PHYSICAL REVIEW B 96, 104302 (2017)

Stepwise relaxation and stochastic precession in degenerate oscillators dispersively
coupled to particles
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By numerical integration, we study the relaxation dynamics of degenerate harmonic oscillator modes
dispersively coupled to particle positions. Depending on whether the effective inertial potential induced by
the oscillators keeps the particles confined or if the particle trajectories traverse the system, the local oscillator
energy dissipation rate changes drastically. The inertial trapping, release, and retrapping of particles result in a

characteristic stepwise relaxation process, with alternating regions of fast and slow dissipation. To demonstrate this
phenomenon we consider first a one-dimensional minimal prototype model which displays these characteristics.
We then treat the effect of dispersive interaction in a model corresponding to an adsorbate diffusing on a circular
membrane interacting with its three lowest vibrational modes. In the latter model, stepwise relaxation appears

only in the presence of thermal noise, which also causes a slow-in-time stochastic precession of the mixing angle

between the degenerate eigenmodes.
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I. INTRODUCTION

Physical systems displaying discrete resonances are conve-
niently modeled by a set of harmonic oscillators. Interactions
with a surrounding medium, e.g., a thermal environment, are
usually modeled through coupling of the oscillator degrees
of freedom to some set of bath coordinates. Common and
well-studied examples are resonant systems coupled to two-
level systems [1] or to a quasicontinuous bath of thermal
harmonic oscillators [2,3]. Coupling the system to a thermal
bath allows it to relax to the thermal equilibrium state while
also, in accordance with the fluctuation-dissipation theorem,
inducing thermal noise.

The coupling between a system and its environment can also
have an indirect component, proceeding via an auxiliary sys-
tem. The dissipative dynamics can then change dramatically.
This was recently demonstrated experimentally for micro- and
nanoelectromechanical systems (NEMS), where intermediate
coupling via internal resonances caused marked qualitative
changes in the ring-down dynamics [4-6]. Here, we present a
general theoretical model for harmonic oscillators indirectly
coupled to the environment through an auxiliary system in the
shape of a set of free-particle coordinates.

The model in question consists, in its most general form,
of an assembly of N harmonic oscillators g,(#), with natural
frequencies €2,,. The auxiliary system comprises K “particles”
with positions x;(¢) and momenta p; = uxy:

1. o
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Coupling to the environment is achieved through adding
thermal noise and dissipation to the particle equations of
motion. We assume the coupling between the particles and
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the oscillator modes is dispersive and of the type

1
I-Iint = _5 Z gmnqnqm¢i1(xk)¢in(xk)~ (2)

k,n,m

Here, g,,, = gum are coupling constants, and ¢, (x) are func-
tions that depend on the particle coordinate. Equations (1) and
(2) are reminiscent of the type of Hamiltonian usually studied
in the context of dissipation in open systems. It should be noted,
however, that in that context, the oscillators are considered to
represent the degrees of freedom of the thermal environment,
leading to relaxation and thermalization of the system in
coordinate space x. In contrast, we are here concerned with the
relaxation dynamics of a small number of discrete oscillator
modes g, as they interact via and with the particle coordinates.

Physically, the class of Hamiltonians given by (1) and (2)
finds application in, for instance, the context of NEMS, where
the oscillator degrees of freedom g, correspond to vibrational
eigenmodes and x; denote the positions of adsorbed particles
diffusing on the resonator. The ¢, are then associated with the
spatial mode functions. The frequency noise associated with
the fluctuating mass distribution and the resulting back-action
on the particles from the resonator motion have been shown
to change both the resonant response and the characteristics
of the dissipative dynamics [7-16]. While this type of system
is of great interest for applications such as ultrasensitive mass
sensing [17-19], it is also generic enough to find applications
in other fields [20] and is in its own right worth studying.

Although several studies of NEMS-particle systems have
been done, the effect of mode degeneracy has not yet been
considered. This open question is becoming increasingly
relevant as the state of the art develops to the point where
such modes can be resolved [21] and utilized [22].

