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Strain-induced incommensurate phases in hexagonal manganites
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An incommensurate phase refers to a solid state in which the period of a superstructure is incommensurable
with its primitive unit cell. It was recently shown that an incommensurate phase, which displays a single chiral
modulation of six domain variants, could be induced by applying an in-plane strain to a hexagonal manganite.
Here we combine Landau theory description of thermodynamics and the phase-field method to investigate and
understand the formation of the incommensurate phase in hexagonal manganites. It is shown that the equilibrium
wavelength of the incommensurate phase is determined by both the temperature and the magnitude of the applied
strain, and a temperature-strain phase diagram is constructed for graphically displaying the temperature and strain
conditions for the stability of the incommensurate phase. Temporal evolution of domain structures reveals that
the applied strain not only produces the force pulling the vortices and antivortices in opposite directions, but also
results in the creation and annihilation of vortex-antivortex pairs.
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I. INTRODUCTION

Structural phase transitions in solids can generally be
categorized into two types, i.e., order-disorder and displacive
transitions [1]. Extra orders and relative atomic displacements
give rise to superstructures, resulting in extra diffraction spots
in addition to the fundamental ones in the reciprocal space.
If the indices of the additional diffractions are all rational
numbers, the phase is called a commensurate (C) phase [2]. For
example, the diffraction spot with index (1/2, 0, 0) indicates
that the there exists a superstructure caused by unit cell
doubling along the first axis. On the other hand, if at least one
index of the additional reflection spots is an irrational number,
the system totally loses its translational symmetry along that
particular direction, and the phase is called an incommensurate
(IC) phase [3]. IC phases are found to play significant roles
in IC dielectrics, IC magnetics, charge-density wave systems,
and spin-Pierls compounds [4–7]. In ferroelectrics, an IC phase
can be induced by the size effect [8], flexoelectric effect [9],
or an applied strain [10].

Hexagonal (h-) REMnO3 (RE, rare earths) have recently
attracted enormous attention due to their intrinsic multiferroic
properties and intriguing domain patterns [11,12]. REMnO3

are improper ferroelectrics in which the polarization is induced
by the structural trimerization during the transition from
space group P 63/mmc to space group P 63cm [13–15]. The
structural trimerization results in three translational phase
variants based on the different choices of the origin, and each
variant has two options of polarization, i.e., either along +c

or −c directions [11,16]. Thus there are totally six C domain
variants in REMnO3 systems. The six types of domains can
cycle around vortex and antivortex cores resulting in vortex
domains, as shown in Figs. 1(a) and 1(b) [11,12]. Another
type of domain structures in REMnO3 is the single-chirality
striped domains with a fixed sequence of the six domains
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[Figs. 1(c) and 1(d)], which is caused by the coupling
between an in-plane strain and the gradient of the trimerization
[10,16]. The modulation of the six domain variants leads to a
superstructure and the length ratio between the superstructure
and the primitive unit cell can be an irrational number, i.e., the
single-chirality striped domains can be treated as an IC phase.

In this paper, we employ a combination of Landau theory
and the phase-field method to investigate the stability and
properties of the IC phase in h-REMnO3. Compared with the
analytical results of the classical XY model, the effect of the
energy anisotropy in the order parameter space of h-REMnO3

is demonstrated. Surprisingly, an unusual local enhancement
of the trimerization is observed under a sufficiently large
applied strain. The equilibrium wavelength of the IC phase
is found to be determined by both the temperature and the
magnitude of the applied strain. Based on extensive phase-
field simulations, we constructed a temperature-strain phase
diagram for graphically displaying the stability of the IC
phase as a function of temperature and strain. It is shown
that the applied in-plane strain gives rise to an IC phase at
high temperatures, which is frozen by the limited domain
wall mobility at low temperatures. Phase-field simulations
demonstrate that the evolution from vortex domains to the
IC phase is caused by a combination of the antiparallel
movement of the vortex and antivortex cores and the creation
and annihilation of vortex-antivortex pairs.

