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Novel mechanism for order patterning in alloys driven by irradiation
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Kinetic Monte Carlo simulations have been performed to investigate the evolution of ordered domains in model
alloys under irradiation. The alloys investigated were equiatomic binary alloys on a simple square lattice with
first and second nearest-neighbor interactions, chosen so that a 2 × 2 ordered structure is the equilibrium phase
below a critical order-disorder transition temperature Tc. The ratio of second to first nearest-neighbor interactions
R was varied from 0 to 0.45 to explore the effect of the thermodynamic frustrations induced by the proximity of
the 2 × 1 phase boundary, which occurs at R = 0.5 for T = 0. The atomic mixing produced by nuclear collisions
was modeled by forcing the ballistic exchange of pairs of atoms at a controlled rate �b. This disordering process
competed with thermodynamic reordering, resulting in nonequilibrium steady states. Two trivial steady states
were found, a disordered state at high �b and low T , and a long-range ordered state at low �b and low T . In
the R = 0.45 alloy, however, a third steady state was identified at intermediate �b and T values, where multiple
long-range ordered domains coexisted dynamically. It is shown that this state of patterning of order resulted from
the coupling of the thermodynamic frustrations present in that alloy with the disorder introduced by irradiation.
The practical relevance of this novel mechanism for patterning of order under irradiation is discussed in the
context of recent observations of domain coexistence in irradiated Cu3Au.
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I. INTRODUCTION

Irradiation of hard matter with energetic projectiles, such
as electrons, ions, and neutrons, results in the formation of
point defects and the creation of structural and chemical
disorder (see, for instance, Refs. [1–3] for reviews). A
fraction of the energy deposited into the system is dissipated
through relaxation processes involving the thermally activated
migration of point defects. Under sustained irradiation, the
competition between the continuous creation of disorder and
its annealing by these relaxation processes can drive the
materials into nonequilibrium steady states [2]. For alloy
systems with moderate, positive heats of mixing, for instance,
the forced atomic replacements generated by nuclear collisions
tend to homogenize the composition field, whereas thermally
activated atomic diffusion driven by thermodynamics pro-
motes phase separation. In the case of alloy systems with
negative heats of mixing, the chemical disorder created by
nuclear collisions now competes with the chemical order-
ing promoted by thermodynamics. Using mean-field kinetic
models, Martin showed that, by assuming the forced atomic
replacements are akin to a ballistic, i.e., athermal, diffusion,
these alloy systems reach steady states that are equivalent,
or nearly equivalent, to equilibrium states, albeit at a higher
(effective) temperature [4]. This effective temperature captures
the contribution of the nonequilibrium configurational entropy
introduced by the forced atomic relocations. This model
is, however, not general, and alloys under irradiation have
been found to reach steady states that have no counterpart
in their equilibrium phase diagrams. A striking example is
the case of self-organization reactions, yielding steady-state
microstructures with self-selected length scales, often referred
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to as patterning states [5]. These self-organization reactions
are similar to those often observed in other dynamical,
dissipative systems such as fluid flows, chemical reactions,
weather systems, or alloys undergoing solidification [5]. In
the case of alloy evolutions described by the composition
field, a conserved order parameter, modeling and atomistic
simulations indicate that a competition between dynamic
processes with distinct characteristic length scales can stabilize
steady-state microstructures with finite length scales. This is
the case, for instance, during energetic, heavy ion irradiations,
where large displacement cascades force the relocation of
atoms with a characteristic length scale Rb, which ranges from
one atomic distance to a few nanometers [1], resulting in a
nonlocal chemical mixing [6]. For alloys that phase separate
in thermodynamic equilibrium, this forced finite-range mixing
competes with thermally activated decomposition, which is
short range, as point defects jump from atomic sites to nearest
sites. The outcome of this scale-dependent competition can
be summarized in a dynamical phase diagram in the (Rb,
γb) space, where γb is a relative forcing intensity, defined
as the ratio of the forced jumps over the thermal jumps.
Continuum models and atomistic simulations predict that,
when Rb exceeds a critical value Rc, compositional patterns
become stable for a range of forcing intensities around γb ≈ 1
[6–9]. These predictions are in good agreement with the
compositional patterning reported in several immiscible alloys
subjected to ion irradiation, including several Cu-base alloys
such as Cu-Ag, Cu-Co, and Cu-Fe [10–13].

