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Nonlinear flexoelectricity in noncentrosymmetric crystals
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We explore the elastic, dielectric, piezoelectric, and flexoelectric phenomenological coefficients as functions of
microscopic model parameters such as ionic positions and spring constants in the two-dimensional square-lattice
model with rocksalt-type ionic arrangement. Monte Carlo simulation reveals that a difference in the given elastic
constants of the diagonal springs, each of which connects the same cations or anions, is responsible for the linear
flexoelectric effect in the model. We show the quadratic flexoelectric effect is present only in noncentrosymmetric
systems, and it can overwhelm the linear effect in feasibly large strain gradients. It can also be seen that the linear
flexoelectric effect is suppressed by increasing the degree of inversion symmetry breaking due to a rigid dipolar
feature.
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I. INTRODUCTION

Flexoelectricity, the inducement of an electric polarization
by strain gradients, is an electromechanical phenomenon
inherent in all dielectric materials in any space group
[1–5]. Despite its ubiquity, the study of flexoelectricity has
mainly focused on soft materials and liquid crystals [6–8].
The flexoelectric effect in rigid materials was considered
insignificant compared to other electromechanical phenomena
such as piezoelectricity because a large strain gradient is
hard to attain in macroscopic systems without fracturing
or cracking. However, the recent advancement of nanoscale
technology enables us to manipulate atomic-scale systems
such as strain relaxation in misfit strained epitaxial thin films
[9–11], domain walls and interfaces [12–14], tip-induced
inhomogeneous mechanical deformation [15], and fractures
around a crack tip [16]. Observation of a giant strain gradient
in the range of 105–107 m−1 is not astonishing any longer in
nanoscale research [10,11,17,18].

Currently, the relation between ferroelectricity and strain
gradients has become an important topic of research in
dielectrics. The flexoelectric coefficients of some oxide
materials have been carefully determined by experiments
[19–21]. The development of calculation methods and the
simulation studies have also provided a deep understanding of
flexoelectricity [16,22–26]. Still, the flexoelectric effect under
a huge strain gradient, whereby a nonlinear response arises,
has been little studied. Considering the crystal symmetry,
the second-order flexoelectric effect which is described by
seventh- (odd-) order tensor becomes nonzero if the system
does not possess an inversion center such as piezoelectric or
ferroelectric materials [14,27,28].

Here, we elucidate the microscopic origin of the flex-
oelectric effect and evaluate the relative strength of the
quadratic and linear flexoelectric effects. Starting from the
analytic derivation of the electromechanical properties in a
one-dimensional ionic chain model, we expand our discussion
to the flexoelectricity into two-dimensional systems.
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II. ONE-DIMENSIONAL IONIC CHAIN MODEL

First, we introduce how to extract the intrinsic piezoelectric
effect while excluding the surface piezoelectric effect based on
a one-dimensional microscopic model in a pedagogical way
before beginning a more complex description regarding the
strain-gradient effects in a higher dimension. It is also essential
in terms of the fact that the analytic form of the piezoelectric
polarization is a part of the induced polarization in the case of
a strain gradient. Our starting ionic chain model is composed
of two parts: point masses (with alternating electric charges
±q) and harmonic massless springs (characterized by elastic
constants k1,2 or their inverse values, called elastic compliances
s1,2), as shown in the Fig. 1(a). We assume the alternating
positive and negative ions are equally spaced by a distance a

at no external perturbations, indicating the lattice parameter is
2a. The basic mechanical and dielectric responses of the model
are given by ε = 1

2a
(s1 + s2)T and �pu.c. = 1

4q2(s1 + s2)E,
respectively [29], where ε is strain, T is applied tensional
force, �pu.c. is induced dipole moment per unit cell, and E

is external electric field. If we need to break the inversion
symmetry, we can take different values of the elastic constants
(k1 �= k2) and/or choose different interionic spacing. In order
to clarify the intrinsic piezoelectric effect, it is convenient to
take a dipole-free unit cell as described in Fig. 1(b) because
the extrinsic piezoelectricity is reduced to a surface charge
effect and its contribution automatically drops from the bulk
calculation, as shown in the following equation [30]:

pu.c. =
∑

α

qαXα(ε) =
∑

α

qα

[
(1 + ε)X0

α + uα(ε)
]

=
∑

α

qαuα(ε), (1)

where pu.c. is the dipole moment per unit cell and α stands for
the ionic index within a unit cell. Xα represents the position
of αth ion when the strain ε is applied, while X0

α represents
the original coordinate, i.e., Xα(ε = 0) = X0

α . uα represents
the internal strain imposed on the αth ion, and it indicates
an additional displacement from the linear scaled position into
which an expansion by a factor of 1 + ε transforms X0

