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Frequency conversion induced by time-space modulated media
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Time-space modulated media are realized by periodically modulating parameters of the media in both time
and space. In this paper, we study frequency conversion induced by time-space modulated media. Two types of
frequency conversion are theoretically and numerically demonstrated; their underlying mechanisms are explained
by considering the unusual properties of Bloch modes. We find that the first type of conversion is induced by energy
transmission between different orders of Bloch modes, which can be observed when waves inside time-space
modulated media are reflected by boundaries. The second type is caused by the Bragg scattering effect occurring
inside time-space modulated media; it can be observed when external waves are reflected by time-space modulated
media. The frequency can be up or down converted, and the difference caused by the conversion depends on the
modulation frequency, which is tunable. Therefore, these frequency conversion phenomena could be exploited
to manipulate waves’ frequencies for particular purposes.
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I. INTRODUCTION

Time-space modulated media are realized by periodically
changing parameters of the media both in time and space.
The modulation acts like a traveling wave in the media and
interacts with medium-supported waves, leading to extraordi-
nary phenomena. Therefore, time-space modulated media have
been exploited in many applications. Early examples can be
dated back to at least the 1950s. The traveling-wave parametric
amplifier was obtained through interactions between two
separated circuits and distributed inductances, values of which
vary sinusoidally in time and space [1,2]. This kind of
application later triggered studies on the electromagnetic wave
propagation in time-space modulated media [3–6].

Because of the time-varying feature, time-space modulated
media break the reciprocity theorem constraining the physical
behavior of media-supported waves [7,8]. Thus, in recent
years, time-space modulated media were exploited to realize
nonreciprocal wave propagation, which is highly desirable
in applications such as acoustic imaging, vibrational energy
manipulation, etc. The nonreciprocity can be obtained by
interband mode conversion, which is stimulated by moving
modulation [9,10]. When the moving modulation is applied
in a rotating fashion, the circulator allowing transmission
between ports in a unidirectional fashion is realized [8].
Mostly motivated by the possibility of online control of local
dynamical properties of mechanical structures [11–13], the
elastic wave propagation in time-space modulated structures
also has attracted attention [14–16]. It was found that stop
bands of the two fundamental Bloch modes in time-space
modulated structures can occupy different frequency ranges.
Strong nonreciprocal elastic wave propagation was observed
within these stop bands.

In this paper, we demonstrate and explain two types
of frequency conversion induced by time-space modulated
media. The first type can be observed when waves inside the
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modulated media are reflected by insulating boundaries of the
media; the second can be observed when external waves are
reflected by interfaces between homogeneous and modulated
media. Note that the second type of frequency conversion
was previously roughly discussed by Simon [3] in terms
of electromagnetic waves. However, a perturbation method
retaining only the fundamental and first-order harmonics was
used in his work, which essentially restricts the analysis to
very weak modulation and the first stop bands. Our research
does not have such restrictions.

To study the frequency conversion, we consider the lon-
gitudinal elastic wave in slender beams. We remark here
that the governing equation of longitudinal wave in slender
beams is a typical equation of a one-dimensional waveguide;
therefore, our studies can be easily extended to other types
of waves, like electromagnetic waves, acoustic waves, etc.
This paper is organized as follows. Section II presents the
theories we use. In Sec. II A, we introduce the theory of Bloch
modes in time-space modulated beams. Using these Bloch
modes, first, the theory of reflection at the ends of time-space
modulated beams is developed in Sec. II B, and then the
theory of reflection and transmission at interfaces between
homogeneous and time-space modulated beams is developed
in Sec. II C. The frequency conversion phenomenon is studied
in Sec. III using these theories. Section III A is dedicated
to demonstrating and explaining the frequency conversion
at the ends of time-space modulated beams. Section III B
demonstrates and explains the frequency conversion at in-
terfaces between homogeneous and time-space modulated
beams. In Sec. IV, we use the finite-element method to verify
the theoretically studied frequency conversion phenomenon.
Finally, important conclusions of this paper are summarized
in Sec. V.