II. RESULTS AND DISCUSSION

A. Incommensurate phase in the XY model

We start our discussion on the IC phases from the classical
XY model, which serves as the high-temperature limiting case
of h-REMnO3 [17]. In the XY model, the order parameter
is a two-dimensional (2D) vector, which can be described
by the magnitude Q and the phase φ in the polar coordinate
system. In the Landau theory description, the total free energy
density includes contributions from: the bulk free energy,
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FIG. 1. Domain patterns on the basal plane of h-REMnO3.
(a) and (b) Vortex domains from (a) a phase-field simulation and (b) an
optical microscope. (c) and (d) Single-chirality striped domains from
(c) a phase-field simulation and (d) atomic force microscope scanning
on a chemically etched sample.

gradient energy, and Lifshitz invariant. The bulk free energy
density describes the energy density with uniform order
parameters. The gradient energy describes the energy penalty
due to the variation of the order parameter, which is generally
the quadratic function of the order parameter gradient. The
Lifshitz invariant is a linear function of the order parameter
gradient, and the presence of the Lifshitz invariant may lead
to an IC phase [2]. For the XY model, the bulk free energy
density is a function of Q and independent of φ, i.e., the bulk
energy is isotropic in the order parameter space [Fig. 2(a)]

FIG. 2. Comparison between the XY model and YMO. (a) and (b)
Energy landscapes in the order parameter space for (a) the XY model
and (b) YMO at 0 K. The magnitude and phase of the order parameter
are labelled by Q and φ, respectively. (c) and (d) Distribution of the
order parameter along the modulation direction for (c) the XY model
and (d) YMO. In (c), λ denotes the wavelength of the modulation.

[18]. Assuming that there exists an order parameter modulation
along the x direction, the free energy density describing the
IC phases is given by [2],

fXY = a

2
Q2 + b

4
Q4 + 1

2
g

(
∂Q

∂x

)2

+ 1

2
gQ2

(
∂φ

∂x

)2

+ ξQ2 ∂φ

∂x
, (1)

where a and b are the coefficients of the bulk free energy, g is
the coefficient of the gradient energy, the term ξQ2 ∂φ

∂x
is the

Lifshitz invariant, and ξ is the corresponding coefficient.
The evolution of the system is described by the Euler-

Lagrange equations:

δfXY

δQ
= bQ3 + Q

[
a + 2ξ

∂φ

∂x
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(
∂φ
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)2]
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∂2Q
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(2)

δfXY
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= −Q

[
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∂x

(
ξ + g
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∂x

)
+ gQ

∂2φ

∂x2

]
= 0. (3)

The solution of Eqs. (2) and (3) is

Q =
√

−a

b
+ ξ 2

bg
, φ = C1x + C2, (4)

where C1 and C2 are the constants of integration. Without loss
of generality, let φ = 0 at x = 0, and we obtain C2 = 0, i.e.,

Q =
√

−a

b
+ ξ 2

bg
, φ = C1x. (5)

Equation (5) indicates that the value of Q is larger than
or equal to that with ξ = 0, since Q � Q0 = √− a

b
. Thus a

nonzero Lifshitz invariant term increases the magnitude of Q.
In Eq. (1), only a is assumed to be dependent on temperature
T, i.e., a = a0(T − TC), where a0 is a constant and TC is the
Curie temperature. By solving Q = 0 in Eq. (5), we obtain the
transition temperature

T0 = TC + ξ 2

a0g
. (6)

Therefore Eq. (1) with ξ = 0 describes a second-order
phase transition with transition temperature T0 = TC , and
a nonzero Lifshitz invariant term increases the transition
temperature.

Next the phase-field method based on a semi-implicit spec-
tral numerical solution is employed to solve Eq. (1) [19,20].
In the phase-field simulation, the polar coordinates Q and
φ are transformed into Cartesian coordinates (Qx,Qy), with
Qx = Q cos φ and Qy = Q sin φ [21]. Then Eq. (1) becomes

f = a

2

(
Q2

x + Q2
y

) + b

4

(
Q2

x + Q2
y

)2

+ g

2

[(
∂Qx

∂x

)2

+
(

∂Qy

∂x

)2]

+ ξ

(
Qx

∂Qy

∂x
− Qy

∂Qx

∂x

)
. (7)
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The coefficients a, b, and g use the same values as those
of YMnO3 (YMO), as listed in Ref. [16], which are obtained
from first-principles calculations at 0 K. It is assumed that
a = a0(T − TC) with TC = 1200 K. The solution to Eq. (7) is
obtained by numerically solving the time-dependent Ginzburg-
Landau (TDGL) equations

δQx

δt
= −LQ

δf

δQx

,
δQy

δt
= −LQ

δf

δQy

, (8)

where LQ is the kinetic coefficient related to the domain
wall mobility. The system size is 1024�x × 1�x × 1�x

with �x = 0.30 nm, i.e., essentially a one-dimensional system
here. Periodic boundary conditions are applied to the system
along three dimensions. The initial condition is the cosine
modulation of Qx and the sine modulation of Qy with a certain
period (we also try starting from small random noises, and the
conclusions in the paper will be unchanged).