Here, we find that even a minimal model, consisting of
two degenerate harmonic oscillator modes coupled to a single,
weakly damped particle that induces a mode coupling, exhibits
highly nontrivial relaxation dynamics. The total oscillator
energy decays in a stepwise manner, with plateaus of very
low dissipation appearing at similar total energies, regardless
of initial conditions. In these regions, the two modes perform
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coherent coupled oscillations, while the particle is trapped at
an antinode of the oscillator motion. In between the plateaus,
the total oscillator energy, as well as the energy of each mode,
decays rapidly, and the particle traverses its entire domain in
an erratic manner. We also show how a two-dimensional (2D)
equivalent model, inspired by particles adsorbed on circular
drum resonators, exhibits analogous relaxation dynamics:
stepwise dissipation associated with trapping and retrapping
of the particles. Here, however, it is necessary to add thermal
fluctuations to the particle dynamics in order for the trapping
and retrapping to occur. In that case, with only a higher
degenerate mode excited, the trapped particle causes a slow
stochastic precession of the mixing angle. We characterize the
low-frequency noise of this precession.

II. STEPWISE RELAXATION IN A MINIMAL MODEL

In this section, we restrict the general equations of motion
to, within the context, the smallest possible number of degrees
of freedom. Namely, we set N = 2 and K = 1 and consider
degenerate modes: 2 = 2, = Q. The coupling matrix is
set to gmn(x) = g, and we use the mode functions ¢;(x) =
V2cosmx, Pr(x) = /2 sin27x. The system is normalized to
unit length, |x;| < 1/2, with reflecting boundary conditions.
The particle is coupled to an environment by adding a
dissipation term —I'x and a diffusion term /2D&(t), where
&(t) is a white-noise process, to the right-hand side of the
x equation. According to the fluctuation-dissipation theorem,
D = 2kgT /ul', but the effect we seek to illustrate is purely
nonlinear and not induced by the noise. For simplicity, we thus
set T = 0.

The equations of motion for this minimal model are

Gi + [Q* — gdt]ar — gp1¢g2 =0, 3)

G2 + [Qz - g¢§]q2 — gp1¢q1 =0, 4

F4Th— Ziax[(ml + ga¢2)*] = 0. ()
i

The structure of these equations is deceptively clear; each
oscillator experiences a frequency shift that depends on the
particle’s position, and an x-dependent linear mode coupling
appears. The particle is subject to a potential U (x,t)  (g1¢1 +
q2¢2)2. This force is akin to the inertial force a mechanical
resonator exerts on an adsorbed particle. Consequently, we
will refer to it as inertial force. Despite the apparent clarity, as
we here demonstrate, the nonlinearity of Egs. (3)—(5) means
that this simple model exhibits rich and nontrivial relaxation
dynamics.

This richness partly arises due to the interference in
the potential term U(x,?), which depends not only on the
magnitude of the amplitudes g; »(¢) but also on their relative
phase. For degenerate oscillators, this phase changes slowly in
time with a rate depending on particle position. Hence, where
a single-mode system (or a nondegenerate one) may have
stable trapping points for the particles, points corresponding to
the antinode(s) of the mode function, mode degeneracy leads
to a radically different situation, with release and retrapping
dynamics.
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An analytical approach to the dynamics of the system is a
daunting task. Instead, we have performed extensive numerical
simulations by integrating the equations of motion (3)—(5)
and tracing the resulting time evolution of mode energies,
E,(t) = ¢2(t) + Q2¢2(t), n = 1,2, as well as total oscillator
energy E = E| + E;, during relaxation.

While the details of the dynamics depend on initial
conditions, certain features recur independent of the initial
system state. As a demonstration of these features, the system
ring-down for three different values of the damping rate I"
is shown in Fig. 1 (g = 0.01, u = 1). The initial condition
used is nonzero ¢ (0) and x(0), while ¢>(0) = ¢»(0) = ¢;(0) =
x(0) = 0. In Fig. 1 and the rest of this paper, the time axis is
labeled in terms of oscillation periods; the time is scaled by a
factor of 277/ Q2. The oscillator energies E, shown are thus the
slow energy envelopes of the fast oscillator motion, the latter
having (scaled) periods of order unity.