α [3]. The
dipole-free condition guarantees the equality

∑
α qαX0

α = 0.
For given T , ε is 1

2a
(s1 + s2)T since the length change of

each spring is s1,2T . The difference between the internal strains
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FIG. 1. One-dimensional ionic chain model. (a) The unperturbed
state. (b) A dipole-free unit cell. (c) Intrinsic piezoelectric effect. The
u1, u2, and u′

1 are internal strains indicating additional shifts from the
linearly scaled-up positions denoted by dashed circles. A situation
where the system of k2 > k1 is under a tensile force is shown.

u1 − u2 is calculated as 1
2 (s2 − s1)T . We note u1 is equal to u′

1
because the discrete translational symmetry is conserved. So
the induced piezoelectric dipole moment per unit cell pu.c. is
written as

pu.c. = q

2
u1−qu2+ q

2
u′

1 = q(u1 − u2)= q

2
(s2 − s1)T(

= qa
s2 − s1

s1 + s2
ε
)
. (2)

Thus, the piezoelectric coefficient, the dipole moment per unit
stress normalized by system size, is pu.c.

2aT
= q

4a
(s2 − s1). We

can identify that the converse piezoelectric coefficient, induced
strain per unit electric field, gives the same result, considering
a uniform electric field E provokes strain as ε(E) = 1

2a
[ 1

2 (s2 −
s1)qE] [29].

With this in mind, we speculate about the effects on electric
polarization by strain gradients in the one-dimension system.
For convenience in deriving the flexoelectric coefficient, the
unit cell is taken so that it has no electric quadrupole as well as
no dipole moment, i.e., satisfying the relations

∑
α qαXα = 0

and
∑

α qαX2
α = 0. Similar to the fact that the dipole-free

unit cell is useful in ruling out the extrinsic piezoelectric
effect, the virtual unit cell shown in the Fig. 2(a) automatically
excludes the surface flexoelectric effect arising from a nonzero
quadrupole moment of the system [3]. The unit cell contains
partial ions with fractional charges and masses. Although the
size of unit cell is larger than the real lattice parameter (2a),
the repetition of the cells in the interval of 2a constructs the
original lattice by permission of the overlap. But additional
surface charges in finite systems will be necessarily introduced
to compensate for the absence of the missing partial charges
on the terminations. This is a mathematical trick to nullify the
pole moments up to the second-order term, and it has merits
in studying bulk properties by explicitly separating them from
extrinsic effects.

Provided the system has a homogeneous strain gradient
of έ, as shown in Fig. 2(b), it is necessarily involved in a

FIG. 2. One-dimensional flexoelectric effect. (a) Dipole- and
quadrupole-free unit cell. (b) Strain gradient is driven by external
forces acting on cations and anions, which are denoted by Fp and Fn,
respectively. For a positive strain gradient of ∂ε

∂x
, Fp + Fn is negative.

The intrinsic flexoelectric property is determined by the ratio between
Fp and Fn.

tension gradient. They are related to each other by a mechanical
coefficient,

�ε

�x
(≡ έ) = 1

2a
(s1 + s2)

�T

�x
, (3)

where x is the spatial coordinate. From a microscopic point
of view, the phenomenological strain gradient increases the
tension force exerted on the next-nearest-neighbor spring,
which has the same elastic constant in the next unit cell, by
2a �T

�x
compared with that of the original unit cell. However,

the phenomenological gradient cannot uniquely determine the
relative intra-unit-cell deformations in one-dimensional cases.
We have an extra degree of freedom regarding the relative
strength of the so-called body forces exerted on positive and
negative ions (Fp and Fn). They are responsible for increments
between the tension forces of two neighboring springs.

The tension force on each spring, i.e., T0,T1,T2, and T3

assigned from the leftmost spring, should satisfy the conditions
T1 = T0 − Fp, T2 = T1 − Fn, and T3 = T2 − Fp for the force
balance at each ion. The positions of ions are also obtained in
a recursive manner as X1 = X0 + a + s2T0, X2 = X1 + a +
s1T1, X3 = X2 + a + s2T2, and X4 = X3 + a + s1T3. The in-
duced dipole in the cell is obtained finally as follows:

4∑
α=0

qαXα = q

8
(s1+s2)(Fp−Fn)+ q

8
(s2−s1)

(
3∑

i=0

Ti

)

= 1

2
qa2 Fp − Fn

Fp + Fn

έ + q

2
(s2 − s1)T̄ . (4)

