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Model for the neutron resonance in HgBa2CuO4+δ
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We study the spin dynamics of the resonant excitonic state (RES) proposed, within the theory of an emergent
SU(2) symmetry, to explain some properties of the pseudogap phase of cuprate superconductors. The RES can
be described as a proliferation of particle-hole patches with an internal modulated structure. We model the RES
modes as a charge order with multiple 2pF ordering vectors, where 2pF connects two opposite sides of the Fermi
surface. This simple modelization enables us to propose a comprehensive study of the collective mode observed
at the antiferromagnetic wave vector Q = (π,π ) by inelastic neutron scattering in both the superconducting state
and also in the pseudogap regime. In this regime, we show that the dynamic spin susceptibility exhibits a loss of
coherence terms except at special wave vectors commensurate with the lattice. We argue that this phenomenon
could explain the change of the spin response shape around Q. We demonstrate that the hole dependence of the
RES spin dynamics is in agreement with the experimental data in HgBa2CuO4+δ .
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I. INTRODUCTION

Inelastic neutron scattering (INS) and electronic Raman
spectroscopy (ERS) are experimental probes based on two
particle processes which allow the observation of coherence
effects, such as the superconducting (SC) coherence peak
whose energy is proportional to the transition temperature Tc,
or the emergence of collective modes, which act as a signature
of the symmetries of the system. The study of collective modes
could be a key to reveal the physical mechanisms at the origin
of high critical temperature SC of cuprate compounds. A
long-standing mystery of such compounds is the pseudogap
(PG) phase which exists in the underdoped regime [1–3] (see
Fig. 1) and manifests itself by a loss of electronic density
of states, without being related to any obvious symmetry
breaking.

The presence of a collective spin resonance around the
antiferromagnetic (AF) wave vector Q = (π,π ) in the SC
state is a universal feature of cuprate superconductors. This
resonance has first been observed by INS experiments at a
frequency ωres = 41 meV in YBa2Cu3O7−δ (YBCO) [4–15]
and at similar energies in other compounds [16–20]. In this
paper, we focus our study on recent experiments performed in
monolayer Hg-based cuprate compounds: HgBa2CuO4+δ (Hg-
1201) [21,22]. This compound represents a perfect playground
to study the physics of cuprate superconductors. It is a single
CuO2 layer that allows to neglect the effect of interlayer
coupling of multilayered systems as well as the effect of
charge reservoir, such as CuO chains in YBCO or incommen-
surate BiO layer in Bi2Sr2CaCu2Oo+δ (Bi-2212) compounds.
Hg1201 compound exhibits the universal resonance around
the AF wave vector Q, which shows three main features.

(1) The resonance stands below the 2�0
SC threshold of

particle-hole continuum (�0
SC is the maximum of the d-wave

SC gap) and the frequency resonance ωres decreases with
underdoping [21,22]. Moreover, a precursor of this resonance
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exists in the PG above Tc, the SC critical temperature [21,22]
where the resonance is observed at the same frequency
ωres. The latter has also been observed in other cuprate
compounds [12–15,23–25]. In the underdoped regime of
Hg1201 compound only, the intensity of the resonance at Q
does not vary across Tc [21,22]. This observation suggests that
this resonance is not specifically produced by SC state [21,22].

(2) The energy fluctuation spectrum around Q has a
peculiar behavior and distribution in phase space in the
underdoped regime [21,22]. The low- and high-energy parts of
the fluctuation spectrum behave differently with temperature.
The high-energy part (for ω � ωres) of the energy fluctuation
spectrum does not change across Tc or T ∗, the pseudogap (PG)
critical temperature. This behavior most probably corresponds
to the response of localized spins which originate the proximity
of the AF phase. On the other hand, the low-energy part
(ω � ωres) of the energy fluctuation spectrum changes across
Tc. Below Tc, a gap opens around Q and the intensity of
the resonance increases from Tc and T = 0. Moreover, two
branches appear from either side of the momentum Q and
meet in Q at ω = ωres forming the so-called X shape, also
called “hourglass” shape. Above Tc, the gap at Q closes and
the two energy branches disappear, forming the so-called Y
shape, while the intensity of the resonance decreases until T ∗.
This feature has been observed in other cuprate compounds
[25–29].