For intermediate I" [see Figs. 1(a) and 1(b)], the most
striking feature is the stepwise relaxation that results as the
system shifts between regions of very rapid decay of total
oscillator energy E and plateaus of very low dissipation.
The details of the system behavior are dramatically different
in these two cases. The rapid-decay regions correspond to
large particle motion across the entire particle domain, while
the near-conservative regions are characterized by particle
trapping and coherent, coupled oscillations in the energy of
individual oscillators. The extremes of low [Figs. 1(c) and 1(d)]
and high [Figs. 1(e) and 1(f)] damping rates can be roughly
understood as sampling only the region of high dissipation and
only the plateaus, respectively.

In the remainder of this section, we consider some salient
features of the minimal model in more detail.

A. Coherent oscillations at plateaus

In the low-dissipation plateaus, the oscillator relative energy
dynamics is reasonably well described by the rotating-wave
approximation (RWA). In the RWA, the total energy E; + E»
remains conserved, but it is nonetheless a convenient frame-
work for studying the coherent oscillations of the individual
oscillator energies.

Changing  variables  [g, = a,e’¥ +a¥e™ ¥, ¢, =
iQ(a,e’™ — a*e™ )] and discarding rapidly oscillating
terms give the RWA equations

a = —%(cpfal + p1h2a2), ©6)

a = —%(mszal + $3ar), %)

along with analogous equations for the complex conjugates
af,a; and a transformed equation for x. The envelope
amplitudes a; > describe the slow evolution of the oscillator
amplitudes g; , and hence vary on the same time scale as the
oscillator energies E| .

Numerically integrating the RWA equations of motion (6)
and (7) reproduces the coherent oscillations between E| and
E, seen at the plateaus in Fig. 1(a). The frequency of these
slow oscillations is given by

A %[#(xeq.) + 205, ®)
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FIG. 1. (a) Time evolution of the energies of individual oscillators described by Egs. (3)—(5), along with their total energy, at an intermediate
decay rate I' = 0.1. The stepwise decay of total oscillator energy E is clear, along with the coherent coupled oscillations of the low-dissipation
energy plateaus. (b) The corresponding evolution of the particle coordinate x. In regions where the particle traverses its entire domain
[—1/2,1/2], the energy E decays rapidly. At the energy plateaus, x is trapped near a minimum of the inertial potential created by the oscillators.
For low enough oscillator energy (weak inertial trapping), the particle may switch between minima, but the system dynamics is nonetheless
predictable and regular. (c) and (d) Typical system evolution at low decay rate I'. Initially, the particle is trapped, and the energy decays slowly.
After this transient, the particle escapes and moves erratically, corresponding to a rapid decay of energy, indicated by the dashed line. The
exception to the unpredictable particle motion is the region at approximately ¢ x /2w ~ 110-130. Here, the particle motion synchronizes
with the oscillators and “bounces” between the boundaries of its domain once every half period. The dissipation rate of the oscillator energy
increases correspondingly. (e) and (f) Typical system evolution at high decay rate I'. The particle adiabatically follows a minimum of the
inertial potential, alternating between the antinodes of ¢,(x). The corresponding energy relaxation is stepwise but smooth. The slope of the
first step is indicated by the dashed line.

where xeq is the value near which the particle is trapped.
Setting xeq, ~ 0.2, the period time of coherent oscillations
becomes A~! & 64 x 27/ Q. This is reasonably close to the
slow periods 74 x 2w /2, 68 x 27 /2, and 61 x 27/ seen
in the three plateaus of Fig. 1(a).

To verify this, 10° trajectories with random initial con-
ditions were simulated, each for 107 oscillator periods. The
energy decay rate dE /0t was calculated at each time step.
For each value of E the distribution of derivatives, across
all trajectories, was normalized to 1. The result is shown in
Fig. 2(b). For low energies there is a clear structure, further
illuminated by the inset, which shows the energies at which
dissipation rates below 0.05 (plateaus) occur. While the values
for E where plateaus appear are likely to change with the
system parameters (here, g = 0.01, u = 1, and I’ = 0.2), the
plateau locations in energy space do not average out upon
random sampling of the initial parameter space. In this sense,
they are robust.