Note that the strain gradient (and the corresponding
macroscopic tension gradient) is proportional to Fp + Fn.
The first term in the last equation is proportional to the
given strain gradient έ, and thus, the proportional coefficient
corresponds to the intrinsic flexoelectric effect. The second
term depending on the inversion symmetry breaking (s2 − s1)
is due to the intrinsic piezoelectric effect, and it has a
position dependence as such mean tension of the unit cell
T̄ does. From the derivation, we can make the conclusion
that the dimensionless Fp−Fn

Fp+Fn
(≡ f ) is the origin of the linear

flexoelectric effect. The term f seems to be arbitrarily chosen
in one-dimensional cases, although this ambiguity is removed
in higher dimensions, as addressed below. The value can be
temporally specified, as a characteristic of the one-dimensional
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FIG. 3. Two-dimensional ionic chain network model. (a) Model
scheme. (b) Pole-free cell. (c) Typical relaxed configuration of the
strain gradient of 0.05/a. Solid black dots are fixed sites. The black
guide lines illuminate the 3 × 3 pole-free cells in use. (d) Induced
dipole moment with respect to applied strain gradient. (e) Schematic
diagram of linear flexoelectricity.

model, by a sort of bonding property unrelated to the inversion
symmetry breaking or conjugate charges of constituent atoms
in cases of a uniform external field.

III. SIMULATION STUDY ON TWO-DIMENSIONAL
MODEL

A. Linear flexoelectricity

We have performed the simulation study based on a two-
dimensional ionic model. It consists of positive and negative
ions and elastic springs, as shown in Fig. 3(a). There are six
types of springs: two along the x axis (k1x, k2x), another two
along the y axis (k1y, k2y), and two connecting ions of the
same charges (kp, kn) along diagonals. It catches the essence
of nearest- and next-nearest-neighbor interactions in a two-
dimensional rocksalt structure, which is an easily addressable
crystalline system.

We introduce a pole-free double unit cell as displayed in
Fig. 3(b). It is convenient to describe the local states based
on the cell because the extrinsic piezoelectric and flexoelectric
effects are automatically eliminated in the bulk calculation, and
all extrinsic effects are converted into the problems related to
surface charges and surface dipoles.

The transverse strain gradient ∂εxx

∂y
is applied to a model

system composed of 5 × 5 pole-free cells (its size is 2a × 2a)
as shown in Fig. 3(c). The outermost black dots are fixed sites
[29]. Only the 3 × 3 pole-free cells out of 25 cells are included
in the property evaluation to rule out possible clamping effects
arising from the constraint edge sites. All the positions of

FIG. 4. Quadratic flexoelectric effect in a noncentrosymmetric
system. (a) An ionic model with no inversion symmetry as a
consequence of the difference in k1y and k2y . (b) Dipole moment
per unit cell flexoelectrically induced by the local strain gradient.

ions except for the edge sites are relaxed by the Monte Carlo
algorithm until the total elastic energy stored in the springs is
minimized.

As a result, the conventional linear flexoelectric effect was
numerically reproduced, and it could be manipulated by tuning
the diagonal springs. The model systems were designed to
be centrosymmetric by setting all springs lying along the x

and y axes to be identical to prohibit any intervention of
the intrinsic piezoelectric effect. While tuning kp and kn,
the sum kp + kn was kept constant to equalize the elastic
property of each model system. Figure 3(d) shows the induced
flexoelectric dipole moment as a function of the transverse
strain gradient for selected kp, kn conditions. Each data point
and error bar represent the mean and standard deviation of
the local transverse strain gradient and the local y dipole
moment obtained from each relaxed configuration containing
the nine pole-free cells. A linear relationship between the strain
gradient and the induced dipole moment is found, implying
conventional linear flexoelectricity.

The lesson from the analytic derivation of the flexoelectric
coefficient in the one-dimensional ionic chain is that the
linear flexoelectric effect increases as f gets larger. As
shown in Fig. 3(e), the transverse strain gradient squeezes the
bottom layer, compressing the diagonal springs below, while it
expands the top layer, stretching the diagonal springs above. If
kp is larger than kn, the deformation generates a larger tugging
force on the positive ion than that on the negative one. As
a consequence, the positive ion shifts upward more than the
negative ion, resulting in a positive flexoelectric polarization.

