
pin

1 eik0l/2 − pin
2 eik0l/2). (B3)
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For 1D, evaluating Eq. (19) at x = ±l/2 leads to

i
k0

A
eik0l/2 d0

ρ0
= us(l/2) + us(−l/2),

−i
k0

A
eik0l/2 m0

β0
= ps(l/2) + ps(−l/2).

(B4)

The polarizablities may be determined using Eqs. (B2)
and (B3) in Eq. (B4) to express the monopole and dipole
moments in terms of local fields and comparing to Eq. (16).

APPENDIX C: INTERACTION COEFFICIENTS

Substituting the 1D modified Green’s functions in Eq. (A4)
into Eq. (23), the interaction coefficients become

Cm = ik0

2A

∞∑
n=1

(e−ik·x̂nL + eik·x̂nL)eik0nL,

Cd = x̂x̂
ik0

2A

∞∑
n=1

(e−ik·x̂nL + eik·x̂nL)eik0nL,

Cc = x̂
ik0

2L

∞∑
n=1

(e−ik·x̂nL − eik·x̂nL)eik0nL.

(C1)

Equation (34) may be obtained using the geometric series rule
∞∑

n=1

xn = x

1 − x
, (C2)

where |x| < 1. As discussed by Shore and Yaghjian [60], this
approach is valid assuming some small imaginary part of k
and k0, i.e., damping, which is present in all real systems.

APPENDIX D: SCATTERED POWER RELATIONS

The derivation here is based on the work of Strickland
et al. [72] for cylindrical scatterers. The restrictions on

the complementary polarizabilities will be derived for a
single inhomogeneity placed at the origin based on power
conservation, i.e., the scattered power cannot exceed the power
extracted from the local fields. The power extracted by the
inhomogeneity must be positive and is given by

Pe = −1

2
Re(iωd0 · u∗

loc + iωm∗
0ploc)

= ω

2
Im(d0 · u∗

loc + m∗
0ploc), (D1)

which for 1D and using Eq. (21) simplifies to

Pe = −ω

2
[d0 m0] ·

[ Im(α̃d)
ρ0

Im(α̃c)
−i/c0

Im(α̃c)
i/c0

Im(α̃m)
β0

]
·
[

d0

m0

]∗
. (D2)

The total power radiated from the inhomogeneity, determined
from the scattered fields, Eq. (19), may be expressed as

Pr = 1

2
Re(−psu∗

s |x=−l/2 + psu∗
s |x=l/2) · x̂A

= ω

2

k0

2A
[d0 m0] ·

[
1/ρ0 0

0 1/β0

]
·
[

d0

m0

]∗
.

(D3)

For a passive inhomogeneity, Pe � Pr, which leads to
Im(α̃d) � −k0/2A and Im(α̃m) � −k0/2A, where equality
only occurs for a lossless inhomogeneity, and Im(α̃c) = 0 for a
lossless inhomogeneity. Additionally, since Pe − Pr � 0, the
matrix [−(

k0
2A

+ Im(α̃d)
)
/ρ0 −ic0Im(α̃c)

ic0Im(α̃c) −(
k0
2A

+ Im(α̃m)
)
/β0

]

must be positive definite, requiring

Im(α̃c)2 �
(

k0

2A
+ Im(α̃d)

)(
k0

2A
+ Im(α̃m)

)
. (D4)
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