The corresponding particle dynamics were examined by nu-
merically solving an energy-conserving version of Egs. (3)—(5)
for a wide range of initial energies. In practice, at each time step

B. Robust location of energy plateaus

In the plateau state, when the particle is trapped, energy
dissipates slowly until particle release. Quite surprisingly,
repeated ring-down simulations at various initial energies
reveal that, as shown in Fig. 2(a), the energy plateaus
seemingly appear at approximately the same total energy E,
regardless of the initial condition. That is, particle trapping
and release appear to predominantly occur around certain total
oscillator energies.
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FIG. 2. (a) Stepwise decay of total oscillator energy at different
initial conditions and I' = 0.2. The low-dissipation plateaus tend to
coincide, despite very different starting energies. (b) Distribution
of dissipation rates during the ring-down, as a function of energy,
compiled from 10° trajectories with random initial conditions. The
data for each value of E are normalized to 1; the color indicates the
fraction of time spent at a certain energy that is also spent at a certain
dissipation rate d E/d¢. Fractions equal to or greater than 0.1 are
black. Inset: Distribution of energies for which dE/dt < 0.05: the
low-dissipation plateaus of the ring-down. (c) Periodicity diagram of
the particle motion for a wide range of oscillator energies; each point
is the position x(¢) when x(¢) = 0. Hence, exactly two points for a
given E indicate that the particle here moves periodically; the two
points are the turning positions of the particle.

t; of the integration, the oscillator coordinates g,(t;),gn(t;)
were normalized by a factor /E(0)/E(t;). In this way, the
total oscillator energy of the system is kept constant while the
mode coupling and particle dynamics are unchanged. Thus,
it is ensured that the system will remain in a certain regime
of interest. While conservation of total oscillator energy can
be obtained also by using the RWA equations (6) and (7),
the use of the full energy-rescaled equations allows short-time
correlations to be retained.

For each value of the total energy, the periodicity of the
particle motion was examined by plotting the x coordinate
whenever x = 0 during the last 300 periods (27/S2) of a
simulation lasting 1500 periods. The result is a diagram that
delineates Ax = maxx — minx, the region traversed by the
particle. The fact that, at energies where ring-down plateaus
appear, the particle is trapped near the antinodes of ¢»(x) at
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FIG. 3. The distance Ax between minimum and maximum values
of x (compare the particle trajectories in Fig. 1) as a function of
damping rate I' and oscillator energy E. For a given damping rate,
the ring-down of the system follows a horizontal line from right
to left in the diagram, crossing trapped, stable regions (blue) and
untrapped, erratic ones (yellow). Teal regions, corresponding to Ax =
0.5, result from trajectories where the particle switches between the
two potential wells at +0.25 and thus represent trapped states.

£0.2 is further corroborated. Between these trapped regions
there seems to be no pattern to the particle motion, suggestive
of chaotic dynamics in the high-dissipation regime. Finally,
the particle trapping near x = 0, the antinode of ¢;(x), at the
right of the diagram reflects that, for these high energies, it
takes more time to excite the g, mode, and the first energy
plateau of the system is quasistationary during the time-span
simulated here.

Investigating also the effect of the decay rate I', in Fig. 3,
we map the trapped and erratic regimes of the system, as
determined by Ax, as a function of E(0) and I'. Two primarily
trapped regions can be seen (colored blue in Fig. 3) that are
reminiscent of the Arnold tongues of the Mathieu equation.
This is not unexpected; systems very similar to Egs. (3)—(5)
have been shown [15] to be related to parametric oscillators,
which are, in turn, described by the Mathieu equation. Here,
however, the distribution of trapped and untrapped states is
fractal-like, recalling chaotic dynamics.

C. Rapid dissipation of oscillator energy

We now turn to the dynamics between the plateaus where
energy is rapidly dissipated. In this regime, the decay of
the oscillator is approximately linear in time for short times
(see Fig. 1). We investigated the energy decay rate in the
high-dissipation region by extracting the initial slope [the
dashed lines in Figs. 1(c) and 1(e)] for a wide range of initial
oscillator energies E(0) and particle damping rates I'. As can
be seen in Fig. 4, the energy decay rate dE/dt is linear in
E(0)T for E(O)I" < 1. For higher values, a clear deviation can
be seen.