Figure 2(c) presents the result from a phase-field simulation
with T = 1000 K and ξ = 0.75 eV/nm. The result is consis-
tent with Eq. (6), i.e., the magnitude Q is a constant and the
phase φ can be transformed to be a linear function of the spatial
coordinate. In Fig. 2(c), the value of φ is chosen to be between
−π to π , and φ becomes a periodic function of the spatial
coordinate. The period is the wavelength of the modulation,
labelled as λ in Fig. 2(c).

B. Incommensurate phase in hexagonal REMnO3

Here we employ h-YMO as an example of h-REMnO3. In
YMO, the primary order parameters Q and φ characterize
the structural trimerization [16], and the bulk energy at
low temperatures possesses sixfold anisotropy in the order
parameter space [Fig. 2(b)], in contrast to the isotropic

TABLE I. Transformation properties under the generators of the
P 63/mmc space group. The generators of the P 63/mmc space group
are given by translation Sa , threefold axis 3c, twofold screw axis 2̃c,
mirror plane my , and inversion I. (x,y) are the Cartesian coordinates
in the ab plane.

Sa 3c 2̃c my I

φ φ + 2π/3 φ –φ –φ π–φ
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√

3
2 − 1

2 x +
√

3
2 y −x x −x

y y + 1
2 −

√
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∂x

∂φ
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− 1

2
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√
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2
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∂x
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∂x

∂φ

∂x

∂φ

∂y

∂φ
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2
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1
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3
2 εxy εxx εxx εxx
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3
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√

3
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εxy εxy

√
3
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√

3
4 εyy − 1

2 εxy εxy −εxy εxy

energy landscape in the XY model [Fig. 2(a)]. Meanwhile,
the trimerization induces a secondary order parameter, i.e.,
polarization Pz. For the Lifshitz invariant, we consider the
coupling between strain and the order parameter gradient,
since it is experimentally observed that the applied strain
induces the IC phase in h-REMnO3 [10]. The lowest-order
coupling between strain and inhomogeneous trimerization
is given by tijkεijQ

2 ∂φ

∂xk
[22]. Based on the transformation

properties of different order parameters under the generators
of the high-temperature space group as summarized in Table I,
we can obtain the total free energy density as a function of
polar coordinate Q and φ [16]. Rewritten as a function of the
Cartesian coordinates (Qx,Qy), the total free energy density
is given by
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, (9)

where a,b,c,c′,h,h′, and aP are the coefficients of the bulk
free energy, sz

Q,sx
P , and sz

P are the coefficients of the gradient
energy, ε0 is the vacuum permittivity, κb is the background
dielectric constant [23], Ez is the electric field calculated by
Ez = − ∂ϕ

∂z
with ϕ the electrostatic potential, εij is the strain

tensor, and G is the coupling coefficient between the applied
strain and the gradient of the trimerization. The coefficients of
the bulk free energy and gradient energy use the values from
Ref. [16], which are obtained from first-principles calculations
at 0 K. Based on this parameter setting, the domain wall

width at 0 K is ∼0.5 nm [16], which agrees with the
results of direct first-principles calculations [24] and high-
resolution transmission electron microscopy measurements
[10]. It is assumed that a = a0(T − TC) with TC = 1200 K.
The background dielectric constant κb takes the typical value
of 50 [25]. For simplicity, we assume that εxy = 0 and
ξ = G(εxx − εyy). Since G is a constant and ξ is proportional
to the applied strain, the energy contribution from the Lifshitz
invariant can be controlled by the magnitude of the applied
strain.

