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Generalized boundary conditions for spin transfer
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We develop a comprehensive description of static and dynamic spin-transfer torque at interfaces between
a normal metal and a magnetic material. Specific examples of the latter include ferromagnets, collinear and
noncollinear antiferromagnets, general ferrimagnets, and spin glasses. We study the limit of the exchange-
dominated interactions, so that the full system is isotropic in spin space, apart from a possible symmetry-breaking
order. A general such interface yields three coefficients (corresponding to three independent generators of
rotations) generalizing the well-established notion of the spin-mixing conductance, which pertains to the collinear
case. We develop a nonequilibrium thermodynamic description of the emerging interfacial spin transfer and its
effect on the collective spin dynamics, while circumventing the usual discussion of spin currents and net
spin dynamics. Instead, our focus is on the dissipation and work effectuated by the interface. Microscopic
scattering-matrix based expressions are derived for the generalized spin-transfer coefficients.
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Introduction. The problem of interfacial spin transfer,
along with the associated spin torque [1] and spin pumping
[2,3], has been central to the field of metal-based spintronics
for over twenty years [4,5]. For much of its history, the
focus has been on the dynamics of collinear ferromagnets.
In this case, the spin-mixing conductance has become the
key quantity for describing both the spin torque [6] and
the spin pumping [2], which have subsequently been rec-
ognized as Onsager-reciprocal processes [7,8]. Recently, a
straightforward generalization to the dynamics of collinear
antiferromagnets has been put forward [9,10]. In particular, it
has been argued [11] that at frequencies much smaller than the
exchange energy, the interfacial spin transfer is dominated by
the rigid Néel-order dynamics. As such, it can be parametrized
by an antiferromagnetic spin-mixing conductance [9], in
close analogy to the ferromagnetic case, yielding only small
corrections due to the internal canting dynamics.

In this Rapid Communication, we generalize the description
of the low-frequency torque and pumping to noncollinear
magnetic configurations. The main underlying assumption
is that the interactions near the interface are dominated
by the spin-isotropic exchange coupling (of arbitrary form,
allowing, in particular, for frustration). At low frequencies, the
associated spin dynamics near the interface can be captured
in terms of rigid SU(2) rotations, with the spin-mixing con-
ductance generalized to a 3 × 3 positive-definite matrix. (See
Fig. 1 for a schematic.) The latter, when diagonalized along
certain principal axes locked to the magnet’s spin rotations,
can be parametrized by three independent coefficients. The
theory naturally lends itself to noncollinear antiferro- and
ferrimagnets as well as spin glasses [12–14].

We argue that the most streamlined description of spin
transfer in this generalized setting is accomplished by depart-
ing from the usual analysis of the interfacial spin currents
and instead focusing on energy. Namely, the central object
of the theory is the Rayleigh dissipation function for the
magnetic heat pumping into the normal metal, offset by
the appropriate work on the collective magnetic dynamics
(either ordered or disordered) by the spin-transfer torque.
Our perspective is thus based on energetics rather than spin
conservation (albeit the latter is recovered in the appropriate

cases). Following a general construction, we will check the
new methodology against the known spin-torque/pumping
results for the collinear (anti)ferromagnets and then apply it to
the case of spin glasses.

Phenomenology. The collective magnetic dynamics near
the interface are parametrized as a rigid rotation of spins. This
corresponds to the low-frequency limit, when all the relevant
energy scales in the magnet (associated with anisotropies,
Dzyaloshinsky-Moriya interactions, magnetic field, as well as
the driving frequency) are much lower than the microscopic
exchange interaction. In this limit, the largest-amplitude
dynamics correspond to the spin rotations as a whole, along
with smooth spatial textures thereof [11]. The latter are
inconsequential to our interfacial analysis. For simplicity, we
start by assuming the magnet is insulating.

At low frequencies, the instantaneous dissipation rate
associated with the magnetic dynamics depicted in Fig. 1 can
generally be written as [15,16]

P = ωT Ĝω = ωiGijωj , (1)

summing over the repeated indices. Ĝ is a positive-definite
(symmetric) 3 × 3 matrix parametrizing heat flow into the
normal metal, which (microscopically) depends on the strength
of the exchange coupling across the interface. The (spin) frame
of reference can be rotated to diagonalize Ĝ → {G1,G2,G3},
where Gi � 0 are the (generally) anisotropic damping param-
eters for rotations about the corresponding (principal) axes.