The only mechanism of energy loss present in the system
(3)—(5) is the term uI'x in Eq. (5), corresponding to a total
average energy loss rate proportional to the average particle
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FIG. 4. Dissipation —0E /0t of total energy in the first high-
dissipation region as a function of I" E£(0). The dissipation rate was
determined by extracting the slope of the approximately linear decay
of energy, indicated by dashed lines in Figs. 1(c) and 1(e).

kinetic energy: uI'(x%) = 2I'E,. Thus, the scaling dE /3t
—E(0)I" implies that the average kinetic energy of the particle
is proportional to the oscillator energy at the onset of erratic
motion, E}, o E, which results in an exponential decay of
energy. This behavior stems from the irregularity of the particle
motion, which effectively makes the forcing term in (5) act
as a noise source, causing “thermalization” of the particle
motion. Numerically, we find that during the erratic periods,
E,(t) = w(x?)/2 = a E(t)/2, where the proportionality factor
is of the order o ~ g/ .

This decay mechanism, leading to exponential relaxation,
should be contrasted with what we have previously reported
[15,16]; when adsorbed particles diffuse on the surface of a
nanomechanical resonator, the resonator vibrational energy
decays in a linear manner if the resonator amplitude is high
enough. In that case, linear-in-time dissipation coincided with
the particles being inertially trapped, and as they escaped
to diffuse across their entire domain, the dissipation rate
changed to nonlinear. As erratic motion from the thermal
stochastic force drove particles from the equilibrium position,
work was done to bring them back, causing dissipation of
resonator energy. The mechanism is similar here, but because
the effective noise is proportional to oscillator energy rather
than a fixed temperature, the relaxation becomes exponential
instead.

III. RELAXATION AND STOCHASTIC PRECESSION IN A
MEMBRANE MODEL

The model system treated above is inherently one-
dimensional (1D) in the coordinate space x of diffusing
particles. While 1D realizations where degenerate oscillator
modes have different mode functions exist, notably modes
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FIG. 5. (a) The shape of the fundamental mode of a circular
membrane (mode 0) along with the two degenerate first excited modes
(modes 1% and 17). (b) Evolution of mode energies in a graphene
membrane at 300 K. Here, E; = E\+ + E1- and E = Ey + E;.

tuned to a crossing or narrow anticrossing, they are quite
uncommon. However, by extending the situation to higher
dimensions, modal degeneracy can appear from symmetry
considerations.

In this section, we introduce a 2D model where the mode
functions ¢, (x) o< J,(r&, x)er™” are those of a vibrating
circular membrane. The particle position in polar coordinates
is x=(r,0), r <1, & is the normalized kth zero of J,
(the nth Bessel function of the first kind), and ¢,(z) are
the corresponding mode amplitudes. In particular, we focus
on the three lowest-lying eigenmodes of the membrane [see
Fig. 5(a)], two of which are degenerate. The three modes
have normalized frequencies 2y = &; = 1 and Q2+ = Q- =
&1 = 1.5933. This model is described by the equations of
motion

o+ — Y s =0, (9
[=0,1-,1+

1
KX =) 2,200,000V (0 = TV2DEW. (10)
Jisl

Here, &(¢) is a Gaussian white-noise source: (£(¢) - £(¢)) =
8(t — t’). Together with the damping coefficient I', the diffu-
sion constant D sets the equivalent bath temperature via the
fluctuation-dissipation theorem; Toq. = nI'D/2.

In contrast to the case discussed in Sec. II, the nodes and
antinodes of different membrane modes can coincide in space,
which allows for a simpler stability analysis. In the absence
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of noise, one finds trivially stable trapped states where the
particle is located at an antinode of either mode O or a linear
combination of modes 1. Consequently, the system tends to
rapidly relax to either of these states, and once the particle is
trapped in a fixed position, no further relaxation takes place.
Adding noise to the system, however, leads to quite different
behaviors.

The system (9) and (10) bears a strong resemblance to the
previously studied case [16] of the dynamics of a graphene
drum resonator with adsorbed particles (see the Appendix).
As long as the dynamics is restricted to low-lying modes
where the mode frequencies remain of the same order of
magnitude, the system (9) and (10) provides a qualitatively
accurate description of such a graphene resonator. The interest
in this type of physical system, adsorbates on a vibrating drum,
stems from recent years’ advances in the fabrication of carbon
nanomechanical resonators, which has enabled huge strides
in the field of nanomechanical mass sensing [23]. The effect
of fluctuations in the position of adsorbates has been detected
via phase noise [10], but there is also numerical evidence
that dissipation, as measured via ring-down [13,16], is highly
sensitive to particle diffusion.