In the case of chemically ordered alloys, it is unclear
whether irradiation can induce a similar patterning of order, as
can be realized by the following kinetic equation describing
the evolution of the long-range order (LRO) parameter S:

∂S

∂t
= −Mo

∂F

∂S
− �bS, (1)

The first term on the right-hand side of Eq. (1), which
captures the thermally activated part of the kinetics, is the
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FIG. 1. Transmission electron microscopy imaging of ordered
domains in L12 ordered Cu3Au irradiated with 500 keV Ne ions at
350 ◦C at a dose rate of 1.1 × 10−4 displacement per atom per second
(dpa/s) (dark field image formed using L12 superlattice reflection).
Notice the presence of many, small new domains, which nucleated
within the initial single-domain ordered state.

standard “model A”, for the relaxation of nonconserved order
parameters [14,15]. In this term, Mo represents a thermal
mobility and F the free energy of the alloy. This free energy
is usually decomposed into the free energy of an alloy with
a homogeneous order S, typically a nonlinear function of S,
and contributions proportional to |∇S|2 and possibly higher
order derivatives to capture excess energy due to spatial
variations of S [15]. The second term on the right-hand side
of Eq. (1) captures the disordering introduced by irradiation
due to forced replacements, assumed here to be ballistic events
taking place at a rate �b [16,17]. In this simple approach, the
disordering introduced by irradiation does not introduce any
new length scale, and therefore, it is not expected to induce
patterning of the field S. This conclusion is supported by a
simple linear stability analysis of Eq. (1) [18]. That equation,
however, relies on several simplifications; for instance, it
does not capture the fact that energetic displacement cascades
introduce chemical disorder as large disordered zones [19,20].
Kinetic Monte Carlo (KMC) simulations indicated that, when
the reordering of these zones promotes the nucleation of
new ordered domains, a steady state comprised of multiple,
coexisting ordered domains is found in a region of the (T ,
�b) parameter space where ordering and disordering rates
are of similar magnitude [21,22]. In this patterning state,
the maximum domain size is bounded by the size of the
disordered zones, which ranges from 1 to 10 nm [1,20] for
typical alloys and ion irradiation conditions. Recently, it has
been reported that 500 keV Ne irradiation of Cu3Au, which
forms an L12 ordered structure [23], can indeed lead to the
dynamical formation of new domains in a preexisting single
domain structure; an example is illustrated in Fig. 1 [24]. The
largest size of these new domains, however, exceeds 10 nm,
thus beyond the largest size for disordered zones, and contrary
to the model just presented.

In this paper, we thus investigate alternative mechanisms
that could lead to patterning of order under irradiation.
For that purpose, we consider a model two-dimensional

(2D) binary alloy and use KMC simulations to investigate
the evolution of the alloy microstructure under irradiation,
assuming that irradiation does not produce cascades, but rather
is restricted to the homogeneous pairwise switching of atoms
to introduce atomistic disorder, as in Eq. (1). We find that, for
thermodynamic parameters positioning the system close to an
order-order transition, this homogeneous disordering can also
stabilize patterns of order at steady state.

II. SIMULATIONS METHODS

A. Energetics

We consider here for simplicity a 2D equiatomic alloy
AB on a rigid square lattice, with pair interactions between
first and second nearest neighbors. Phase equilibrium at finite
temperature is determined by Ising-like interaction parameters
Js , defined for s = 1, 2 by

Js
1
4

(
2ε

(s)
AB − ε

(s)
BB

)
, (2)

where ε
(s)
ij is the energy of an ij pair of atoms that are s

nearest neighbors. With this definition, alloys tend to undergo
phase separation for J1 > 0 and ordering for J1 < 0. Owing
to the competition between J1 and J2, however, three ground
states exist for this system [25], depending on the sign and
relative amplitude of J1 and J2, as illustrated in Fig. 2. It is
convenient to introduce the ratio R = J2/J1. For J1 > 0 and
R > − 1

2 , the ground state is analogous to a ferromagnetic
state, with phase separation between pure A and pure B

phases, while for J1 < 0 and R < 1
2 , the ground state is

analogous to an antiferromagnetic state, with a 2 × 2 ordered
structure. This is the phase investigated here, in analogy
with Cu3Au. This ordered structure can be decomposed into
two sublattices, and it possesses two variants, while the
L12 ordered structure in Cu3Au has four sublattices and
four variants. For J1 < 0 and R > 1

2 , the ground state is
the so-called “superantiferromagnetic” state, with a 2 × 1
ordered structure comprised of alternating rows of A and B

FIG. 2. Ground state diagram for the 2D square lattice with first
and second nearest-neighbor interactions [25]. The four small open
circles correspond to the systems studied in this paper.
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atoms. The interactions considered in this paper correspond to
J1 = −0.05 eV and R = 0.45, 0.30, 0.1, and 0. We will show
that, under irradiation, the alloy system with R = 0.45, which
is close to the boundary between the 2 × 2 and 2 × 1 states,
behaves very differently from the others. At finite temperature,
the exact nature of the equilibrium boundary between the
2 × 2 and 2 × 1 states is complex, with a nonuniversal
behavior [26–28]. The paper by Kalz et al. [29] suggests
that this transition is a first-order transition, with the critical
temperatures of the 2 × 1 and 2 × 2 structures going to zero at
the boundary. In this paper, we avoid systems too close to that
boundary by restricting ourselves to R � 0.45. For R = 0.45,
we determine the order-disorder transition temperature for the
2 × 2 to 1 × 1 transition to be ≈ 373 K, i.e., 0.643 J1/kB, using
the fourth-order cumulant method [30]. This value is consistent
with previous reports [27,29,31], and it is significantly lower
than the value for R = 0,2/In (1 + √

2)J1/kB ≈ 2.27J1/kB

[32], owing to the frustrations introduced by the second nearest
neighbor interaction.