II. THEORY

A. Bloch modes in time-space modulated beams

The beam lying along the x axis in Fig. 1(a) is studied. The
density of the beam ρ0 is constant and homogeneous, while the
Young’s modulus is modulated in time and space according to
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FIG. 1. (a) A slender modulated beam lying along the x axis.
(b) The wavelike time-space modulation of the Young’s modulus
defined by E(x,t) = E0 + Em cos(ωmt − kmx). The time period is
Tm = 2π/ωm, the wavelength (space period) is λm = 2π/km, and the
wave speed is vm = ωm/km.

a cosine wave function:

E(x,t) = E0 + Em cos(ωmt − kmx), (1)

where E0 is the Young’s modulus when there is no modu-
lation, Em is the modulation amplitude, and ωm and km are,
respectively, the angular frequency and wave number of the
modulation wave, whose wavelength is λm = 2π/km. The
modulation wave propagates along the beam with the speed
vm = ωm/km, as illustrated in Fig. 1(b). In what follows, the
modulation expressed in Eq. (1) is described by two dimen-
sionless parameters, namely, the dimensionless modulation
amplitude αm = Em/E0 and dimensionless modulation speed
βm = vm/c0, where c0 = √

Eo/ρ0 is the phase velocity of the
longitudinal wave in a homogeneous beam. The modulation
wave could propagate in both directions; βm > 0 indicates the
wave propagates in the positive direction, and βm < 0 means
the opposite.

The longitudinal motion u(x,t) in the studied modulated
slender beam is governed by

∂

∂x

[
E(x,t)

∂u(x,t)

∂x

]
− ρ0

∂2u(x,t)

∂t2
= 0. (2)

Longitudinal Bloch modes in the modulated beam can be
obtained by solving Eq. (2) using the plane-wave expansion
(PWE) method as in [15]. The PWE method leads to a
quadratic eigenvalue problem (QEP): Q(ω,k)Û = 0 with a set
of 2N + 1 equations, where N is the truncation order of the
harmonics composing a Bloch mode [see Eq. (3)]. The QEP is
solved in terms of k by fixing ω, which results in a vector k with
4N + 2 eigenvalues and a (2N + 1) × (4N + 2) matrix U .
Each eigenvalue in k together with the corresponding column
in U represents a Bloch mode. Therefore, there are 4N + 2
longitudinal Bloch modes solved from the QEP.

To describe the Bloch modes in time-space modulated
beams well, they are classified into positive-going and
negative-going groups according to their group velocities,
which are calculated by cg = ∂ω/∂k. Bloch modes in each
group are organized according to their wave number in an
ascending fashion. The nth Bloch modes in the positive-going
and negative-going groups are, respectively, represented by u+

n

and u−
n , with n = −N, . . . ,0, . . . , + N . These modes can be
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FIG. 2. Reflection at the free end of a semi-infinite time-space
modulated beam.

expressed as a group of harmonics:

u+
n (x,t,k+

n ,ω) =
+N∑

q=−N

U+
(n,q)e

i[(ω+qωm)t−(k+
n +qkm)x],

u−
n (x,t,k−

n ,ω) =
+N∑

q=−N

U−
(n,q)e

i[(ω+qωm)t−(k−
n +qkm)x], (3)

where k±
n are eigenvalues obtained from the QEP

and {U+
(n,−N), . . . ,U

+
(n,0), . . . ,U

+
(n,+N)}T and {U−

(n,−N), . . . ,

U−
(n,0), . . . ,U

−
(n,+N)}T are the corresponding eigenvectors.

B. Reflection at the ends of time-space modulated beams

We consider the semi-infinite time-space modulated beam
occupying the region −∞ < x � 0, as shown in Fig. 2. The
beam end at x = 0 is free. Note that one can also apply other
kinds of boundary conditions; corresponding results can be
obtained using the same process introduced herein.

Assume that waves ui(x,t) composed of only the u+
0 (ω)

mode are incident on the end:

ui(x,t) = u+
0 =

+N∑
q=−N

U+
(0,q)e

i[(ω+qωm)t−(k+
0 +qkm)x]. (4)

The reflected waves ur (x,t) are represented as the super-
position of the negative-going Bloch modes supported by the
modulated beam:

ur (x,t) =
+N∑

n=−N

Bnu
−
n

=
+N∑

n=−N

+N∑
q=−N

BnU
−
(n,q)e

i[(ω+qωm)t−(k−
n +qkm)x]. (5)

Bn are contribution coefficients of corresponding Bloch
modes.