The usual Rayleigh dissipation function would be given
by half of the dissipation power (1) [15]. In the presence of
a spin accumulation μ in the metal, however, the interfacial
energy flow gets modified, due to the work done by μ on
the magnetic system [17]. In the special case of μ = h̄ω, in
particular, we see, from the corotating frame of reference, that
the combined system is in the state of a mutual equilibrium
[18]. Indeed, the spin accumulation is canceled by the fictitious
field h̄ω due to the rotation, while the spins in the magnet are
static. In this case, the electrons of the metal should not exert
any torque on the magnetic dynamics. The correspondingly
modified Rayleigh dissipation function, which accounts for
the work done by the spin-accumulation induced torque, is
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FIG. 1. A schematic of the magnetic system (right) in contact
with a normal metal (left). The nonequilibrium spin state of the metal
is parametrized by the (vectorial) spin accumulation μ. The magnet,
whose spin arrangement is determined by some isotropic exchange
Hamiltonian, is described, near the interface (x = 0), by uniform
(rigid) rotations of all spins. Its instantaneous nonequilibrium state
is thus characterized by the (vectorial) frequency of SO(3) rotation
ω. The 3 × 3 matrix Ĝ, which is governed by the electron reflection
amplitudes at the interface, generalizes the concept of the spin-mixing
conductance pertinent to the collinear case. The central object of the
theory is the modified Rayleigh dissipation function (2), expressed in
terms of Ĝ, ω, and μ.

thus deduced to be

R = 1
2 ω̃T Ĝω̃ , (2)

where ω̃ ≡ ω − μ/h̄ vanishes in the aforementioned state of
the mutual (dynamic) equilibrium [19]. We will now develop
a microscopic, scattering-matrix based theory for calculating
Ĝ, before applying Eq. (2) to some concrete examples of the
(Lagrangian) magnetic dynamics.

Scattering-matrix formalism. To introduce the relevant
microscopic concepts in the simplest setting, we start with
the case of a single quantum transport channel in the normal
metal. The reflection matrix thus has dimensions 2 × 2:

r̂ ≡ {rσσ ′ } , (3)

with rσσ ′
standing for the interfacial electron scattering

coefficients for spin σ ′ into σ . Having obtained the reflection
matrix in a certain (spin) frame of reference at time t = 0, it
would become

r̂(t) = Û (t)r̂Û †(t) , (4)

at a later time t [denoting r̂(0) by r̂]. The time-dependent
SU(2) transformation Û (t) describes the instantaneous state
of the magnet, corresponding to a three-dimensional rotation
of the (t = 0) reference state. The equation of motion for the
rotation matrix is

ih̄
d

dt
Û (t) = ω(t) · ŝ Û (t) , (5)

with the initial condition of Û (0) = 1. ŝ is the electron spin
operator (i.e., h̄/2 times a vector of the Pauli matrices σ̂ ) and
ω is the (vectorial) angular velocity.

The energy dissipation rate, for a given instantaneous
frequency of rotation ω, is given by [20,21]

P = h̄

4π
Tr[ ˙̂r ˙̂r†] , (6)

where ˙̂r ≡ dr̂/dt is the rate of change of the reflection matrix.
Substituting Eq. (4) into (6), we find

P = h̄

8π
Tr[ω2 − r̂(ω · σ̂ )r̂†(ω · σ̂ )] , (7)

where ω ≡ R̂−1ω, R̂ being the SO(3) rotation matrix corre-
sponding to the SU(2) spin rotation Û , at time t . We thus
conclude, according to the definition (1), that

Gij = h̄

4π

(
δij − 1

2
Tr

[
r̂R̂ii ′ σ̂i ′ r̂

†R̂jj ′ σ̂j ′
])

, (8)

or in matrix form,

Ĝ = h̄

4π
R̂ĝR̂−1 , (9)

where

gij ≡ δij − 1
2 Tr[r̂σ̂i r̂

†σ̂j ] . (10)

Note that in order to retain only the relevant symmetric part
of Ĝ, the matrix ĝ entering Eq. (9) needs to be symmetrized
[i.e., ĝ → (ĝ + ĝ

T )/2], which should be understood as implicit
in the above definition [22].