B. Kinetics

Two distinct kinetic processes are considered in this paper.
The first is thermally activated and allows the system to relax
toward its equilibrium state at finite temperatures, while the
second simulates the disorder introduced by energetic atomic
collisions. For the thermally activated dynamics, vacancies
are introduced in the 2D lattice, and atoms can migrate by
exchanging positions with vacancies that are first or second
nearest neighbors; second nearest-neighbor jumps are included
to suppress vacancy trapping on antisite defects. For dilute
vacancy concentrations up to 2%, the kinetics are found to
scale linearly with the vacancy concentration, and in the results
described below, a 0.5% concentration is used to increase the
efficiency of the kinetic algorithm. The jump frequency of one
such exchange between atom X,X = A,B, and a vacancy V

is calculated using transition state theory

�XV = v exp

(
−�EXV

kBT

)
, (3)

where ν is an attempt frequency, set to a constant value
of 1014 s−1 here for simplicity, and the activation energy is
calculated using a broken bond model [33]

�EXV = Esp −
(

(1)∑
N

ε
(1)
XN +

(2)∑
M

ε2
XM

)
, (4)

where Esp is a saddle point energy, assumed here to be
independent of the jumping atom X, and the two summations
in Eq. (4) run over the first and second shell of neighbors,
respectively. The thermal jump frequencies defined by Eqs. (3)
and (4) obey detailed balance. We restrict ourselves here to
a symmetric alloy system, and without loss of generality,
we set ε

(1)
AA = ε

(1)
BB = ε

(2)
AA = ε

(2)
BB = 0 and Esp = 0, as these

parameters only define the absolute energy scale and the
diffusion coefficient time scale, both of which are irrelevant
for this paper, as it focuses on determining steady states.

The second dynamic process in the model represents
the atomic replacements generated by high-energy collisions
[1]. As in previous papers [4,34,35], these collisions are

approximated by a random exchange between atoms with an
imposed jump frequency �b, and this process is assumed to be
ballistic, i.e., athermal. The dynamics is thus equivalent to an
infinite-temperature dynamics and, when acting alone, drive
the alloy into a random, disordered state. For simplicity, these
exchanges are introduced one pair at a time, a situation close to
high-energy electron irradiation conditions [1], between first
and second nearest-neighbor sites (as for thermal jumps). This
avoids, as noted above, possible complications associated with
temporal and spatial correlations present in the displacement
cascades created by ion and neutron irradiations [1].

Kinetic Monte Carlo simulations are used to obtain the
evolution of the system with the thermal and the ballistic
dynamics acting in parallel. As reported for similar simulations
of alloys under irradiation [21,36,37], the system is observed to
reach a unique steady state for any given set of T and �b values,
and this paper focuses on building a map of steady states in
the (T , �b) control-parameter space. The lattice size used in
the simulations is 128 × 128. A residence time algorithm is
employed to evolve the system in the presence of both thermal
and ballistic dynamics [38,39].

C. Order state characterization

Three distinct steady states are identified by direct visual-
ization of the alloy microstructure, namely a 1 × 1 disordered
state, a single-domain 2 × 2 ordered state, and a multidomain
2 × 2 ordered state. In order to identify and distinguish these
three states, we employ three measures of the state of chemical
order present in the system. First, following Bethe [40] and
Cowley [41], we define a short-range order (SRO) parameter
η based on the number of AB bonds present in the system

η = nAB − 2zXAXB

n
(0)
AB − 2zXAXB

, (5)

where nAB and n
(0)
AB are the number of AB first nearest-

neighbor pairs in the current and perfectly ordered states,
respectively; z is the coordination number of the first nearest-
neighbor shell, here 4; and XA and XB the A and B atomic
fractions. This SRO parameter is calculated globally, as well
as locally, i.e., at every lattice site r i. Through Eq. (5), the
SRO parameter is normalized so that η(rj ) = +1 for perfectly
ordered sites, η(rj ) = 0 for disordered sites, and η(rj ) = −1
for local phase separation, i.e., at antisite defects where an
atom is surrounded by four first nearest-neighborlike atoms.
The second measure of order is a LRO parameter. For it,
we calculate the intensity of the structure factor around a
superlattice wave vector ks

I =
˝∣∣∣∣∣∣N−1

∑
j

(σj − XA)exp[2πi(k − ks) · rj ]