These waves are constrained by the conservation of mo-
mentum at the end:

E(0,t)
∂[ui(x,t) + ur (x,t)]

∂x
|x=0 = 0. (6)

Substituting the expressions for waves [Eqs. (4) and (5)] into
Eq. (6) results in

+N∑
q=−N

{
(k+

0 + qkm)U+
(0,q) +

+N∑
n=−N

[Bn(k−
n + qkm)U−

(n,q)]

}

× ei(ω+qωm)t = 0. (7)
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FIG. 3. Reflection and transmission at the interface between
homogeneous and time-space modulated beams.

By exploiting the orthogonality of harmonic functions
ei(ω+qωm)t , a set of linear equations is obtained from Eq. (7).
Solving these equations, we can obtain the coefficients Bn:

B = −M−1
2 M1, (8)

where B = {B−N, . . . ,B0, . . . ,BN }T , M1(q + N + 1) =
(k+

0 + qkm)U+
(0,q) with q = −N, . . . ,0, . . . ,N , and M2(q +

N + 1,n + N + 1) = (k−
n + qkm)U−

(n,q) with n,q = −N, . . . ,

0, . . . ,N .

C. Reflection and transmission at interfaces between
homogeneous and time-space modulated beams

Consider that a semi-infinite homogeneous beam
(occupying −∞ < x < 0) is connected to a semi-infinite
modulated beam (occupying 0 � x < +∞) at x = 0, as
shown in Fig. 3. Young’s moduli of these two parts are E0

and E(x,t) [Eq. (1)], respectively.
Assume that a single harmonic is incident on the modulated

beam from the left side:
ui(x,t) = e

iω(t− x
c0

)
. (9)

The induced waves ut (x,t) in the modulated beam are repre-
sented as the superposition of the positive-going Bloch modes:

ut (x,t) =
+M∑

n=−M

Tnu
+
n

=
+M∑

n=−M

+M∑
q=−M

TnU
+
(n,q)e

i[(ω+qωm)t−(k+
n +qkm)x], (10)

where Tn are contribution coefficients of corresponding Bloch
modes and M is the truncation order of Bloch modes in
ut (x,t); the constraint between M and the truncation order N

of the QEP will be discussed later.
It can be seen from Eq. (10) that the induced waves

inside the modulated beam have harmonic components with
frequencies ω + qωm, q = −M, . . . ,0, . . . ,M . Therefore, the
reflected waves ur must be a superposition of harmonics of all
possible frequencies ω + qωm:

ur (x,t) =
+M∑

q=−M

Rqe
i(ω+qωm)(t+ x

c0
)
. (11)

Rq are amplitudes of the corresponding harmonics.
These waves are constrained by the continuity of displace-

ment and conservation of momentum at the interface:

ui(0,t) + ur (0,t) = ut (0,t),

E0
∂[ui(x,t) + ur (x,t)]

∂x
|x=0 = E(0,t)

∂ut (x,t)

∂x
|x=0. (12)

Substituting the expressions for waves [Eqs. (9) to (11)] and
the two-dimensional Fourier expansion of Young’s modulus
for the modulated beam [Eq. (1)] into the above continuity
conditions,

eiωt +
+M∑

q=−M

{
Rq −

+M∑
n=−M

TnU
+
(n,q)

}
ei(ω+qωm)t = 0,

−E0
ω

c0
eiωt +

+M∑
q=−M

⎧⎨
⎩E0

ω + qωm

c0
Rq

+
+M∑

n=−M

+1∑
p=−1

Êp[Tn(k+
n + (q − p)km)U+

(n,q−p)]

⎫⎬
⎭

× ei(ω+qωm)t = 0, (13)

where Êp (p = −1,0,1) are the Fourier coefficients in the
Fourier expansion of the modulated Young’s modulus in
Eq. (1). U+

(n,q−p) in the second equation in Eq. (13) are elements
in the eigenvector {U+

(n,−N), . . . ,U
+
(n,0), . . . ,U

+
(n,+N)}T . There-

fore, the integral index q − p must satisfy −N � q − p �
+N . Indices q and p satisfy −M � q � M and −1 � p � 1,
respectively. Taking all these conditions into account, we
have M � N − 1. That’s the constraint between M and N

mentioned in the above.
Again, by exploiting the orthogonality of harmonic func-

tions ei(ω+qωm)t , the two equations in (13) can be rewritten into
the following matrix forms:

R − M3T = −I1,

M4 R + M5T = M6 I1, (14)

where R and T are column vectors containing coefficients Rq

and Tn (n,q = −M, . . . ,0, . . . M), respectively; I1 is a (2M +
1) × 1 vector, in which I1(M + 1) = 1 and other elements are
zero; and matrices M (·) are all (2M + 1) × (2M + 1), whose
details are

M3(q + M + 1,n + M + 1) = U+
(n,q),

M4 = diag(E0(ω + qωm)/c0),

M5(q + M + 1,n + M + 1)

=
+1∑

p=−1

Êp(k+
n + (q − p)km)U+

(n,q−p),

M6 = E0
ω

c0
I, (15)

where n,q = −M, . . . ,0, . . . ,M and I is an identity matrix.
Solving Eq. (14), we obtain the coefficients R and T . Then

using expressions (10) and (11), we have the induced waves
inside the modulated beam and the reflected waves.

III. RESULTS

A. Frequency conversion at the ends of time-space
modulated beams

In this section, we analyze the frequency conversion
induced by reflection at the ends of time-space modulated
beams using the theory in Sec. II B. The truncation order
used in our simulations is N = 4; as will be shown, it is
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FIG. 4. Case 1: harmonic amplitudes of the (a) incident and (b) reflected waves at x1 = −10λm when the modulation wave has parameters
αm = 0.4, βm = 0.2, propagating in the positive direction. Case 2: harmonic amplitudes of the (c) incident and (d) reflected waves at x1 = −10λm

when the modulation wave has parameters αm = 0.4, βm = −0.2, propagating in the negative direction. Amplitudes in both cases are normalized
by the corresponding amplitude |U+

(0,0)e
−ik+

0 x1 | of the zeroth harmonic of the incident wave. The frequency of the qth harmonic is 	 + qβm.

large enough to take into account all considerable harmonics.
We assume that the incident wave ui(x,t) is from a source
at x1 = −10λm, as shown in Fig. 2. We are concerned
with the propagating harmonics among the reflected waves.
Therefore, we study the harmonic amplitudes of the incident
and reflected waves at x1, where evanescent waves generated
at the end have already significantly decayed. According
to Eqs. (4) and (5), at x1 the qth-harmonic amplitudes
of the incident and reflected waves are |U+

(0,q)e
−i(k+

0 +qkm)x1 |
and | ∑+N

n=−N BnU
−
(n,q)e

−i(k+
n +qkm)x1 |, respectively. Figure 4

shows the considerable harmonic amplitudes for two cases.
Figures 4(a) and 4(b) show the results of the first case, in
which the incident and modulation waves all travel in the
positive direction (αm = 0.4, βm = 0.2). Figures 4(c) and 4(d)
show the results of the second case; the incident wave is
positive going, but the modulation wave is negative going
in this case (αm = 0.4, βm = −0.2). In both cases, amplitudes
are normalized by the corresponding amplitude |U+

(0,0)e
−ik+

0 x1 |
of the zeroth harmonic of the incident wave. Note that the
dimensionless frequency 	 = λmω/(2πc0) is used in Fig. 4
and in what follows.

When the incident wave and the modulation wave have the
same direction, from Figs. 4(a) and 4(b) we can see that, out-
side the two stop bands, normally, the dominant harmonic of
the reflected wave is coincident with that of the incident wave.
Inside the stop band of the u+

0 mode, the incident harmonics
are evanescent; they decay rapidly toward the end. Therefore,
reflected harmonic amplitudes at these frequencies are small.
Inside the stop band of the u−

0 mode, the incident wave is dom-
inated by the zeroth harmonic. However, the reflected wave is
dominated by the first one, the frequency of which is 	 + βm

[because the dimensionless modulation frequency is 	m =
λmωm/(2πc0) = βm], inside the stop band of the u+

0 mode [the

difference between two corresponding frequencies in the stop
bands of the u−

0 and u+
0 modes is βm, as indicated in Fig. 4(a)].

Therefore, the main frequency is up-converted from the stop
band of the u−

0 mode to that of the u+
0 mode after the reflection.

There is an obvious exceptional sharp peak of the amplitude of
the negative second harmonic at 	 = 0.4. This peak is caused
by the rigid-body motion of the beam because the frequency
(	 − 2βm) of the negative second harmonic tends to zero as 	

approaches 	 = 0.4. Note that rigid-body motion may occur
at other frequencies satisfying 	 + qβm = 0.