104109-3



XUE, WANG, SHI, CHEONG, AND CHEN PHYSICAL REVIEW B 96, 104109 (2017)

FIG. 3. Profiles of the order parameters Q and φ in h-YMO at
different temperatures and under different strains. (a)–(c) Profiles of
Q and φ with ξ = 0.75 eV/nm at (a) 1195, (b) 1170, and (c) 1100
K. (d)–(f) Profiles of Q and φ with ξ = 2.83 eV/nm at (d) 1195,
(e) 1170, and (f) 1100 K.

The system is evolved by numerically solving the TDGL
equations

δPz

δt
= −LP

δf

δPz

,
δQx

δt
= −LQ

δf

δQx

,

δQy

δt
= −LQ

δf

δQy

, (10)

where LP is the kinetic coefficient related to the domain wall
mobility. The system setting is the same with that of the XY
model, which is specified after Eq. (8).

Although the value of Pz is solved in Eq. (10), its specific
value is not significant for the IC phase, and thus we only
show the profiles of the primary order parameter, i.e., Q and
φ. Figure 2(d) shows the modulation of Q and φ from a
phase-field simulation for T = 1000 K and ξ = 0.75 eV/nm,
the same parameter setting as that of Fig. 2(c). In contrast to the
linear distribution of φ in the XY model, φ in YMO exhibits
staircase-like plateaus at the values of 0, ± π

3 , ± 2π
3 , ± π ,

which correspond to the six energy minima in Fig. 2(b). These
plateaus can be treated as six C domains, and the transition
regions between neighboring plateaus correspond to domain
wall regions in the C phase. Different from being a constant
as in Fig. 2(c), Q in Fig. 2(d) takes its minima at the transition
region, which is similar to the situation at domain walls of the
C phase [16].

C. Order parameter profiles under different T and ξ

In this section we investigate the effect of T and ξ on
the order parameter profiles of YMO. In Figs. 3(a)–3(c), the
value of ξ is fixed at 0.75 eV/nm, and T is varied. When T
equals 1195 K, just below TC , the distribution of the phase
φ is almost a straight line, close to the situation of the XY

model [Fig. 3(a)]. This is because the energy anisotropy in the
order parameter space is reduced near TC and the continuous
symmetry of the XY model emerges at TC [17,26,27]. The
magnitude Q is modulated similar to a sine function with
the maxima obtained at phase φ = iπ

3 (i = 0 − 3) and minima
at phase φ = iπ

6 (i = 1,3,5). Note that the variation of Q at
this temperature is small, ∼0.3% of the total magnitude.
Figure 3(a) corresponds to the sinusoidal regime of the IC
phase, which shows a sinusoidal modulation of Qx and Qy

[2]. At a lower temperature 1170 K, the phase φ develops
staircase-like plateaus, and near the transition regions, Q shows
valley-shape decrease [Fig. 3(b)]. When the temperature is
further decreased to 1100 K, the plateaus becomes wider,
and the transition regions are narrower [Fig. 3(c)]. Note that
the variation of Q at 1100 K is ∼6% of the total magnitude,
larger than that at 1195 K. In Fig. 3(c), the transition regions
between neighboring plateaus can be treated as solitons or
discommensurations, separating an array of C domains, and
this case corresponds to the multisoliton regime [2]. Therefore,
with a decreasing temperature, the profiles of Q and φ evolve
from those of the sinusoidal regime to those of the multisoliton
regime.

As illustrated in Figs. 3(a)–3(c), when ξ is small, the
profiles of Q generally behave as expected, i.e., Q takes its
minima at the transition regions. When ξ is large, however,
the profiles of Q show unexpected behaviors. When T equals
1195 K, Q appears like a sine function with its minima at
phase iπ

3 (i = 0 − 3) and maxima at phase iπ
6 (i = 1,3,5), as

plotted in Fig. 3(d). This means that Q at the transition
regions is larger than that within a region corresponding to
the energy minima in Fig. 2(b). The abnormal enhancement
of Q near the transition regions arises from the fact that when
dQ

dx
is small and ξ is large, the contribution from the gradient

energy 1
2g( ∂Q

∂x
)2 can be ignored. By neglecting the higher-order

terms and the coupling with polarization, Eq. (9) can be
approximated as

fYMO =
[
a

2
+ ξ

∂φ

∂x
+ 1

2
g

(
∂φ

∂x

)2]
Q2 + b

4
Q4, (11)

which leads to Q =
√[

a + 2ξ
∂φ

∂x
+ g

(
∂φ

∂x

)2]/
b. Since ξ and

∂φ

∂x
have the same sign from Eq. (14) as shown below, Q

is larger under a larger ∂φ

∂x
, i.e., near the transition regions.