∣∣∣∣∣∣
˛
, (6)

where N is the number of lattice sites, σj takes a value of 1 if
the site j at rj is occupied by an A atom and 0 otherwise, ks =
[1/(2a), 1/(2a)] for the 2 × 2 ordered structure, a being the
lattice parameter, and the brackets denote circular integration
over (k − ks) of the structure factor, around k = ks , up to
half the Brillouin zone. This structure factor intensity is also
separately calculated for a perfectly ordered lattice and for a
random structure, yielding values of I0 and Ib, respectively, so
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FIG. 3. SRO η maps at steady state for the R = 0 alloy at T = 0.8 Tc and for ballistic frequency �b = 0,6 × 107, 2 × 108, and 1 × 109 s−1,
from left to right. The color scale ranges from yellow (light gray) for η = 1 to red (dark gray) for η = 0.

that a normalized LRO parameter S can be obtained through

S =
√

I − Ib

I0 − Ib
, (7)

The third measure of order is introduced to distinguish or-
dered states containing a single domain and multiple domains.
For that purpose, we calculate the net “magnetization” of a
configuration M by assigning “spin” values of +1 and −1 to
atoms based on their nature and the sublattice they belong to.
Specifically, decomposing the 2 × 2 lattice into two simple
square sublattices α and β, rotated by 45◦ with respect to the
initial square lattice, A atoms on the α sublattice and B atoms
on the β sublattice are given a +1 “spin” value, while B atoms
on the α sublattice and A atoms on the β sublattice are given
a −1 “spin” value. These “spin” values are then summed over
the lattice and normalized by the number of atoms to obtain
a net magnetization M varying between −1 and +1. In order
to obtain a measure that is independent of the choice made in
labeling the sublattices, we use |M| to determine the imbalance
between the two variants of the 2 × 2 state. Specifically, a
perfectly long-range ordered 2 × 2 state with a single domain
will be characterized by |M| ≈ 1, whereas in the case of a
microstructure with multiple ordered domains resulting in
similar volume fractions for the two variants of order |M| ≈ 0.
The values of η, S, and |M| are essentially unaffected by the
small amount of vacancies present in the simulation cell.

III. RESULTS

We first contrast the steady states observed in the alloy
system R = 0 and R = 0.45. In the case R = 0, i.e., far from

the 2 × 2-to-2 × 1 boundary, at any given temperature below
Tc, the system reaches a steady state with a single-domain
long-range ordered 2 × 2 state at low enough ballistic jump
frequency �b. As �b is increased, the LRO and SRO values
at steady state are continuously reduced until, at large enough
�b, the steady state becomes disordered, as illustrated in Fig. 3
for T = 0.8 Tc This progressive disordering of the steady
state is consistent with the random disorder introduced by
the ballistic exchanges. In contrast, in the R = 0.45 alloy, see
Fig. 4, a sequence of three steady states is observed as �b is
increased, starting with a single-domain long-range ordered
2 × 2 state at low �b, to a multidomain long-range ordered
2 × 2 state at intermediate �b, to a disordered state at high
�b. The multidomain long-range ordered 2 × 2 steady state
is identified as a steady state with large values of the LRO
parameter, here we imposed S � 0.4, but small values of the
absolute net magnetization, here |M| � 0.1. The existence of
this steady state does not correspond to any equilibrium state
for this alloy, and owing to the presence of a self-selected, finite
domain size, we refer to it as a state of patterning of order.

Two additional points are worth noticing regarding the
multidomain steady state. First, the microstructure of the
alloy in this state contains many ordered domains, and larger
domains often contain several embedded, smaller domains
of the opposite variant. Direct visualization of the temporal
evolution of the system shows that this domain structure is
a dynamical one, continuously evolving. In particular, some
domains coarsen, but with new domains nucleating within
these larger domains, preventing the system from reaching a
single-domain steady state. These new domains nucleate by
the migration and aggregation of antisites that are randomly

FIG. 4. SRO η maps at steady state for the R = 0.45 alloy at T = 0.8 Tc and for ballistic frequency �b = 0, 1.2 × 103, 4.15 × 103, and
3 × 104 s−1, from left to right. The color scale ranges from yellow (light gray) for η = 1 to red (dark gray) for η = 0.
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FIG. 5. Temporal evolution of the SRO parameter η and the LRO
parameter S for R = 0.45 alloy, T = 0.8 Tc, and �b = 3 × 103 s−1.
Systems initially ordered and initially disordered reached the same
steady state. As expected, the SRO reaches steady state at shorter
times than the LRO, and fluctuations are larger for the LRO evolution
than for the SRO one.

introduced by ballistic exchanges. In the R = 0.45 alloy, the
nucleation rate is high, as suggested from Fig. 4, while new
domains are rarely observed in the R = 0 alloy, see Fig. 3.
The second point is that, for the R = 0.45 alloy, the domain,
or antiphase boundaries (APBs) tend to be faceted along the
〈10〉 directions, suggesting that the excess energy of these
APBs is low in this alloy. These two points are in fact related,
as will be discussed in Sec. IV.