A. Stepwise relaxation

In the presence of finite noise, the stepwise relax-
ation associated with trapping, release, and retrapping oc-
curs, as described in Sec. II. For numerical integration of
the stochastic equations we use a second-order algorithm
[24,25]. Throughout this section, scaled numerical values
corresponding to those of a typical micron-sized graphene
drum resonator are used (see, for instance, Ref. [16] or
Ref. [26]). We focus on the dynamics of the system initialized
in some superposition of the two degenerate modes 17
and 1.

The relaxation to equilibrium in the presence of noise is
depicted in Fig. 5(b); we can identify two regions where the
total vibrational energy decays slowly. At short times, the
particle is trapped near the antinode of the superposition of 17,
while the two modes trade energy. As fluctuations overcome
the trapping, energy is transferred to mode O, and the total
energy decays until the particle is retrapped, this time at the
antinode of mode 0. As was the case in Sec. II, the drop
in total energy and intermode energy transfer are associated
with the particle-mediated mode coupling, which causes the
amplitude of the initially frozen mode to grow. Once enough
energy has been transferred to the fundamental mode for it
to dominate the dynamics, in particular, the inertial potential
becomes a single-well potential, the relaxation proceeds as
described in Ref. [16]. Previously, a short plateau in the
beginning of the ring-down has been seen for nonlinear
nano- and micromechanical resonators in both simulation
[27] and experiment [4]. In these cases, the existence of
the plateaus was attributed to direct intermode interactions,
in contrast to the particle-mediated mechanism described
here.

In contrast to the model studied in Sec. II, the particle can
become trapped at any energy, and there are thus no preferred
energies where the plateaus appear.

PHYSICAL REVIEW B 96, 104302 (2017)
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FIG. 6. Noise-induced angular precession. When the first excited
mode is active and the particle is trapped at an antinode, noise induces
stochastic precession of the angular coordinate ¢+ of the particle
position. The position of the node line (and the antinode) follows
this precession. The time scale over which the sense of direction of
precession changes is typically much larger than the time scale of
vibration.

B. Stochastic precession

If the amplitude of mode 0 is much lower than the amplitude
of mode 1 and the particle is trapped at the antinode of mode
1, thermal fluctuations in its position cause a precession in
the angular direction. This precession is manifested in the
fluctuations in mode energies seen in the short-time behavior in
Fig. 5(b) fort < 1000 x 27/ 2. While this membrane model
shares with the one in Sec. II the fact that the degenerate modes
trade large amounts of energy, the stochastic fluctuations
seen here contrast with coherent oscillations that previously
appeared. Here, these fluctuations of the relative amplitude
of the two modes result in a random precession of the node
and antinode of the vibration and, consequently, of the angular
coordinate ¢ where the particle is trapped (see Fig. 6).

To characterize the stochastic precession, it is convenient
to consider the power spectral density (PSD) for angular
velocity, S = |w®(w)|?, obtained from the time series of
¥ (t). A temperature-normalized PSD is shown in Fig. 7
from simulation at 7 = 100 K. Clearly visible are the
narrow parametric resonant peaks at 2+ & 3.2, along
with sidebands stemming from mixing with the particle’s
quasiperiodic motion in the trapping potential at w = 0.442.

Measurements at high frequencies are usually hard, and
thus, the low-frequency noise centered around w = 0 is more
interesting. A close-up of the peak around zero frequency
is shown in Fig. 8(a), along with a Lorentzian fit. The
width of the peak Aw gives the characteristic time scale
for the low-frequency noise. Numerical simulations reveal
that this width scales as Aw ~ u’T" [see Fig. 8(b)] for fixed
temperature (recall Ty = uI"D/2). The result is a time scale
which is much longer than one set by the particle damping
rate I'. Indeed, using dimensionful units, for a particle of
mass m on a vibrating membrane of radius R and mass
M, this corresponds, in the low-frequency domain, to the
mixing angle performing a random walk with rms angular
velocity (92)'/2 ~ R~ (mkgT/M?*)'/2. This stochastic mode
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2€2, associated with the parametrically driven nonresonant motion.
The sidebands come from mixing with the irregular quasiperiodic
particle motion around w = 0.44Q,. The low-frequency part is
dominated by a Lorentzian peak [see Fig. 8(a)].

precession will cause noise in the measurement of the mode
amplitude if one uses a split back gate that couples to only
one of the modes. Such geometries were recently used for
controlled actuation and readout of individual modes and mode
shapes in, for instance, graphene resonators [28,29].