(3) A very specific doping dependence of the spin fluctu-
ations is reported in monolayer Hg-based cuprate compound
Hg-1201 [21,22]. In the underdoped regime, at hole doping
below 0.12 (p < 0.12), a Y shape has been observed close
to the vector Q in both the PG and the SC phases without
any change at Tc. For higher doping, p � 0.12, the X shape is
recovered in the SC phase. A summary of the different features
is presented in Fig. 1.
Several models have been proposed to explain this collective
mode [30–41]. An exhaustive review of all these approaches
is presented in Ref. [42]. Among various scenarios to account
for the spin excitation spectrum in the SC state, the INS
resonance was ascribed to SO(5) emergent symmetry as a
π -collective mode [33,43] relating SC to AF order. However,
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FIG. 1. Schematic temperature-doping (T ,p) phase diagram of
hole-doped cuprate compounds. The antiferromagnetic (AF) phase
develops close to half-filling (p = 0). The SC phase appears at
intermediate hole doping and Tc is maximum at optimal doping po.
Above Tc, in the underdoped regime p < po, the system exhibits
a large pseudogap (PG) phase until the temperature T ∗ = TSU(2).
The RES model explains the PG phase by the proliferation of local
excitonic patches above the temperature Tprolif (orange line) [50]. The
proliferation temperature vanishes below the doping pc. Below pc,
the preformed particle hole pairs in the RES are more stable than
the Cooper pairs. Consequently, the Fermi surface is fractionalized:
the Cooper pairs develop in the N region only while the preformed
particle-hole pairs populate in the AN region. The system exhibits a
two-gap regime (green area). For doping above pc, the particle-hole
pairs are less stable than the Cooper pairs and the SC gaps out
the whole Fermi surface. The system exhibits a one-gap regime
(blue area). The two black arrows represent the two-hole doping
where further calculations are performed. Left arrow: below pc, we
have Tprolif = 0 then RES is strong compared to SC and the AN region
is massively gapped by RES mechanism and �RES > �SC in the AN
region of the first BZ. It is a two-gap regime and the energy fluctuation
spectrum of the spin susceptibility exhibits the same Y shape in both
the PG and the SC phases. Right arrow: close to optimal doping (for
pc < p), we have Tprolif �= 0. The RES is weaker than the SC state
and �RES < �SC in the AN region of the first BZ. Consequently, in
the SC state, the AN zone is nearly completely gapped out by Cooper
pairs. It is a one-gap regime where the energy fluctuation spectrum
exhibits an X shape in the SC phase which transforms itself in a Y
shape above Tc.

it has been shown that the π mode has an antibounding with
the optical mode which pushes it at a higher energy than
experimentally observed [35]. The most commonly accepted
explanation within the framework of itinerant magnetism
is that the INS resonance is a particle-hole bound state
below the spin gap (a spin-triplet exciton) which is stabilized
by repulsive interaction left within the d-wave SC state
[35–37,39–41,44,45]. This scenario well reproduces the struc-
ture of the spin excitation in the SC state in the optimally and
overdoped regime. In the underdoped regime, the observation
of the INS resonance in the PG state above Tc leads to a

more complex situation. The shape of the resonance changes
from “X” to “Y” with the presence of some additional spectral
weight in the vicinity of Q, whereas, in Hg-1201, the energy
of the collective mode remains unchanged compared to the SC
phase (see Fig. 1). This observation is very difficult to account
for theoretically. Recently, an incommensurate spiral spin
order stabilized by quantum fluctuations upon doping the AF
Mott insulator has been proposed to explain the evolution of the
energy fluctuation spectrum around Q with doping in YBCO
[46]. The main difficulties lie on a correct modelization of the
PG phase which, if we believe the excitonic explanation in the
SC phase, has to retain a certain amount of coherence if the
collective mode is to be observed at all in this regime.