In order to determine possible influences of the initial state
on the steady-state microstructure, for all parameters reported
here, simulations were initiated with two opposite states of
order, a single-domain perfectly ordered 2 × 2 state and a
fully random, disordered state. For these two initial states, the
systems always reach the same steady-state values of order
parameters η and S, as illustrated in Fig. 5 for the alloy R =
0.45, T = 0.8 Tc, and �b = 3 × 103 s−1. This invariance of the
steady state indicates that the dissipative systems studied here
are ergodic. We used this property to determine when systems
had reached their steady state for building the steady-state
maps presented below.

The overall evolution of these driven alloys can be captured
by building steady-state maps of η, S, and |M| in the (T , �b)

FIG. 6. For alloy R = 0, steady state values of (a) LRO parameter S, (b) absolute net magnetization |M|, and (c) SRO parameter η as
function of temperature and replacement rate �b. Initial condition is fully ordered 2 × 2 state. Maps are constructed from 540 (T , �b) points.
White contour lines are added to highlight 20% decreases in the parameters. Overall phase diagram is displayed in (d) using criteria given in
text.
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FIG. 7. For alloy R = 0.45, steady-state values of (a) LRO parameter S, (b) absolute net magnetization |M|, and (c) SRO parameter η as
function of temperature and replacement rate �b. Initial condition is fully ordered 2 × 2 state. Maps are constructed from 340 (T , �b) points.
White contour lines are added to highlight 20% decreases in the parameters. Overall phase diagram is displayed in (d) using criteria given in
text.

control parameter space, as seen in Fig. 6 for R = 0 and Fig. 7
for R = 0.45.

The most notable result of Figs. 6 and 7 is the existence
of a region in the (T , �b) space where the alloy with
R = 0.45 stabilizes into a multidomain long-range ordered
2 × 2 steady state. This domain, moreover, exists for a broad
range of ballistic jump frequencies, especially as the tempera-
ture approaches Tc. The transition from the multidomain state
to the disordered state is more difficult to locate, as the domain
size is gradually reduced when �b is increased. This transition
is estimated here using a threshold value for the LRO parameter
of Sth = 0.1. This choice is based on observations that the
equilibrium value of S drops below 0.1 for T above ≈ 1.2Tc.
More accurate determinations are possible, for instance, by
deconvolving the superlattice intensity into SRO and LRO
contributions [22], but the present criterion is sufficient for
establishing the existence of the patterning of order and
determining the mechanisms responsible for its stabilization.

The nonequilibrium phase diagrams in Figs. 6 and 7
were calculated in the (T , �b) control-parameter space. For
dissipative systems at steady state, it is however physically
insightful to evaluate the forcing conditions by using a
reduced forcing intensity γ [4]. In systems described by
Eq. (1), for instance, the driven steady state is equivalent

to the thermodynamic equilibrium state of an effective alloy
described by the effective free energy Feff = F + γ S2/2, with
γ = �b/M . In the present KMC simulations, the forcing
intensity is directly obtained by measuring the ratio of ballistic
jumps to vacancy jumps [36]. It is interesting in particular to
determine this forcing intensity near the transition between
different steady states. For the R = 0 alloy, at T = 0.8Tc, for
instance, the transition between ordered to disordered steady
states occurs for �b ≈ 2.6 × 108 s−1, and the corresponding
forcing intensity is measured to be 5.0 × 10−2. This forcing
intensity is similar to values reported for other order-disorder
transitions driven by ballistic exchanges [36]. In contrast,
in the R = 0.45 alloy, the forcing intensity at the transition
between the single-domain to the multiple-domain steady state
is significantly lower. For T = 0.8 Tc, this transition takes
place for �b ≈ 3 × 103 s−1, resulting in a forcing intensity
of ≈ 5.2 × 10−3. The fact that such a low forcing intensity is
sufficient to destabilize a long-range ordered state to the benefit
of a patterning of order steady state adds further support to our
previous observation that, in the R = 0.45 alloy, the disorder
introduced by ballistic exchanges couples very strongly with
thermally activated relaxation processes, in particular those
controlling nucleation of new domains and APB migration.
This point is further discussed in the next section.
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IV. DISCUSSION

The primary result of this paper is that the atomic-scale
disorder introduced by isolated ballistic events can stabilize a
steady-state microstructure where multiple long-range ordered
domains dynamically coexist. In contrast to past studies where
the ballistic events were introduced in the form of large
disordered zones, which could promote directly the nucleation
of new domains, this paper introduces ballistic events one pair
of antisites at a time. All prior simulations using this latter
irradiation condition concluded that, below Tc, the system
should stabilize into a single-domain long-range ordered state
at low ballistic jump frequency and a disordered state at high
ballistic jump frequency [21,22,36,42]. These past results are
in fact in good agreement with the present simulations when the
ratio of first to second nearest-neighbor interactions R is such
that the system is well inside the stability region of the 2 × 2
“antiferromagnetic” ordered state, i.e., R = 0 to R = 0.3.
Patterning of order is observed, on the other hand, when R is
such that the alloy is close to the boundary between the 2 × 2
ordered state and the 2 × 1 superantiferromagnetic ordered
state, e.g., R = 0.45. Analysis of the system microstructure
and evolutions reveals that, in this alloy, antisite migration
can lead to their clustering and to the formation of new,
antiphase domains. Furthermore, APBs are faceted along the
〈10〉 directions.