In the simplest case of a collinear (ferro-, antiferro-, or
ferri-)magnet with the magnetic order oriented along the z

axis, the matrix (10) simplifies tremendously to

ĝ → gmix{1,1,0} (collinear order) , (11)

where gmix ≡ 1 − Re r↑↑r↓↓∗ is the (real part of the) spin-
mixing conductance for a single quantum channel [2]. The gzz

matrix element is zero as rotations around the z axis commute
with the collinear order.

Multichannel leads. It is straightforward to generalize our
treatment to an arbitrary number N of transverse quantum
channels in the normal-metal lead. In this case, the rotation
matrix Û introduced in Eq. (4) should be thought of as 2N ×
2N block-diagonal with the usual SU(2) rotations along the
diagonal. Repeating our steps, we reproduce Eq. (9) for the
3 × 3 dissipative tensor Ĝ, but with the 3 × 3 matrix ĝ now
given by

gij = Nδij − 1

2

∑
mn

Tr[r̂mnσ̂i r̂
†
mnσ̂j ] . (12)

Here, r̂mn is the 2 × 2 reflection matrix for electrons scattering
from channel n into channel m, which run from 1 . . . N . As
before, a symmetrization with respect to the i,j indices is
implicit on the right-hand side of Eq. (12). This equation,
along with Eqs. (1), (2), and (9), forms a central result of the
present Rapid Communication.

For the special case of a collinear order, this again gives
Eq. (11), with the familiar expression for the spin-mixing
conductance [2,21]:

gmix = N − Re
∑
mn

r↑↑
mnr

↓↓∗
mn (collinear order) . (13)
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In the ferro- or ferrimagnetic cases, this spin-mixing conduc-
tance is generically nonzero, so long as electrons experience
some exchange upon reflection, which would make r

↑↑
mn �= r

↓↓
mn.

In the antiferromagnetic case, the spin-mixing conductance is
also generally finite but is dominated by the umklapp scattering
channel, in the simplest case of an ideal compensated interface
with a translational antiferromagnetic sublattice symmetry [9].

For a general noncollinear and multichannel case, ĝ can
be diagonalized to yield three non-negative eigenvalues. The
corresponding principal axes define a natural magnet-fixed
frame of reference for the analysis of the interfacial spin
torque and pumping. We can suppose that our laboratory
coordinate system is chosen to diagonalize ĝ (corresponding to
the magnetic orientation at t = 0), with subsequent dynamics
yielding a rotated damping tensor (9).

Collinear order. Equipped with the (torque-modified)
Rayleigh dissipation function (2), we can readily construct the
boundary conditions for the appropriate magnetic dynamics.
To that end, we need to start with the bulk Lagrangian of
the magnet. For a collinearly-ordered material, the general
(low-temperature) Lagrangian density is given by [23]

L = −s a(n) · ∂tn + χ

2
(∂tn − γ n × B)2 − A

2
(∂in)2 − E(n) ,

(14)

where n is the directional order parameter (s.t., |n| ≡ 1), s

longitudinal (along n) spin density, γ gyromagnetic ratio, B
magnetic field, A order-parameter stiffness, index i runs over
spatial (Cartesian) coordinates, χ is related to the transverse
(to n) spin susceptibility, and E(n) is the local energy density,
including anisotropies and Zeeman coupling −γ sn · B to the
longitudinal magnetic moment. a(n) is a vector potential
produced on a unit sphere by a magnetic monopole of unit
charge. Antiferromagnets correspond to s = 0, while low-
frequency dynamics in ferro- and ferrimagnets can be obtained
by setting χ → 0.