In parallel, ERS measurements in Hg-1201 provide very
interesting and complementary information for the study of
collective modes in the underdoped regime. A noticeable
change of behavior is observed in Raman data around 0.12
hole doping. Raman scattering is a dynamical response,
which probes the charge channel at q = 0. Moreover, specific
structure factors enable to scan the Brillouin zone with respect
to respective symmetries: the A1g response is isotropic, the
B1g symmetry scans the antinodal (AN) regions (0,±π ) and
(±π,0), while the B2g symmetry selects the nodal (N) region
(±π/2,±π/2) [47]. For doping p < 0.12, the Raman data
exhibit a large SC coherence peak in the B2g symmetry, while
its intensity is very low in the B1g symmetry. For higher doping
p � 0.12, the SC coherent peak has a huge intensity in the B1g

symmetry and decreases in the B2g symmetry [48,49]. This
change of behavior around the same doping in both Raman and
INS probes suggests that the coherence effects that are getting
lost around Tc are a key in the explanation of the feature 3. To
the best of our knowledge, feature 3 has only been observed
in Hg-1201 compound.

Here, we propose to interpret the behavior of the spin
response around Q as the result of the competition between the
PG and the SC phases. At low doping, this competition leads
to the fractionalization of the Fermi surface where the Cooper
pairs only populate the nodal part of the BZ. Consequently,
the spin response is dominated by the PG and we recover
the Y-shape energy fluctuation spectrum at all temperatures.
Close to optimal doping, Cooper pairs populate the whole
Fermi surface and we recover the X-shaped (hourglass) energy
fluctuation spectrum in the SC phase. This scenario involving
the fractionalization of the Fermi surface at low doping is
supported by ERS measurements [48,49].

Then, we calculate the two-particle responses in both
charge and spin sectors and compare them with experimental
observations reported by ERS and INS in the underdoped
regime, within a theoretical explanation for the PG phase:
the resonant excitonic state (RES) which can be described as
preformed excitonic (particle-hole) pairs [50,51]. Although
different theoretical approaches have been developed to
explain the PG phase, as stated above, the issue of the change of
shape of the INS resonance across Tc has never been addressed
before and a comprehensive study of the relations between
neutron and Raman susceptibilities in this region is given.
There have been many proposals for the PG phase of the
cuprates, based on AF fluctuations [52–54], strong correlations
[55–57], loop current [58,59], or emergent symmetry models
[43,60]. A recent study proposes to explain the PG phase with
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a SU(2) emergent symmetry model where the SU(2) symmetry
relates the SC state to the charge sector [61–63]. The PG phase
is then described by a composite d-wave SC and charge order
parameter and the SU(2) symmetry is restored by thermal
fluctuations [61,62].

Recent investigations demonstrated that SU(2) symmetry
could emerge from short-range AF interactions [50,51].
Proceeding by integrating out the SU(2) pairing fluctuations,
we describe the PG state as a new type of charge order
called resonant excitonic state (RES) [50,51]. The RES can
be described as excitonic (particle-hole pair) patches with an
internal checkerboard charge modulation. In this scenario, the
PG originates SU(2) pairing fluctuations and the whole physics
in the underdoped regime is governed by SU(2) symmetry.
Such a scenario naturally associates the resonance observed
in the PG phase with the underlying SU(2) symmetry. In our
approach, a certain form of coherence is retained in the PG
phase, at specific wave vector commensurate with the lattice.
The role of the underlying SU(2) symmetry is essential here in
two ways. It preferentially selects a d-wave form factor for the
pseudogap, thus allowing a change of sign between antinodal
(0, ± π ) and (±π,0) regions related by the vector Q. It also
restricts the gapping out of the Fermi surface to a small region
around the antinodes, which leads to the emergence of spectral
weight around Q. The specific “Y” shape of the resonance in
the PG phase with the elongated tail at Q is specific, within
our theory, of the particle-hole excitons with many 2pF wave
vectors.