When T is decreased to 1170 K, dQ

dx
becomes larger, and the

contribution from 1
2g( ∂Q

∂x
)2 cannot be ignored. The profile of

Q demonstrates complex behaviors due to the competitions
between 1

2g( ∂Q

∂x
)2 and the Lifshitz invariant ξQ2 ∂φ

∂x
. As shown

in Fig. 3(e), Q has two types of local minima, i.e., in the middle
of a plateau of φ and in the middle of a transition region. The
maxima of Q are obtained near the boundaries of the plateaus.
When T is further decreased to 1100 K, Q becomes flat within
the plateaus of φ, while small overshoots are observed near the
transition regions [Fig. 3(f)]. The overshoots near the transition
regions are also reported in earlier works [2,28]. Therefore,
when ξ is large, i.e., when the applied strain is large, due to the
significant energy contribution from the Lifshitz invariant, the
magnitude of the order parameter Q shows abnormal behaviors
near the transition regions.
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FIG. 4. Equilibrium wavelength of the IC phase. (a) Free energy
as a function of wavelength for the XY model and YMO. The pink
line denotes the free energy of the XY model at 1100 K with ξ =
2.39 eV/nm. The blue line, cyan line, and green line are the results of
YMO at 1100 K with ξ = 2.39, 1.64, and 0.90 eV/nm, respectively,
which represent the energy profiles of the IC phase, intermediate
state (IM), and C phase, respectively. (b) Equilibrium wavelength as
a function of ξ for the XY model and YMO at different temperatures.

D. Equilibrium wavelength of the incommensurate phase

In this section we investigate the equilibrium wavelength
of the IC phase, which is labelled as λ0. As a limiting case
with an isotropic energy landscape, the analytical solution of
the XY model is studied first. Substituting Eq. (5) into Eq. (1),
we obtain

fXY = ξ 2

4bg2
− a2

4b
+ (ξ 2 − ag)

2bg

(
gC2

1 + 2ξC1
)
, (12)

From the relation C1 = 2π
λ

, the free energy can be written
as a function of the wavelength,

fXY = ξ 2

4bg2
− a2

4b
+ 2(ξ 2 − ag)

bg

[
g

(
π

λ

)2

+ ξ
π

λ

]
. (13)

fXY as a function of λ at 1100 K with ξ = 2.39 eV/nm is
plotted as a pink line in Fig. 4(a), which shows an energy
minimum at equilibrium wavelength λ0. From ∂fXY

∂λ
= 0 in

Eq. (13), λ0 is expressed by

λ0 = 2πg

ξ
, (14)

which is shown as a pink line in Fig. 4(b). As indicated by
Eq. (14), λ0 in the XY model is a function of ξ , and independent
of temperature.

Then the equilibrium wavelength in h-YMO is investigated.
When ξ equals 2.39 eV/nm at 1100 K, YMO is in the IC phase.
As shown by the blue line of Fig. 4(a), the energy profile of
YMO is similar to that of the XY model, and there exists
an equilibrium wavelength λ0. The IC phase can be stabilized
over the C phase since the self-energy of the solitons is negative
[22,29]. On the other hand, the interaction between adjacent
solitons is repulsive [2,22]. Therefore the balance of the two
energies gives rise to the equilibrium density of solitons, and
consequently equilibrium wavelength.

When ξ is equal to 0.90 eV/nm at 1100 K, YMO is in
the C phase. As shown by the green line in Fig. 4(a), the
energy profile is a monotonically decreasing function of the
wavelength, and the corresponding self-energy of solitons, i.e.,
the domain wall energy, is positive [22]. The IC and C phases
are separated by an intermediate state, and the corresponding

FIG. 5. Temperature-Lifshitz invariant coefficient (T-ξ ) phase
diagram of h-YMO. In the high-symmetry (HS) phase, all the order
parameters are equal to zero. The solid lines are from the phase-field
method, and the dashed lines are from Eq. (20).

energy profile is plotted as the cyan line in Fig. 4(a), where
the slop is small for a large λ. In the intermediate state, the
self-energy of solitons is zero, and the energy monotonically
decreases due to the repulsive interaction between adjacent
solitons [2].