The Euler-Lagrange equation of motion is then given by

∂ν

∂L
∂(∂νn)

− ∂L
∂n

+ ∂R
∂(∂tn)

= 0 , (15)

where ν runs over all space-time coordinates. R ≡ R δ(x)
should be understood as the spatial density of the Rayleigh
dissipation function (2), with R here defined per unit area of
the interface placed at x = 0 (with the magnet corresponding
to x > 0; see Fig. 1). For the case of a collinear order,

R = h̄�mix

8π
(∂tn − μ × n/h̄)2 (collinear order) , (16)

where �mix is the interfacial spin-mixing conductance per unit
area. Using Lagrangian (14), we find for the equation of motion
(taking care to respect the constraint |n| ≡ 1):

∂t (sn + m) − γ m × B − n × (
A∂2

i n − ∂nE
) = τδ(x) , (17)

where m ≡ χn × (∂tn − γ n × B) is an auxiliary variable cor-
responding physically to the transverse spin density (obtained
from ∂BL/γ , which corresponds also to the generators of
rotations dictated by the Lagrangian (14) [13]). The net spin

density is thus given by sn + m. The right-hand side,

τ ≡ h̄�mix

4π
n × (μ × n/h̄ − ∂tn) , (18)

is understood as the dissipative torque (spin-current density)
produced by the electrons scattering off the interface. Equa-
tions (17) and (18) reproduce and connect the standard ferro-
magnetic [4] and antiferromagnetic [11] limits (corresponding,
respectively, to setting m → 0 and s → 0). Integrating the
equation of motion (17) near the interface, we finally get

−An × ∂xn = τ , (19)

reflecting the spin continuity at the interface [24]. The work
done by the torque (18), per unit area and time, is

∂tw ≡ τ · n × ∂tn = h̄�mix

4π
(μ × n/h̄ − ∂tn) · ∂tn . (20)

The second term, ∝ −(∂tn)2, here, is just the ordinary Gilbert
damping endowed by the metallic reservoir [2]. The first term
reflects the antidamping nature of the spin-transfer torque, for
the appropriate orientation of the spin accumulation.

Spin glass. We consider now the opposite extreme of a
disordered magnet, in which the orientation of the individual
spins are randomly distributed due to frustrated exchange
interactions. The full SO(3) group of spin rotations is broken
in the ground state, characterized by a matrix or Edwards-
Anderson-like order parameter [25]. Slow (in a hydrodynamic
sense) deviations from equilibrium are represented by a vector
θ = (θx,θy,θz) of rotation angles along the principal axes of
Ĝ defining the laboratory frame. The linearized dynamics is
captured by the Lagrangian density [12,13,22]

L = χ

2
(∂tθ + γ B)2 + χ

2
∂tθ · (γ B × θ ) − A

2
(∂iθ)2 − E(θ ) .

(21)

In the absence of anisotropies and net magnetization at
equilibrium (B = 0), Eq. (21) predicts three independent
polarizations of spin waves with a linear dispersion [26].

For a macroscopically isotropic spin configuration, we
expect Ĝ ∝ 1̂ in the presence of an exchange-dominated
coupling with the normal-metal electrons. The linearized
Rayleigh function (per unit area of the interface) then reads (at
θ → 0)

R = h̄�

8π

(
∂tθ − μ

h̄

)2
(spin glass) , (22)

where � ≡ �1 = �2 = �3 are the eigenvalues of ĝ in Eq. (12),
normalized by the area. The equation of motion (for a static
B) reduces to

∂tm − γ m × B − A∂2
i θ + ∂θE = h̄�

4π

(μ

h̄
− ∂tθ

)
δ(x) , (23)

where m ≈ χ (∂tθ + γ B) is the spin density (≡ ∂BL/γ ). As
before, this may be interpreted as a continuity equation for spin
flow, subject to local precession and interfacial spin transfer.
Notice that the pairs (θα,mα) are canonically conjugate, a
consequence of the fact that the spin-density components
define generators of the infinitesimal rotations in the magnetic
system. Integrating Eq. (23) near the interface leads to the
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(a)

(b)