This paper is divided as follows: In Sec. II, we present the
theoretical model we have used to model the RES and the SC
state and we explain how we calculate the spin susceptibility
and the Raman susceptibility. In Sec. III, we present our
results. In Sec. IV, we present a discussion of our results and
a comparison with the experimental data before concluding in
Sec. V.

II. THEORETICAL MODEL

In this section, we present the minimal model that describes
the resonant excitonic state (RES). The RES is a recent
scenario proposed to explain the PG phase [50,51]. The RES
is produced by the SU(2) pairing fluctuations between the
SC order and the charge sector. This SU(2) symmetry, in
our model, comes from short-range antiferromagnetism with
strong coupling to the electron bath. By strong coupling we
mean here that the coupling J is larger than the bottom of
the band in the antinodal region, whereas it is smaller than the
bandwidth.

In this model, we modelize the RES as a charge ordering
state with multiple 2pF ordering vectors. The 2pF vectors
connect two opposite sides of the Fermi surface (see Fig. 2).
The 2pF vectors depend on the momentum k in the first
BZ and write as a function of momentum k: 2pF(k). In the
following, we assume that the 2pF vector of a point far from
the Fermi surface is the 2pF vector of the closest point of
the Fermi surface. Note that on the Fermi surface, we have
2pF(kF ) = −2kF which implies that kF − 2pF(kF ) = −kF .
The vectors 2pF(k) are represented in Fig. 2. The 2pF structure
corresponds to charge modulations with multiple wave vectors,

(a)

(b) (c)

FIG. 2. (a) Schematic representation of the hole-doped Fermi
surface (solid line) in first Brillouin zone of the square lattice. The
angle θ localizes the point on the FS. The values θ = 0 and π/2
represent the AN zone while θ = π/4 stands for the N zone of
the first BZ. The magnetic BZ is presented in dashed line while
its intersections with the Fermi surface (the hot spots) are the red
points. The yellow arrows represent the 2pF ordering vectors in the
antinodal (AN) region. Note 2pF vector depends on the momentum
k. The RES gap develops in the AN zone (green area). The points
of the FS at the zone edge are drawn in blue circles. In (b) we
represent the bare electronic dispersion ξk at optimal doping p = 0.16
while in (c) we represent the 2pF-shifted electronic dispersion
ξk+2pF(k). The blue (yellow) area shows the electron (hole) states that
have negative (positive) energy separated by the Fermi surface (solid
line). Note that the FS of the bare and the 2pF-shifted electronic
dispersions are the same whereas the curvature close to the FS is
reversed.

which creates local modes, also called “patches” or “droplets”
of particle-hole pairs.

Here, we study how the proliferation of those modes can
account, phenomenologically, for the INS spectrum around
Q in the SC and in the PG phases, where the PG phase is
described by a RES, in competition with the SC phase. At
low temperature, SC and RES coexist until Tc, forming a
kind of supersolid. Moreover, the proliferation temperature
for the local RES modes is doping dependent, as depicted
as the orange line in Fig. 1. For p < 0.12, the proliferation
temperature is extremely small, meaning that the whole AN
region of the Brillouin zone (BZ) is dominated by the RES, and
the superconductivity comes mainly from the region around
the nodes. For 0.12 < p < 0.25, the proliferation temperature
is nonzero, which means that at low temperature we are inside
a “one-gap” SC phase. Above Tc until T ∗ only the RES remains
[50,51].