The equilibrium wavelength λ0 as a function of ξ in YMO
at different temperatures is demonstrated in Fig. 4(b). The
evolution of λ0 at 1199 K is almost the same as that of the XY
model, since the energy landscape of YMO near TC is close to
that of the XY model [27]. When T equals 1100 K, the value
of λ0 deviates from that of the XY model with a decreasing ξ .
Eventually when ξ decreases to a critical value, the value of
λ0 approaches infinity, which corresponds to the intermediate
state in Fig. 4(a). With ξ below the critical value, the C phase is
stable, and there exists no λ0. Also, the equilibrium wavelength
at 1000 K is plotted as the olive line in Fig. 4(b), which shows
a larger critical value of ξ than at 1100 K. Note that λ0 is close
to that of the XY model when ξ is sufficiently large for the
three temperatures, which is caused by the dominant energy
contribution from the Lifshitz invariant.

E. Temperature-strain phase diagram

As shown in Fig. 4(b), there exists a critical value of ξ ,
below which the IC phase loses its stability. By calculating
the critical values of ξ at different temperatures, a T-ξ phase
diagram for the stabilities of the IC and C phases is constructed,
as shown by the solid lines in Fig. 5. Based on Eq. (14), when
ξ changes its sign, λ0 also switches its sign, i.e., the system
flips its modulation direction to accommodate the sign change
of ξ . Therefore the IC-C boundary is symmetric with respect
to ξ = 0. Also, Fig. 5 shows that the transition temperature
from the high-symmetry phase to the IC phase increases with
an increasing ξ , which is consistent with the conclusion of
Eq. (6). Since ξ = G(εxx − εyy), the T-ξ phase diagram is
also a temperature-strain T-(εxx − εyy) phase diagram.

The XY model with the free energy density given by
Eq. (1) has no IC-C phase transition. To obtain the IC-C phase
transition, the anisotropic term Q6

6 (c + c′ cos 6φ) should be
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added, i.e., the free energy is expressed by

fXY = a

2
Q2 + b

4
Q4 + Q6

6
(c + c′ cos 6φ) + 1

2
g

(
∂Q

∂x

)2

+ 1

2
gQ2

(
∂φ

∂x

)2

+ ξQ2 ∂φ

∂x
. (15)

In fact, when the polarization Pz is ignored, Eq. (9) is
also reduced to Eq. (15). It is difficult to obtain the analytical
solutions for Q and φ at the same time. However, if we assume
that the modulation of Q can be ignored, we can just focus on
the modulation of φ, so called the “phase-modulation-only”
approximation [2]. The free energy that depends on φ can be
written as

fXY = Q6

6
(c′ cos 6φ) + 1

2
gQ2

(
∂φ

∂x

)2

+ ξQ2 ∂φ

∂x
. (16)

From the Euler-Lagrange equation with respect to φ, we
can obtain the following solution [30,31]

sin 3φ = sn

(
Q2

√
6c′

g

x

k
|k

)
, (17)

where sn(u|k) is the Jacobi elliptic function with k(1<k2 <1)
being the elliptic modulus. Based on the properties of the
Jacobi elliptic function, when k2 ≈ 0, the distribution of φ is
similar to that of the sinusoidal regime, as shown in Figs. 3(a)
and 3(d). On the other hand, when k2 ≈ 1, the distribution of
φ is similar to that of the multisoliton regime, as shown in
Figs. 3(c) and 3(f). The situation with k = 1 corresponds to
the IC-C transition. From the conclusion of Ref. [30], k = 1
leads to the following relation:

Q2 = 3π |ξ |
2
√

6c′g
. (18)

Let us assume that in the vicinity of the IC-C phase
transition, the magnitude of Q in the IC phase has the
temperature dependence as that in the C phase. Based on the
Landau theory with the six-order polynomial, the magnitude
of Q is a function of temperature

Q2 = −b +
√

b2 − 4a0(T − TC)(c − c′)
2(c − c′)

. (19)

From Eqs. (18) and (19), the relation between the transition
temperature and applied strain is given by