A first rationalization of these results can be obtained by
analyzing the energetics of a perfectly ordered 2 × 2 state
containing a few antisites. Simple bond counting indicates that
the excess energy of one Aβ antisite, i.e., an A atom occupying
a β sublattice site, is given by �E

(1)
AS = 4(ε(1)

AA − ε
(1)
AB) +

4(ε(2)
AB − ε2

BB), see Fig. 8(a). For alloys with symmetric

(a) 

(b) 

(c) 

FIG. 8. Various configurations of antisites and disorder on the
2 × 2 square lattice, here decomposed into α and β sublattice sites,
represented by circles and squares, respectively, with A atoms and B

atoms shown as black and white symbols, respectively. (a) Isolated
Aβ antisite, (b) pair of first nearest-neighbor Aβ − Bα antisites, and
(c) (10) APB.

interaction parameters as considered here, the excess energy
is the same for Aβ and Bα antisites, so it can be directly
expressed in terms of the coupling constants J1 and J2 as
�E

(1)
AS = −8J1 + 8J2 = −8J1(1 − R). Turning then to one

pair of antisites, one finds that two second nearest-neighbor
Aβ antisites repel each other for R � 0. Opposite antisites
Aβ and Bα , in contrast, can form stable first nearest-neighbor
pairs, as the excess energy per antisite of one such pair
is calculated to be �E

(2)
AS = −6J1 + 8J2 = −6J1(1 − 4R/3),

which is always less than �E
(1)
AS. More generally, in the case

of n first nearest-neighbor antisites (n � 1) aligned along
a 〈10〉 direction, the excess energy per antisite becomes
�E

(n)
AS = −4 n+1

n
J1(1 − 2n

n+1R). The excess energy per antisite
therefore decreases as n increases, and in the limit n → ∞,
it reaches the limit �E

(∞)
AS = −4J1(1 − 2R). The remarkable

result is that this excess energy goes to zero at R = 1
2 . As

R approaches 1
2 , there is thus a strong energetic bias for

pairs of opposite antisites Aβ − Bα to form bound pairs.
Opposite antisites could also recombine, of course, but this
recombination requires a sequence of correlated vacancy
jumps. It is thus also expected for R approaching 1

2 that the rate
of formation and the stability of bound pairs greatly increase
as the concentration of antisites increases, i.e., as the ballistic
jump frequency �b increases.

It is also interesting to relate the excess energy of bound
antisites to the excess energy of APBs. As illustrated in
Fig. 8(c), it is readily seen that the excess energy per
unit length a of an infinite {10} APB is directly related
to �E

(∞)
AS through γ

{10}
APB = �E

(∞)
AS /(2a) = −2J1(1 − 2R)/a.

The presence of low-energy APBs as R approaches 1
2 is thus

fully consistent with the {10} faceting of APBs observed in
the simulations, see for instance Figs. 4(c) and 4(d). We also
note that atoms in the core of these APBs are organized in
motifs that are embryos of the 2 × 1, superantiferromagnetic
state. The fact that γ (10)

APB → 0 as R → 1
2 is thus directly related

to the degeneracy of the ground state between the 2 × 1 and
2 × 2 ordered structures for R = 1

2 . The net conclusion of
this discussion is that a simple consideration of the energetics
of antisite interactions provides a reasonable rationalization
for the observations reported in Sec. III that, for R = 0.45,
antisites can cluster and form nuclei for antiphase domains.

We next illustrate how the kinetic stabilization of bound
antisites can lead to the patterning of order. For this purpose,
we modify a model previously introduced to account for
patterning of order under irradiation conditions that result in
the formation of disordered zones by displacement cascades
[43]. The model relies on the idea that, in the patterning
state, there is an equal volume fraction of the antiphase
domains allowed by the symmetry of the ordered phase,
whereas in a single-domain LRO state, the microstructure
contains only one macroscopic variant. The transition from
one steady state to another can thus be captured by monitoring
the area fraction occupied by one variant A1. This evolution
is coupled to that of the APB length per unit area LAPB and
to the concentration of antisites. We derive in Appendix A,
the defining equations for how irradiated system will evolve
and provide steady-state solutions. The key results are: At low
ballistic jump frequency, A1 = 1

2 is an unstable solution, just
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as it is in the absence of irradiation. The order microstructure
is thus expected to coarsen in such a way that one ordered
domain, say belonging to variant 1, overruns the whole volume,
i.e., A1 → 1. At higher ballistic jump frequency, however,
A1 = 1