An important point, in our scenario, is that the binding force
leading to the formation of the particle-hole pairs is the SU(2)
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fluctuations between the SC state and the charge sectors. While
these fluctuations are gapped in the SC phase, they become
important in the PG phase and in the underdoped region,
which leads to the formation, and proliferation of patches, or
droplets, of excitonic particle-hole pairs above a characteristic
temperature, here Tprolif .

Note that the Peierls instability has also been studied in
one-dimensional systems [64] where both parts of the Fermi
surface are connected through 2kF vector. Such scenario has
been used to explain the temperature dependence of spectral
line shape in Bi-2212 compounds [65].

A. RES minimal model

The simplified version of our theory consists of performing
a mean field decoupling of a Hamiltonian retaining short-range
AF correlations in the charge and SC channels. We choose a
t-J model writing

Hstart =
∑
i,j,σ

tij c
†
iσ cjσ + 1

2

∑
〈i,j〉

Jij Si . · Sj , (1)

where tij is the hopping from site i to j and Jij the AF
superexchange between spins Si = ∑

αβ c
†
iα �σαβciβ sitting on

nearest neighbors 〈i,j 〉 [32,66]. �σαβ is a set of Pauli matrices
and c

(†)
i,σ is the annihilation (creation) operator of an electron

with the spin σ on site i. Note that the effects of strong onsite
Coulomb repulsion and, thus, the double occupancy are so far
neglected in this model. Applying the Fourier transform on the
fermionic operator ci,σ = 1√

N

∑
k ck,σ eik.ri , the Hamiltonian

in Eq. (1) becomes

Hstart =
∑
k,σ

ξkc
†
kσ ckσ

+1

2

∑
k,k′,q

Jqc
†
kα �σαβck+qβc

†
k′+qγ �σγ δck′δ. (2)

We describe the RES and SC state by the effec-
tive action Seff = −∑

k,σ �
†
kĜ

−1�k, in the basis �
†
k =

(c†k,σ ,c−k+2pF(−k),σ ,c
†
k+2pF(k),σ ,c−k,σ ), and with

Ĝ−1(k,ε) =

⎛
⎜⎜⎜⎝

iε − ξk 0 �RES,k �SC,k

0 iε + ξ−k+2pF(−k) �
†
SC,k+2pF(k) −�RES,k

�
†
RES,k �SC,k+2pF(k) iε − ξk+2pF(k) 0

�
†
SC,k −�

†
RES,k 0 iε + ξ−k

⎞
⎟⎟⎟⎠. (3)

Here, ξk is the electron dispersion, including the chemical
potential μ with ξ−k = ξk and ε is the fermionic Matsubara
frequency. �SC,k is the superconducting order parameter
and �RES,k the RES one, which couples k → k − 2pF(k).
The RES order parameters describe the particle-hole pair
patches that break locally the translational symmetry
[51]. We use a tight-binding description of the electronic
spectrum of Hg-1201 with ξk = −2t1[cos(kxa) + cos(kya)] +
2t2 cos(kxa) cos(kya) + t3[cos(2kxa) + cos(2kya)] + t4[cos
(2kxa) cos(kya) + cos(kxa) cos(2kya)] − μ where ti are the
ith-neighbor hopping parameters. We have t1 = −0.408 eV,
t2 = 0.093 eV, t3 = 0.071 eV, and t4 = 0.036 eV (deduced
from ab initio calculations [67]) which gives a bandwidth
of 1.5 eV. a is the elementary cell parameter set to unity
a = 1 and μ is the chemical potential adjusted to determine
the hole doping. The Fermi surfaces of the spectrum ξk and
ξk+2pF(k) are presented on Fig. 2. Note that the bandwidth of
the spectrum ξk is larger than the bandwidth of the spectrum
ξk+2pF(k). We determined the Green’s functions of the model
by inverting the matrix (3).