FIG. 2. Schemes for lateral (a) and vertical (b) spin injec-
tion/detection in electrically insulating spin glasses. The signal is
sustained by the coherent precession of randomly oriented spins,
triggered by the spin accumulation μ in the left terminal and collected
in the right terminal by the reciprocal pumping effect. The steady-state
solution for the precession angle about μ reads θ (t,x) = �t + θ (x),
where −A∂xθ corresponds to the spin-current density in the bulk of
the magnet. The (minus) divergence, A∂2

x θ , of the spin current in the
bulk of the magnet balances the spin damping rate, αs�, α being the
Gilbert-damping constant and s the high-field saturated spin density.
The precession frequency � is proportional to the nonequilibrium
spin density along μ and is determined by the boundary condition in
Eq. (24). The measured electrical drag signal is negative in (a) and
positive in (b) and would follow the numerical estimates of Ref. [27].

spin-flux continuity at the interface:

− A∂xθ = h̄�

4π

(μ

h̄
− ∂tθ

)
. (24)

This generalized phenomenology enables the study of spin
signals transmitted through disordered magnets, which can
be probed in a setup like the one shown in Fig. 2. The spin
accumulation μ induced by the spin Hall effect in one of the
metals triggers the coherent precession of randomly oriented
spins in the glass phase, while the signal is collected in a
second terminal by means of the reciprocal pumping effect.
The steady-state precession frequency � = ∂tθ is proportional
to the nonequilibrium spin density, χ�, induced in the system.
In the geometry of Fig. 2(a), the frequency is easily obtained
[27] by balancing the boundary conditions (24) with the bulk
Gilbert damping: h̄� = μ/(2 + 4παsL/h̄g). In the absence
of anisotropies, the signal decays only algebraically with the
distance between the terminals L, due to the bulk damping

α, in contrast to the (thermal) spin waves in a collinear
magnet [28]. Spin glasses provide a (potentially) more versatile
platform for long-ranged signal transmission, in comparison
to a spin-superfluid state in easy-plane magnets [27]. In
particular, they offer flexibility regarding the spin injection
and detection geometries, as illustrated in Fig. 2.

Discussion. The key element of the theory is the modified
Rayleigh dissipation function (2), which captures the effects of
both the spin pumping into the metal reservoir and spin torque
by its spin accumulation. The former is directly linked to the
dissipation of energy into the normal lead, while the latter
to the work on the magnetic dynamics by the spin-polarized
electrons. When the spin accumulation μ exceeds the natural
precession frequency h̄ω, this work can effectively reverse the
damping, potentially leading to magnetic instabilities and self-
oscillations [1,5]. (Additional bulk damping of the material
would raise the threshold for such instabilities.) In general, the
spin accumulation μ needs to be calculated self-consistently
with the spin-current density js = −τ flowing into the normal
metal.

While our focus has been on electrically insulating mag-
nets, a generalization to conducting magnets is possible by
considering transmission as well as reflection of electrons
[2]. For the case of sufficiently thick magnets, however,
the transmission can generally be expected to lead to a
full dephasing of spin transport [4], bringing us back to
Eq. (12), which is governed by the reflection coefficients
only. Finally, we remark that through Eqs. (1) and (2) we
invoked only the dissipative coupling between the magnet
and the normal-metal reservoir. Such dissipative spin transfer
is known to be the most prominent interfacial process for
collinear ferromagnets [4,21] and antiferromagnets [9], which
is responsible for dynamic instabilities [5], thermal-magnon
and superfluid spin injection [9,27], as well as the spin Seebeck
physics triggered by heat biases [29]. We expect this to
naturally extend to the noncollinear case. The nondissipative
coupling, which is quantified through the imaginary part
of the spin-mixing conductance in the collinear case, can
be formally captured by redefining the effective Lagrangian
(or, equivalently, Hamiltonian or free energy) of the coupled
system and renormalizing the reactive coupling coefficients
[4]. While it is in principle possible to account for this both
phenomenologically and microscopically in the scattering-
matrix formalism [30], it is beyond our immediate interests.
Future works should also address generalizations of our theory
to nonrigid exchange dynamics in soft magnets, which may
also pump spin and contribute to dissipation, and the role of
strong spin-orbit interactions at the interface.