Frequency conversion is also observed when the incident
wave and the modulation wave have opposite directions. The
reverse of the modulation wave direction makes the two stop
bands of the u+

0 and u−
0 modes exchange with each other, as

can be seen from Figs. 4(a) and 4(c). Inside the stop band
of the u−

0 mode, from Figs. 4(c) and 4(d), we can see that
the dominant harmonic is changed from the zeroth to the first
after the reflection. In this case we have βm < 0, which means
the frequency of the first harmonic is 	 − |βm|, inside the
stop band of the u+

0 mode. Therefore, in this case the main
frequency is down-converted from the stop band of the u−

0
mode to that of the u+

0 mode after the reflection.
The cause of the above frequency conversion is explained

by further analyzing the components of the reflected waves.
Without losing any generality, we choose the modulation
parameters to be αm = 0.4, βm = 0.2. Figures 5(a) and 5(b)
show the components of the incident and reflected waves,
respectively, at frequency 	0 = 0.49, which is the center
between the two stop bands [see Fig. 4(a) or 4(b)]. Figures 5(c)
and 5(d) show those at 	1 = 0.384, which is the center of the
stop band of the u−

0 mode. According to Eqs. (4) and (5), we
can see that the incident and reflected waves can be treated both
as a group of Bloch modes and as a group of harmonics. These
dual properties are shown in Fig. 5. The vertical axis indicates
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FIG. 5. Components of the (a) incident and (b) reflected waves at 	0 = 0.49. Components of the (c) incident and (d) reflected waves at 	1 =
0.384. The (n,q) pixel represents the qth harmonic of the nth mode composing the wave, and its color indicates the corresponding amplitude
normalized by the amplitude |U+

(0,0)e
−ik+

0 x1 | of the zeroth harmonic of the incident wave. The modulation parameters are αm = 0.4, βm = 0.2.

the orders of Bloch modes [u+
n in Figs. 5(a) and 5(c), u−

n in
Figs. 5(b) and 5(d)]; the horizontal one represents the orders
of harmonics composing corresponding modes. Therefore, the
pixel (n,q) represents the qth harmonic of the nth mode, and
its color indicates the corresponding normalized amplitude,
which is |U+

(0,q)e
−i(k+

0 +qkm)x1 |/|U+
(0,0)e

−ik+
0 x1 | [see Eq. (4)] in

Figs. 5(a) and 5(c) and |BnU
−
(n,q)e

−i(k+
n +qkm)x1 |/|U+

(0,0)e
−ik+

0 x1 |
[see Eq. (5)] in Figs. 5(b) and 5(d). From Figs. 5(a) and
5(b) we can see that, when the frequency is outside the
stop band of the u−

0 mode, after the reflection, most of the
energy is transmitted from the u+

0 mode to the u−
0 mode,

which is dominated by the zeroth harmonic of frequency
	0. Accordingly, the main frequency is not converted in
this case. However, within the stop band of the u−

0 mode,
the reflection makes the energy being transmitted from the
u+

0 mode to the u−
−1 mode dominated by the first harmonic

have frequency 	1 + βm [Figs. 5(c) and 5(d)]. Therefore,
the frequency conversion at the ends of modulated beams

is caused by energy transmission between different orders
Bloch modes.

B. Frequency conversion at interfaces between homogeneous
and time-space modulated beams

The theory developed in Sec. II C is used to study the
frequency conversion at interfaces between homogeneous and
time-space modulated beams in this section. The truncation
orders are chosen as N = 5 and M = 4 to take into account all
significant harmonics. Assume that a single harmonic ui(x,t)
with frequency 	 is incident on the time-space modulated
beam, as shown in Fig. 3. The harmonic amplitudes |Rq | of
the reflected waves [see Eq. (11)] at x = 0 are shown in Fig. 6.
Specifically, Fig. 6(a) shows the results when the incident
harmonic and modulation wave have the same direction
(αm = 0.4, βm = 0.2), and Fig. 6(b) shows the results of the
opposite situation (αm = 0.4, βm = −0.2). All amplitudes are
normalized by the amplitude of the incident harmonic.