T = TC − 3π2(c − c′)ξ 2 + 2πb
√

6c′g|ξ |
8a0c′g

. (20)

Using the same coefficients as in the phase-field method,
the results based on Eq. (20) are plotted as the dashed lines
in Fig. 5. An obvious difference can be observed between
the results from the phase-field simulation and from Eq. (20).
This is because the polarization order parameter is neglected
in Eq. (15). Based on the conclusion of Ref. [16], the
anharmonic coupling term h(Q3

x − 3QxQ
2
y)Pz results in a

strong φ dependence of the bulk free energy. Without the
polarization Pz, the φ dependence of the bulk free energy is
highly reduced. Since the φ dependence of the bulk free energy
favors the C phase, while the Lifshitz invariant favors the IC

phase, the required strain to induce the IC phase becomes
smaller with Pz ignored.

As shown by the IC-C boundary in Fig. 5, the critical
value of ξ , i.e., the critical strain, increases with a decreasing
temperature. We expect that it is challenging to induce the
IC phase from the C phase at room temperature by applying
a strain since the crystal may break down before reaching
the critical strain. Therefore, to induce the C to IC phase
transition, we need to anneal the sample at high temperatures
while applying the strain. If the applied strain is fixed, and
the temperature is cooled down, the induced IC phase will
evolve from the sinusoidal regime to the multisoliton regime
and lose its thermodynamic stability when crossing the IC-C
phase boundary indicated by the solid lines in Fig. 5. However,
if the domain wall and vortex core mobility is limited at this
temperature [26,32], the domain patterns will be frozen in
the multisoliton regime, and the striped IC domains can be
observed at room temperature. In fact, a single-domain C state
possesses the smallest energy in h-YMO at room temperature,
and both the striped IC domains and vortex domains are
frozen by the limited domain wall mobility at low temperatures
[32,33].

F. Domain structure evolution from vortex domains
to incommensurate phase

In this section, we investigate how the domain structures
evolve from vortex domains to the IC domains in YMO.
The simulation grid is modified to 1024�x × 624�x × 1�x

with �x = 0.30 nm, which is a pseudo-2D system on the
basal plane. To simulate the boundary condition with two free
surfaces, an insulating layer with grid 1024�x × 400�x ×
1�x is added on top of the YMO layer, and the order
parameters in the insulating layer are maintained as zero.
Periodic boundary conditions are applied to the combined
(YMO + insulating layer) system along three directions. The
temperature is chosen at 1199 K, at which temperature the
driving force from vortex domain to the IC phases is large.
Note that the length scale of the phase-field simulations is
much smaller than that of experiments, as demonstrated in
Figs. 1(a) and 1(c) and in Figs. 1(b) and 1(d). As discussed
in Sec. D, the wavelength of the IC phase is determined by
temperature and the applied strain. The difference of the length
scales between the simulations and experiments indicates that
the temperature at which the domain patterns are frozen is
lower than 1199 K. Also, the difference may be caused by that
the applied strain in the experiments is smaller than that in the
simulations. Note that the domain pattern and its evolution
discussed in this section are independent of the length
scale.

Figure 6(a) shows a vortex domain structure, which
is obtained starting from small random noises with ξ =
0.00 eV/nm for the whole system [21]. Next, we apply an
external strain with ξ = 1.49 eV/nm to the upper half while
no strain is applied to the lower half. As shown in Fig. 6(b),
in the upper half of the system, the vortices are pulled down
whereas the antivortices are pulled up under the effect of the
applied strain [10]. Finally, the antivortices are pulled out of
the top surface of the system, and we obtain single-chirality
striped domains in the upper half of the system [Fig. 6(c)].
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FIG. 6. Temporal evolution of the domain structures on the basal
plane in h-YMO at 1199 K. (a) Initial domain structure. (b) Inter-
mediate domain structure with ξ = 1.49 eV/nm for the upper half,
and ξ = 0.00 eV/nm for the lower half. (c) Final domain structure
with ξ = 1.49 eV/nm for the upper half, and ξ = 0.00 eV/nm for
the lower half. (d) Final domain structure with ξ = 2.98 eV/nm for
the upper half, and ξ = 0.00 eV/nm for the lower half. The colors
are assigned based on the nearest C domains.