Acknowledgments. We are grateful to Se Kwon Kim and
Pramey Upadhyaya for insightful discussions. This work was
supported by the US Department of Energy, Office of Basic
Energy Sciences under Award No. DE-SC0012190.

[1] J. C. Slonczewski, Phys. Rev. B 39, 6995 (1989); J. Magn.
Magn. Mater. 159, L1 (1996); L. Berger, Phys. Rev. B 54, 9353
(1996).

[2] Y. Tserkovnyak, A. Brataas, and G. E. W. Bauer, Phys. Rev.
Lett. 88, 117601 (2002).

[3] S. Mizukami, Y. Ando, and T. Miyazaki, Jpn. J. Appl. Phys. 40,
580 (2001); R. Urban, G. Woltersdorf, and B. Heinrich, Phys.
Rev. Lett. 87, 217204 (2001); B. Heinrich, Y. Tserkovnyak, G.
Woltersdorf, A. Brataas, R. Urban, and G. E. W. Bauer, ibid. 90,
187601 (2003).

100402-4

https://doi.org/10.1103/PhysRevB.39.6995
https://doi.org/10.1103/PhysRevB.39.6995
https://doi.org/10.1103/PhysRevB.39.6995
https://doi.org/10.1103/PhysRevB.39.6995
https://doi.org/10.1016/0304-8853(96)00062-5
https://doi.org/10.1016/0304-8853(96)00062-5
https://doi.org/10.1016/0304-8853(96)00062-5
https://doi.org/10.1016/0304-8853(96)00062-5
https://doi.org/10.1103/PhysRevB.54.9353
https://doi.org/10.1103/PhysRevB.54.9353
https://doi.org/10.1103/PhysRevB.54.9353
https://doi.org/10.1103/PhysRevB.54.9353
https://doi.org/10.1103/PhysRevLett.88.117601
https://doi.org/10.1103/PhysRevLett.88.117601
https://doi.org/10.1103/PhysRevLett.88.117601
https://doi.org/10.1103/PhysRevLett.88.117601
https://doi.org/10.1143/JJAP.40.580
https://doi.org/10.1143/JJAP.40.580
https://doi.org/10.1143/JJAP.40.580
https://doi.org/10.1143/JJAP.40.580
https://doi.org/10.1103/PhysRevLett.87.217204
https://doi.org/10.1103/PhysRevLett.87.217204
https://doi.org/10.1103/PhysRevLett.87.217204
https://doi.org/10.1103/PhysRevLett.87.217204
https://doi.org/10.1103/PhysRevLett.90.187601
https://doi.org/10.1103/PhysRevLett.90.187601
https://doi.org/10.1103/PhysRevLett.90.187601
https://doi.org/10.1103/PhysRevLett.90.187601


RAPID COMMUNICATIONS

GENERALIZED BOUNDARY CONDITIONS FOR SPIN TRANSFER PHYSICAL REVIEW B 96, 100402(R) (2017)

[4] Y. Tserkovnyak, A. Brataas, G. E. W. Bauer, and B. I. Halperin,
Rev. Mod. Phys. 77, 1375 (2005), and references therein.

[5] D. C. Ralph and M. D. Stiles, J. Magn. Magn. Mater. 320, 1190
(2008), and references therein.

[6] A. Brataas, Y. V. Nazarov, and G. E. W. Bauer, Phys. Rev. Lett.
84, 2481 (2000).

[7] Y. Tserkovnyak and M. Mecklenburg, Phys. Rev. B 77, 134407
(2008).

[8] A. Brataas, Y. Tserkovnyak, G. E. W. Bauer, and P. J. Kelly,
in Spin Currents, edited by S. Maekawa, S. O. Valenzuela, E.
Saitoh, and T. Kimura (Oxford University Press, Oxford, 2012),
pp. 87–135.

[9] S. Takei, B. I. Halperin, A. Yacoby, and Y. Tserkovnyak, Phys.
Rev. B 90, 094408 (2014).

[10] R. Cheng, J. Xiao, Q. Niu, and A. Brataas, Phys. Rev. Lett. 113,
057601 (2014).