FIG. 6. Harmonic amplitudes of the reflected waves at the interface between a homogeneous beam and a time-space modulated beam.
(a) The modulation wave has parameters αm = 0.4, βm = 0.2, propagating in the positive direction; (b) the modulation wave has parameters
αm = 0.4, βm = −0.2, propagating in the negative direction. All amplitudes are normalized by the amplitude of the incident harmonic. The
frequency of the qth harmonic is 	 + qβm.
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FIG. 7. Components of the (a) reflected waves and (b) induced waves in the modulated beam at 	0 = 0.49. Components of the (c) reflected
waves and (d) induced waves in the modulated beam at 	2 = 0.584. The (n,q) pixel represents the qth harmonic of the nth mode composing
the wave, and its color indicates the corresponding amplitude normalized by the amplitude of the incident harmonic. Plus and minus signs
indicate positive- and negative-going harmonics, respectively; red and green distinguish evanescent and propagative harmonics. The modulation
parameters are αm = 0.4, βm = 0.2.

From Fig. 6 we can see that, in both cases at most of the
frequencies, the reflected waves are dominated by the negative
first harmonic. When the incident harmonic and the modula-
tion wave have the same direction [Fig. 6(a)], the frequency of
the negative first harmonic is 	 − βm (βm > 0), which means
the frequency is down-converted after the reflection. On the
other hand, when the incident harmonic and the modulation
wave have opposite directions [Fig. 6(b)], the negative first
harmonic has the frequency 	 + |βm| (βm < 0). Therefore, in
this case the frequency is up-converted. It should be noted that
even though the frequency conversion at the interface can be
observed at frequencies far from the stop band of the u+

0 mode
when the harmonic is incident on the modulated beam from the
left side, the reflected and converted harmonic is a very small
part of the incident one. Only in the vicinity of and within the
stop band of the u+

0 mode is the reflection significant, along
with the frequency conversion.

To explain the frequency conversion at the interface,
the components of the induced waves inside the modulated
beam are studied. We choose the modulation parameters to
be αm = 0.4, βm = 0.2. We perform the simulations at two
frequencies. The first one, 	0 = 0.49, is the center between the
two stop bands in Fig. 6(a), and the second one, 	2 = 0.584, is
the center of the stop band of the u+

0 mode. Figure 7 shows
the components of the reflected waves and induced waves
in the modulated beam at these two frequencies. Like in Fig. 5,
in Fig. 7 the pixel (n,q) represents the qth harmonic of the
nth Bloch mode [we call the harmonics in the homogeneous
beam the zeroth Bloch mode in Figs. 7(a) and 7(c); modes
in Figs. 7(b) and 7(d) are u+

n ], and its color indicates the
corresponding amplitude, which is |Rq | [see Eq. (11)] in
Figs. 7(a) and 7(c) and |TnU

+
(n,q)| [see Eq. (10)] in Figs. 7(b)

and 7(d). These amplitudes are normalized by the amplitude of
the incident harmonic. There are both positive- and negative-
going harmonics in the induced waves; they are indicated by

the plus and minus signs, respectively, in Figs. 7(b) and 7(d). In
addition, some of the induced harmonics in Fig. 7(d) [namely,
components of the u+

0 (	2 = 0.584) mode] are evanescent;
they are distinguished from the propagative ones by the red
and green colors of the plus and minus signs.

Figure 7(b) shows that, at 	0 = 0.49, when the harmonic
is incident on the interface, most of it is transmitted into the
positive-going harmonic (0,0) in the modulated beam with the
frequency being unaltered. Also we can see that the negative-
going harmonic (0, − 1) of frequency 	0 − βm is generated.
This harmonic reenters the homogeneous part, consequently
leading to the observed frequency conversion. Similarly, at
	2 = 0.584, from Fig. 7(d) we can see that the induced waves
in the modulated beam is dominated by the harmonics (0,0)
and (0, − 1), which are evanescent. The harmonic (0,0) is a
positive-going harmonic of frequency 	2; it rapidly decays
inside the modulated beam. On the contrary, the harmonic
(0, − 1) is a negative-going one of frequency 	2 − βm; its
amplitude increases toward the interface x = 0. The harmonic
(0, − 1) is transmitted into the homogeneous part, causing the
observed frequency conversion.

In both Figs. 7(b) and 7(d), the harmonic (0, − 1) can
be explained as the reflected positive-going one (0,0) inside
the modulated beam. This reflection is caused by the Bragg
scattering effect, which must occur at any section of the
modulated beam due to the continuous periodic variation of the
impedance introduced by the modulation of Young’s modulus.
Therefore, the frequency conversion observed at the interface
is due to the Bragg scattering effect inside the time-space
modulated beam.