The vortices are lined up in the middle of the system, which
form the IC-vortex boundary separating the IC domains and
vortex domains. If the initial domain structure remains the
same as in Fig. 6(a), while the strain applied to the upper half
is doubled to ξ = 2.98 eV/nm, the final domain structure is
given in Fig. 6(d), which shows a smaller wavelength in the
upper half than that in Fig. 6(c). Thus a larger ξ results in
a smaller wavelength of the IC domains, which is consistent
with the conclusion of Fig. 4(b).

In Eq. (9), we only consider the interaction between
strain and the gradient of the primary order parameter. The
interaction with strain gradient, introduced in previous report
to explain the vortex density at the IC-vortex boundary [10],
is not included in this paper. In fact, Figs. 6(c) and 6(d)
demonstrate that the vortex density at the IC-vortex boundary
is determined by the value of ξ , i.e., by the magnitude of
applied strain (εxx − εyy). This is because, as discussed below,
the applied strain not only produces the Magnus-type force
pulling the vortices and antivortices in opposite directions
[10], but also leads to the creation and annihilation of vortex-
antivortex pairs.

The detailed temporal evolution of domain structures
with ξ = 1.49 eV/nm for the upper half is demonstrated in
Supplementary Movie I in Ref. [34], and several zoomed-in
snapshots are given in Figs. 7(a)–7(d). In Fig. 7, we label
a vortex with an even number followed by a + sign, and

FIG. 7. Creation and annihilation of vortex-antivortex pairs under
the effect of the applied strain. (a)–(d) Zoomed-in snapshots from
a phase-field simulation. (a) and (b) show the creation of the
vortex-antivortex pair (3− and 4+) near two bubble-like domains.
The circled out region in (a) indicates the position where the
vortex-antivortex pair is created. (b)–(d) demonstrate the annihilation
of the vortex-antivortex pair (2+ and 3–). (e)–(g) Schematics for the
creation of a vortex-antivortex pair from a domain wall.

an antivortex with an odd number followed by a − sign. As
shown in Figs. 7(a) and 7(b), under the effect of the applied
strain, a vortex-antivortex pair (3− and 4+) is created near
two bubblelike domains. A typical process for the creation of
a vortex-antivortex pair is sketched in Figs. 7(e)–7(g), i.e., the
nucleation of two bubblelike domains within two neighboring
domains, followed by the nucleation of another two domains.
The phase-field simulation for the vortex-antivortex creation
is shown in Movie II, Ref. [34], which is the reverse process of
the vortex-antivortex annihilation demonstrated in an earlier
report [21]. The driving force for the domain nucleation is that
in this case the self-energy of solitons is negative, which favors
more solitons, i.e., more domain walls, as discussed in Section
D. Also, the evolution from the vortex domains to the IC
phase is accompanied by the annihilation of vortex-antivortex
pairs, as shown in Figs. 7(b)–7(d). Through the creation and
annihilation of vortex-antivortex pairs, the wavelength of the
IC phase in the final domain structure is close to the equilibrium
wavelength as indicated in Fig. 4(b), and independent of
the initial vortex density. Therefore the vortex density at
the IC-vortex boundary is determined by the magnitude
of the applied strain, and independent of the initial vortex
density.

III. CONCLUSIONS

We investigated the stability and properties of the single-
chirality stripe domains, i.e., the incommensurate phase, in
hexagonal REMnO3 (RE, rare earths) induced by an applied
strain. By comparing the numerical results of REMnO3 with
the analytical solution of the XY model, we demonstrated the
effect of the energy anisotropy in the order parameter space.
Surprisingly, in REMnO3, when the applied strain is large,
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abnormal enhancement of the order parameter magnitude is
observed near the transition regions between the plateaus
corresponding to the commensurate domains. The equilibrium
wavelength is studied as a function of the applied strain at
different temperatures, and a temperature-strain phase diagram
is constructed for the stabilities of the incommensurate phase,
commensurate phase, and high-symmetry phase. Phase-field
simulations are employed to demonstrate the temporal evo-
lution of the domain structures under the applied strain. It
is found that the applied strain not only produces the force
separating the vortices and antivortices, but also results in the
creation and annihilation of vortex-antivortex pairs. The study
can serve as a guidance for the manipulation and engineering of
domains and associated topological defects in hard crystalline
materials.
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