2 becomes a stable solution, and the APB length per
unit area stabilizes at a nonzero value. This solution thus
corresponds to the patterning of order steady state. While the
above model is phenomenological, it provides direct support
for the conclusion reached earlier that the clustering of antisites
and the ensuing nucleation of new domains, as observed in
the simulations, are processes that can stabilize patterns of
order. Returning to Eq. (1), it suggests that the patterning
observed here results from a coupling between the dissipation
of the excess free energy due to nonequilibrium antisites and
the domain boundary dynamics, a coupling that cannot be
captured by Eq. (1) in its present form. One possible path to
address this limitation would be to replace the scalar order
parameter S by a 2D order parameter that would describe
the 2 × 2 and the 2 × 1 structures at once, since APBs of the
2 × 2 structure can be seen as very small elements with a 2 × 1
ordered state, and to take into account that thermally activated
jumps are mediated by vacancies. This extended model would
capture key thermodynamic and kinetic couplings between
the disorder introduced by irradiation and the relaxation rates
of this 2D order parameter, and as such, it might be able to
generate patterning of order at steady state.

The results presented in this paper focused on a simple
2D model alloy near a degenerate state. The analysis of these
results indicate that ordering frustrations near this degenerate
state biased the energy dissipation of the disorder introduced
by ballistic jumps, leading to the kinetic stabilization of APBs
and to patterning of order. This suggests that patterning of
order under irradiation could be found in more complex alloy
systems where the above requirements are met. The present
results also indicate that, unlike the compositional patterning
induced by finite-range mixing [6] and the order patterning
induced by disordered zones [21,22], this novel patterning
reaction does not rely on a finite length scale introduced by
the external forcing. The possibility of irradiation-induced
patterning without such an external length scale has been
established for phase separating systems [44,45], but to our
knowledge, this is the first time that it is proposed for systems
undergoing chemical ordering.

In the context of the recent findings of spontaneous
domain formation in L12 ordered Cu3Au alloys during Ne ion
irradiations [24] shown in Fig. 1, it is interesting to consider
whether the above requirements could be met in Cu3Au. We
first note that {100} APBs in Cu3Au exhibit strong faceting
at equilibrium, thus suggesting that these APBs carry very
low excess free energy. While it is problematic to calculate
APB energies from standard first principles techniques [46,47]
in Cu3Au, mean-field models provide simple expressions for
the energy of an L12 ordered state and its APBs as linear
combination of the pairwise interaction parameters J1,J2,J3

[48]. It is commonly assumed (and observed) that the strength
of these pairwise interactions decrease with the interaction
range, so that J1 should play a dominant role. Remarkably, J1

is absent from the expression of {100} APBs, thus providing
further support to the idea that {100} APBs carry low excess
energy. Lastly, for J1 < 0, the ground state is degenerate

between the L12 and D022 ordered structures for J2 = 0 [23].
The energetics of an L12 alloy with |J2| 
 |J1| therefore
share key characteristics with the 2D square lattice model
considered here when R approaches 1

2 . It thus appears possible
that, under irradiation, stable antisite clusters would form and
then contribute to the nucleation of new ordered domains, as
observed in Fig. 1.

Further work is needed, however, to test this hypothesis
for Cu3Au, especially since nonequilibrium point defects
play an important role in ordering and disordering kinetics
under irradiation [49]. In the present model, the description
of point defects has been simplified by ignoring interstitials
and by treating vacancies as a conserved species. Additional
simplifications were made in the parametrization of the kinetic
model, including allowing vacancies to jump to first and
second nearest-neighbor sites to avoid vacancy trapping and
using symmetric energy interaction parameters. Since these
settings affect the dependence of the thermal mobility Mo in
Eq. (1), with the local order parameters, they can modify the
steady state reached by the system, as well as the transitions
from one steady state to another. Overall, a predictive kinetic
model for Cu3Au under irradiation should therefore not only
be based on the L12 ordered structure, but include realistic
treatment of point defect creation, migration, recombination,
and annihilation on sinks [50–52], along with a fuller account
of irradiation-induced chemical disorder in nuclear collisions,
as done, for instance, in Ref. [8].

V. CONCLUSIONS

Kinetic Monte Carlo simulations were employed to in-
vestigate the effect of ballistic disordering on the order mi-
crostructure of a 2D binary alloy on a square lattice, with first
and second nearest-neighbor interactions chosen to stabilize a
2 × 2 ordered structure at thermodynamic equilibrium. When
the ratio R of second to first interaction energies approaches
1
2 , a value where a degenerate state would exist at 0 K in the
absence of ballistic jumps, it is observed that three possible
steady states exist in the presence of ballistic jumps, namely
disordered, long-range ordered with a single domain, or long-
range ordered with multiple domains that coexist dynamically.
The stabilization of this third steady state, which corresponds
to a self-organization of the driven alloy into patterns of order,
is discussed by considering the dynamics of antisites and APBs
under irradiation. In the R = 0.45 alloy, it is shown that pairs
of antisites can form stable bound complexes, which then serve
as nuclei for the formation of antiphase domains embedded in
larger domains. From this analysis, it is proposed that this
novel mechanism of patterning of order under irradiation can
take place in more complex alloy systems, including Cu3Au,
for which recent experiments suggest that ion irradiation can
lead to the continuous formation of antiphase domains.
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APPENDIX: PHENOMENOLOGICAL MODEL FOR
PATTERNING OF ORDER UNDER IRRADIATION