IV. NUMERICAL SIMULATIONS

The above theoretically studied frequency conversion phe-
nomena are numerically verified by using the finite-element
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FIG. 8. Frequency conversion at the ends of time-space mod-
ulated beams. The modulation parameters are αm = 0.4, βm = 0.2.
The length of the beam is 2L, L = 100λm. Both ends of the beam are
free. Arrows indicate wave propagation directions.

method in this section. In all the numerical studies, each
λm length is discretized by 20 two-dimensional Lagrange
elements. The generalized α method is used to evaluate the
time-domain response; a fixed time step equal to 0.0025λm/c0

is used.
To verify the frequency conversion at the ends, the 2L (L =

100λm) long time-space modulated beam shown in the top
panel in Fig. 8 is considered. Both ends of the beam are
free. The modulation parameters are αm = 0.4, βm = 0.2. A
narrowband tone burst load centered at 	1 = 0.384 (inside
the stop band of the u−

0 mode) is applied at the left end
along the x direction to generate longitudinal waves. The
other three panels show the spectra of waves in the beam at
three successive instants; arrows indicate the wave propagation
directions. It can be seen that the main frequency of the
generated waves is 	1 = 0.384 (t = 100λm/c0). When these

FIG. 9. Frequency conversion at interfaces between homoge-
neous and time-space modulated beams. The left part of the beam
(−L � x < 0) has uniform materials with αm = βm = 0; the right
part (0 � x � L) is a time-space modulated structure with αm =
0.4, βm = 0.2, L = 100λm. Both ends of the beam are free. Arrows
indicate wave propagation directions.

waves are reflected by the right end, the main frequency is
up-converted to 	2 = 0.584, which is inside the stop band of
the u+

0 mode (t = 305λm/c0 and 355λm/c0). The frequency
difference caused by the conversion is exactly equal to the
modulation frequency, which is 	m = βm = 0.2, as predicted
by the theoretical studies.

The frequency conversion at the interface is verified in
Fig. 9. The top panel shows the considered model with both
ends free. The left part of the beam (−L � x < 0) has uniform
materials, while the right part (0 � x � L) is a time-space
modulated beam with αm = 0.4, βm = 0.2. A narrowband tone
burst load centered at 	2 = 0.584 is applied at the left end to
generate longitudinal waves (t = 50λm/c0). At the interface
(x = 0), most of these waves are reflected back with down-
converted frequency 	1 = 0.384 (t = 150λm/c0). These re-
flected waves propagate toward the left end and are then
reflected back by this static end with unchanged amplitudes
and frequencies. Since the main frequencies of these waves
are now outside the stop band of the u+

0 mode, most of them
are transmitted into the modulated beam (t = 400λm/c0).

V. CONCLUSIONS

This paper demonstrated and explained two types of fre-
quency conversion induced by time-space modulated media.
The first type is caused by energy transmission between dif-
ferent orders of Bloch modes; it can be observed when interior
waves are reflected by boundaries of time-space modulated
media. The second type is due to the Bragg scattering effect
inside the modulated media; it can be observed when external
waves are reflected by time-space modulated media.

The frequency can be up- or down-converted, and the
frequency difference is equal to the modulation frequency. In
the first type of conversion, when the incident and modulation
waves are copropagating, frequency up-conversion is observed
after the reflection. On the other hand, frequency down-
conversion is observed when the incident and modulation
waves are counterpropagating. In the second type, the fre-
quency conversion direction is totally reversed. The coprop-
agating incident and modulation waves lead to frequency
down-conversion, and the counterpropagating incident and
modulation waves yield frequency up-conversion.

The frequency conversion has significant influences on
practical applications of time-space modulated media. It
may need to be taken into account in applications using
the strong nonreciprocity reported in [15,16]. For example,
in approximate infinite or semi-infinite systems, this strong
nonreciprocity might be exploited to build unidirectional
insulators. However, when the harmonics scattered by the
modulated media are considerably reflected back, the one-way
energy insulation will fail due to the frequency conversion,
as indicated in Fig. 9. Nevertheless, the frequency difference
caused by the conversion depends on the modulation frequency
(or, say, the modulation speed), which is tunable. Therefore,
the frequency conversion could be exploited to manipulate
frequencies of waves for particular purposes.
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