[11] V. Baltz, A. Manchon, M. Tsoi, T. Moriyama, T. Ono, and Y.
Tserkovnyak, arXiv:1606.04284.

[12] B. I. Halperin and W. M. Saslow, Phys. Rev. B 16, 2154
(1977).

[13] A. F. Andreev and V. I. Marchenko, Sov. Phys. Usp. 23, 21
(1980).

[14] H. V. Gomonay, R. V. Kunitsyn, and V. M. Loktev, Phys. Rev.
B 85, 134446 (2012).

[15] L. D. Landau and E. M. Lifshitz, Statistical Physics, Part 1, 3rd
ed., Course of Theoretical Physics Vol. 5 (Pergamon, Oxford,
1980).

[16] Notice that the Rayleigh function is a quadratic form of the
angular velocity of the order parameter. The work carried out by
the dissipative force τ = −∂R/∂ω equals τ · ω = −2R.

[17] S. K. Kim, S. Takei, and Y. Tserkovnyak, Phys. Rev. B 92,
220409 (2015).

[18] Y. Tserkovnyak and A. Brataas, Phys. Rev. B 71, 052406
(2005).

[19] When R is differentiated with respect to magnetic dynamics, we
will obtain a term ∝ω − μ/h̄ in the resultant Euler-Lagrange

equation of motion. This establishes an a posteriori proof of our
modified dissipation function (2).

[20] M. Moskalets and M. Büttiker, Phys. Rev. B 66, 035306 (2002).
[21] A. Brataas, Y. Tserkovnyak, and G. E. W. Bauer, Phys. Rev.

Lett. 101, 037207 (2008).
[22] See Supplemental Material at http://link.aps.org/supplemental/

10.1103/PhysRevB.96.100402 for a detailed parametrization of
the single-channel scattering problem and a derivation of the
spin-glass Lagrangian (21).

[23] A. Auerbach, Interacting Electrons and Quantum Magnetism
(Springer-Verlag, New York, 1994).

[24] Note that even though our theory is constructed based on
energetics, we are in the end able to deduce the associated spin
currents from the equation of motion, once the spin density is
identified according to the Lagrangian description. As illustrated
by the above examples, the appropriate spin density can be
deduced even if it is not explicitly included among the original
Lagrangian variables [13].

[25] S. F. Edwards and P. W. Anderson, J. Phys. F 5, 965 (1975).
[26] In the presence of a field saturated spin density s = χγ B,

the linear spin-wave mode polarized along s survives, ω‖ =√
A/χ |k|, whereas the two remaining modes are hybridized,

leading to a gapped, ω+
⊥ ∼ |s|/χ , and a quadratically dispersing,

ω−
⊥ ∼ A|k|2/|s|, branches, similarly to a ferrimagnet. The long-

ranged spin transmission proposed in Fig. 2 remains when μ is
aligned with s (sustaining also a possible collinear anisotropy
along the same direction).

[27] S. Takei and Y. Tserkovnyak, Phys. Rev. Lett. 112, 227201
(2014).

[28] L. S. Cornelissen, J. Liu, R. A. Duine, J. Ben Youssefm, and
B. J. van Wees, Nat. Phys. 11, 1022 (2015).

[29] G. E. W. Bauer, E. Saitoh, and B. J. van Wees, Nat. Mater. 11,
391 (2012); S. Hoffman, K. Sato, and Y. Tserkovnyak, Phys.
Rev. B 88, 064408 (2013).

[30] A. Brataas, Y. Tserkovnyak, and G. E. W. Bauer, Phys. Rev. B
84, 054416 (2011).