We detail here a simple model to capture the transition
from a single-domain long-range ordered state to a state of
patterning of order where multiple ordered domains coexist.
Following the derivation in Ref. [43] for an ordered state with
2 variants, the evolution of the APB length per unit area LAPB

and of the variant area fraction A1 in the absence of irradiation
can be written as

dLAPB

dt
= −g1MAPB(LAPB)3, (A1a)

dA1

dt
= −g2MAPB(LAPB)2

(
1

2
− A1

)
, (A1b)

where MAPB is a mobility of APBs, and g1 and g2 geometric
factors. The first equation is the standard Allen-Cahn equation
[15]. The second equation indicates that A1 = 1

2 is an unstable
steady state under thermal annealing, consistent with the
fact that one variant should progressively invade the whole
microstructure in this case. As discussed in Sec. IV, the key
irradiation effect for patterning is the formation of bound
pairs of antisite. By analogy with rate equation models for
point defects under irradiation [53], we introduce a simple
rate equation to describe the evolution of the site fraction of
antisites Canti

dCanti

dt
= 1

2
�b − KrCanti

2 − KbCanti
2, (A2a)

where Kr and Kb are rate constants for recombination and
for the formation of bound pairs, respectively. In the above
equation, the absorption of antisites by APBs has been
neglected for simplicity. The formation of bound pairs of
antisites leads to the creation of new APBs and new domains,
and paralleling again the derivations from Ref. [43], these
effects can be captured by modifying Eqs. (A1a) and (A1b)

dLAPB

dt
= −g1MAPB(LAPB)3 + 
KbC

2
anti, (A3a)

dA1

dt
= −g2MAPB(LAPB)2

(
1

2
− A1

)

+ 2 AKbC
2
anti

(
1

2
− A1

)
, (A3b)

where 
 and A are, respectively, the APB length per unit area
and the specific domain area generated by the clustering of
pairs of antisites. We set the irradiation term in Eq. (A3b)
proportional to (1/2 − A1) since the generation rate of new
domains, e.g., of variant 1, increases as the overall fraction of
the variant 2 increases. As the coefficient for this term is pos-
itive, it tends to stabilize microstructures with A1 = A2 = 1

2 .

The evolution of the domain area fraction is the main point
of interest here, and in the case of patterning of order, it is
expected that, at steady state, A1 = 1

2 be a stable solution,
whereas in the case of a single-domain 2 × 2 ordered state,
A1 should evolve toward 0 or 1. We thus focus now on the
stability of the A1 = 1

2 solution in Eq. (A3b). This stability is
determined by the relative magnitude of the coefficients for
the first and second terms in the right-hand side of Eq. (A3b)
since these two terms are linear in ( 1

2 − A1). These two
coefficients are, however, functions of Canti and, and so in
principle, one would need to solve for the coupled evolution
of the three Eqs. (A2), (A3a), and (A3b). A first simplification
is obtained by performing an adiabatic elimination of Canti,
using its steady-state value in Eqs. (A3a) and (A3b), since
the antisite population reaches its steady state much faster
than LAPB and A1. Second, Eq. (A3a) yields a unique, stable
steady state for LAPB, which is finite and positive for finite
ballistic jump frequency �b. In order to assess the competition
between the two terms in the domain area equation Eq. (A3b),
it is thus sufficient to replace the time-dependent LAPB by its
steady-state value, yielding

dA1

dt
= −

[
g2MAPB

(



2g1

Kb

Kb + Kr

�b

M

)2/3

− A
Kb

Kb + Kr
�b

](
1

2
− A1

)

= λ

(
1

2
− A1

)
. (A4)

Analysis of the two terms in the brackets of the right-hand
side in Eq. (A4) indicates that, at low ballistic jump frequency
�b, the first term dominates, so that λ is positive, and A1 = 1

2
is an unstable steady state, i.e., the system forms a single
domain 2 × 2 ordered state. As �b increases, there is a
critical value where λ changes sign and becomes negative,
thus transforming the A1 = 1

2 into a stable steady state, i.e.,
stabilizing a multidomain 2 × 2 ordered state. This simple
analysis assumes that �b is small enough for the alloy to
remain long-range ordered over this whole range. While the
above continuum model could be improved in many ways,
it captures the transition from single-domain to multidomain
2 × 2 ordered states and provides a simple physical picture
for some of the parameters controlling this transition. In
the case of an alloy system where the rate of formation
of bound pairs of antisites is negligible compared to the
antisite recombination rate, e.g., R = 0, 0.1, and 0.3, the ratio
Kb/(Kb + Kr) becomes negligible, and LAPB and A1 evolve
then similarly to equilibrium systems, with a single-domain
2 × 2 ordered state, until �b is so large that the steady state
transitions to a disordered state.
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