B. Quadratic flexoelectricity

Furthermore, the nonlinear flexoelectric effect arising in
noncentrosymmetric systems is simulated. The inversion
symmetry is broken along the y axis by discriminating
between k1y and k2y [Fig. 4(a)]. A compliance-matching
condition s1x + s2x = s1y + s2y is held when modifying the
model parameters in order to make the elastic properties
along the x and y axes equivalent. In addition, the linear
flexoelectric response is eliminated by setting kp = kn to
focus on the second-order effect. It is worth mentioning
that, when k1x = k2x = k1y = k2y , the system belongs to the
two-dimensional space group p4mm; if k1x = k2x, k1y �= k2y ,
the symmetry is reduced to cm. Since the system also has
piezoelectricity, separating the piezoelectric contribution from
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FIG. 5. Flexoelectric coefficient maps. (a) Linear flexoelectric coefficient μ(1). (b) Quadratic flexoelectric coefficient μ(2). (c) Ratio of the
quadratic coefficient to the linear coefficient. A contour plot for the ratio is also given, and the dashed red line along the Ĩ axis represents where
the ratio diverges. The parameters Ĩ and F are defined in the main text. The grid intersection points represent the parameters values for which
the actual simulation was performed.

the raw simulated data of the induced dipole moment is
required to extract the pure flexoelectric effect. We were able
to estimate the local piezoelectric dipole moment by using
the piezoelectric coefficients and the local strain states [29].
Figure 4(b) exhibits the flexoelectric dipole moment per unit
cell obtained by varying the applied strain gradient in the
noncentrosymmetric system, indicating the manifestation of a
quadratic flexoelectric effect.

Finally, we systematically investigate the flexoelectric
coefficients with respect to model parameters. The coefficients
μ(1) and μ(2) can be determined by fitting the strain-gradient-
dependent data to the phenomenological relation:

pflexo
u.c. = μ(1)έ + μ(2)έ2, (5)

where pflexo
u.c. is the induced flexoelectric dipole moment per

pole-free cell and έ is the transverse strain gradient. Fixing the
spring constants along the x axis (k1x = k2x = 1), the spring
constants along the y axis and the diagonal axes were varied.
At that time, the macroscopic elastic properties of systems
were equalized by keeping the constraints kp + kn = 1 and
s1y + s2y = 2. Each flexoelectric coefficient is plotted as a
function of two dimensionless parameters of k2y−k1y

k2y+k1y
(≡ Ĩ ) and

kp−kn

kp+kn
(≡ F), which are related to the degree of inversion sym-

metry breaking and the difference in the interaction strengths
among the same kind of ions, respectively. As we expect,
μ(1) and μ(2) turn out to be linearly correlated with F and
Ĩ , respectively. Interestingly, μ(1) decreases as the inversion
symmetry breaking becomes severe, in addition to the linear
dependence on F [Fig. 5(a)]. It is most likely attributed to
the rigid dipolar feature associated with strong k2y and weak
k1y . This dimerization hampers ionic redistribution caused by
the difference in kp and kn under nonzero strain gradients.
Meanwhile, μ(2) is hardly affected by F [Fig. 5(b)]. The
plot of the ratio of the second-order flexoelectric coefficient
over the first-order one [Fig. 5(c)] enables the estimation
of a threshold strain gradient above which the quadratic
flexoelectric effect exceeds the linear effect. Considering the
typical atomic distance of a few angstroms, the threshold strain
gradient for the parameters along the yellow contour line, for
example, is 107–108 m−1, which is a feasible value reported
at the morphotropic phase interfaces where an asymmetric
piezoresponse has been found [14]. The quadratic flexoelectric
effect is small in most realistic situations. One exception that
appears to have been overlooked is fracture physics, which

is, by definition, a nonlinear mechanical problem. Crack tips
in particular concentrate the largest strain gradients that a
material can withstand, and recent calculations show enormous
asymmetric flexoelectric polarizations around crack tips [16].
We also note that the corrugated two-dimensional sheets
often undergo such large transverse strain gradient. Naumov
et al. performed a first-principles calculation on a corrugated
noncentrosymmetric boron nitride sheet, reporting a nonlinear
electromechanical effect [28].

IV. DISCUSSION

Our model system can be extended in various ways. It is
possible to consider a more complex unit cell that contains
multiple ionic bases and extended neighbor interactions at the
expense of rapidly increasing calculation complexity dealing
with possible combinations of ions in a unit cell and its
neighbors. On the other hand, to handle a system made of
a single kind of atoms, it can be treated as a pseudobinary ion
system by introducing imaginary ions that stand for the centers
of electron clouds [31]. Adopting anharmonic springs allows
the model system to represent the effects of electrostriction
and second-order piezoelectricity [32–35].

The magnitudes of charges can be considered the formal
charges of the ions in a naïve sense. One may also interpret
them as the Born effective charges taking electron redis-
tribution into account [36] and the spring constants as the
Born–von Kármán force constants [37] beyond the classical
picture. On the assumption that the charge is ten times larger
than the elementary charge of the electron and a is a few
angstroms, the simulated result for the linear flexoelectric
coefficient corresponds to ∼1 nC/m, which is comparable
to the measured quantity in SrTiO3 [21]. Our theoretical
approach opens the door to a quantitative understanding of
the electromechanical properties in crystals.
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