IV. CONCLUSIONS

Inspired by the coupling between diffusive degrees of
freedom and oscillator systems, we have studied the free
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FIG. 8. Characterization of low-frequency precession noise at
T.q. = 100 K. (a) Close-up of the central frequency noise PSD in
precession velocity in Fig. 7. The red line is a fit to a Lorentzian with
awidth Aw < T. (b) Scaling of width Aw with dissipation and added
mass. Varying I and p reveals an approximately linear relationship
between Aw and pu°T.
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evolution and relaxation dynamics in two systems belonging
to the more generic class of systems given by the Hamiltonian
(1) and (2). In particular, we studied the case when degenerate
modes are present. Using a minimal 1D prototype system,
we demonstrated a characteristic, stepwise relaxation. These
steps are associated with trapping, release, and subsequent
retrapping of the particle(s) in the interaction potential.

As a concrete example, we then demonstrated that the
same characteristic behavior can be seen in 2D membrane
resonators with adsorbed particles. However, in the latter case,
thermal noise is necessary to facilitate the release from the
trapping. Finally, we demonstrated that for the membrane
model, when the particle is trapped by a degenerate mode,
thermal noise induces a slow-in-time stochastic precession of
the mode-mixing angle.

The results in this paper highlight how the approach to
equilibrium can have a highly nontrivial behavior, departing
from the usual exponential relaxation, also in very simple
physical model systems.
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APPENDIX: MODE-COUPLING MATRIX FOR A
NANOMECHANICAL DRUM RESONATOR

In its simplest incarnation, a circular mechanical resonator
made from graphene or some other 2D material can be modeled
as a membrane suspended in the xy plane with a tension
o. Denoting the deflection in the z direction by w(x,?), the
equation of motion for such a membrane is

(o +8p)d*w — o V2w = 0. (A1)

Here, p and 8p are the intrinsic membrane sheet density and
density fluctuations due to the particles: §p =m ), 8(x — xp).
It is here assumed that the adsorbed particles are much lighter
than the membrane itself and that their motional time scale
satisfies (m/M)x; < d,w. For sufficiently light particles, this
condition can always be fulfilled. The corresponding equation
for the particle motion reads

mxy +mIUx, +mw(x) Vw(xg) = fext- (A2)

Expanding the membrane motion
w(x,1) =3, ga(1)$a(x) yields

into eigenmodes

Gn + Qo +€ ) Gmbm (0P (x) =0, (A3)
m.,k
B+ The 4 ) Gndm@m )V a(i0) = fou/m.  (A4)

m,n

While formally correct, the system of equations is cumbersome
to treat due to the time-varying quantity 8pg,. However, we
are typically concerned with small perturbations to harmonic
motion, in which case we can, to lowest order in € = m/M,
approximate ¢, ~ —Q2g,. This approximation, together with
achange of scale g, — ¢,/ €2,, allows the equations of motion
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to be written as

Gn + Qon — Y, Zmnmbm (X )Pu(xi) = 0, (AS)

m,k

. 1 mn
e+ Tt = = ) 2,000 GOV, = fo/m. (AS)

Here, g, = €2,2,,. These equations have the same form
as those following from the Hamiltonian (1) and (2), and for
the fully degenerate case w, = w, Egs. (A5) and (A6) are
indeed the Hamiltonian equations of motion. For the general

PHYSICAL REVIEW B 96, 104302 (2017)

case, however, the inertial force acting on the particles in
Eq. (A6) does not follow from the simple Hamiltonian. This
is problematic, as energy conservation is no longer guaranteed
in the absence of damping and noise.

As we are here interested in a qualitative picture of the
dynamics, we limit the membrane study to the three lowest
modes, out of which two are degenerate. In this case, the ratio
of the two frequencies is still of order unity (2¢/ Q;—L ~ 0.63),
and replacing g,/ 22 — gu, thus somewhat underestimates
the inertial force associated with acceleration from the funda-
mental mode.
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