100402-5

https://doi.org/10.1103/RevModPhys.77.1375
https://doi.org/10.1103/RevModPhys.77.1375
https://doi.org/10.1103/RevModPhys.77.1375
https://doi.org/10.1103/RevModPhys.77.1375
https://doi.org/10.1016/j.jmmm.2007.12.019
https://doi.org/10.1016/j.jmmm.2007.12.019
https://doi.org/10.1016/j.jmmm.2007.12.019
https://doi.org/10.1016/j.jmmm.2007.12.019
https://doi.org/10.1103/PhysRevLett.84.2481
https://doi.org/10.1103/PhysRevLett.84.2481
https://doi.org/10.1103/PhysRevLett.84.2481
https://doi.org/10.1103/PhysRevLett.84.2481
https://doi.org/10.1103/PhysRevB.77.134407
https://doi.org/10.1103/PhysRevB.77.134407
https://doi.org/10.1103/PhysRevB.77.134407
https://doi.org/10.1103/PhysRevB.77.134407
https://doi.org/10.1103/PhysRevB.90.094408
https://doi.org/10.1103/PhysRevB.90.094408
https://doi.org/10.1103/PhysRevB.90.094408
https://doi.org/10.1103/PhysRevB.90.094408
https://doi.org/10.1103/PhysRevLett.113.057601
https://doi.org/10.1103/PhysRevLett.113.057601
https://doi.org/10.1103/PhysRevLett.113.057601
https://doi.org/10.1103/PhysRevLett.113.057601
http://arxiv.org/abs/arXiv:1606.04284
https://doi.org/10.1103/PhysRevB.16.2154
https://doi.org/10.1103/PhysRevB.16.2154
https://doi.org/10.1103/PhysRevB.16.2154
https://doi.org/10.1103/PhysRevB.16.2154
https://doi.org/10.1070/PU1980v023n01ABEH004859
https://doi.org/10.1070/PU1980v023n01ABEH004859
https://doi.org/10.1070/PU1980v023n01ABEH004859
https://doi.org/10.1070/PU1980v023n01ABEH004859
https://doi.org/10.1103/PhysRevB.85.134446
https://doi.org/10.1103/PhysRevB.85.134446
https://doi.org/10.1103/PhysRevB.85.134446
https://doi.org/10.1103/PhysRevB.85.134446
https://doi.org/10.1103/PhysRevB.92.220409
https://doi.org/10.1103/PhysRevB.92.220409
https://doi.org/10.1103/PhysRevB.92.220409
https://doi.org/10.1103/PhysRevB.92.220409
https://doi.org/10.1103/PhysRevB.71.052406
https://doi.org/10.1103/PhysRevB.71.052406
https://doi.org/10.1103/PhysRevB.71.052406
https://doi.org/10.1103/PhysRevB.71.052406
https://doi.org/10.1103/PhysRevB.66.035306
https://doi.org/10.1103/PhysRevB.66.035306
https://doi.org/10.1103/PhysRevB.66.035306
https://doi.org/10.1103/PhysRevB.66.035306
https://doi.org/10.1103/PhysRevLett.101.037207
https://doi.org/10.1103/PhysRevLett.101.037207
https://doi.org/10.1103/PhysRevLett.101.037207
https://doi.org/10.1103/PhysRevLett.101.037207
http://link.aps.org/supplemental/10.1103/PhysRevB.96.100402
https://doi.org/10.1088/0305-4608/5/5/017
https://doi.org/10.1088/0305-4608/5/5/017
https://doi.org/10.1088/0305-4608/5/5/017
https://doi.org/10.1088/0305-4608/5/5/017
https://doi.org/10.1103/PhysRevLett.112.227201
https://doi.org/10.1103/PhysRevLett.112.227201
https://doi.org/10.1103/PhysRevLett.112.227201
https://doi.org/10.1103/PhysRevLett.112.227201
https://doi.org/10.1038/nphys3465
https://doi.org/10.1038/nphys3465
https://doi.org/10.1038/nphys3465
https://doi.org/10.1038/nphys3465
https://doi.org/10.1038/nmat3301
https://doi.org/10.1038/nmat3301
https://doi.org/10.1038/nmat3301
https://doi.org/10.1038/nmat3301
https://doi.org/10.1103/PhysRevB.88.064408
https://doi.org/10.1103/PhysRevB.88.064408
https://doi.org/10.1103/PhysRevB.88.064408
https://doi.org/10.1103/PhysRevB.88.064408
https://doi.org/10.1103/PhysRevB.84.054416
https://doi.org/10.1103/PhysRevB.84.054416
https://doi.org/10.1103/PhysRevB.84.054416
https://doi.org/10.1103/PhysRevB.84.054416