As highlighted in previous studies [50,51], the interplay
of the SC and the RES order parameters is not trivial. For
intermediate temperature (Tc < T < T ∗), only RES remains
in the system. The RES leads to the opening of a gap in the AN
zone of the first BZ, and the formation of Fermi arcs [50,51].
We consider a RES order parameter with a d-wave symmetry
as it is the SU(2) partner of the d-wave SC state:

�RES,k = �0
RES

2
γke

(
− (kx−π)2a2

2σ2
x

− (ky )2a2

2σ2
y

)
,

with γk = [cos(kxa) − cos(kya)]. (4)

Here, σx(y) is the width of the Gaussian function in the kx(ky)
direction (see Fig. 2). The momentum dependence of the
RES gap in Eq. (4) completely reproduces the momentum
dependence obtained from the exact solution of the mean
field equations involving SU(2) pairing fluctuations [50,51].
This parametrization has been used to explain the opening
of the PG and the formation of Fermi arcs observed by
angle-resolved photoemission spectroscopy (ARPES) [68]. A
particle-hole symmetry breaking has been observed in the PG
phase in Bi-2201 compounds [69] and has been explained in
the framework of RES has a superposition between 2pF modes
[68]. To the best of our knowledge, this particle-hole symmetry
breaking has not been observed in Hg-1201. Then, we neglect
this effect in the following. This momentum parametrization
of the RES order parameter deviated from a pure d-wave
symmetry gap as exposed in Figs. 4 and 5. This deviation
has been observed by ARPES in Bi-2212 compounds [70]
and seems to be universal in cuprate compounds [71]. The
pure d-wave symmetry is not necessary to explain the results
proposed in this paper, as spin susceptibility as emphasized in
Appendix C.

Below Tc (T < Tc), we define a d-wave gap envelope Ck

which will take into account the coexistence between the SC
state and the RES. The definition of the RES order parameter
is the same as above Tc [see relation (4)]. In the following, we
assume that the gap envelope is related to the SC and the RES
order parameters by the relation

Ck =
√

�2
SC,k + �2

RES,k, (5)
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where Ck has a d-wave symmetry and a magnitude C0:
Ck = C0

2 γk. Considering the relation (5), we can deduce the

form of the SC order parameter �SC,k =
√

C2
k − �2

RES,k. The
variation of the SC and RES order parameters in the SC phase
along the Fermi surface is presented in Figs. 4 and 5. The RES
develops solely in the AN zone of the first BZ [see relation (4)]
while the superconducting state can exist both in the nodal and
antinodal zones. This momentum dependence of the SC and the
RES order parameters in the first BZ is supported by electronic
Raman scattering experiments in Hg-1201 [48,49] or Bi-2212
[72] compounds as well as ARPES experiments [70,71].
The resolution of the self-consistency equation deriving from
the minimal model is left for a forthcoming publication. In the
following, we determine the value of the gap magnitude that
reproduce the experimental data.

The real-space picture is that the RES is formed of local
objects, patches, or droplets, which compete with the global
SC phase. When temperature is raised, the entropy associated
with the local object is always winning compared to the
energy of the global phase, in analogy with the proliferation
of vortices in a stiff quantum fluid [73]. Hence, there exists
a proliferation temperature for the patches of excitons, which
can be understood as follows. When the binding energy for
the formation of the Cooper pairs is greater than the energy
for the formation of the particle-hole pairs, the proliferation
occurs above a certain temperature Tprofif 
 (E2

CP − E2
EP)/g,

where ECP and EEP is the mean field scale for the formation of
Cooper and particle-hole pairs (at 2pF), respectively, and g is
a coupling constant coming from a simple Ginzburg-Landau
treatment [50]. On the other hand, when ECP < EEP, then the
proliferation of exciton droplets starts at very low temperature,
which leads to Tprolif 
 0. For a simple discussion, we identify
ECP 
 Tc while EEP 
 TSU(2), which is the energy scale
associated to the SU(2) fluctuations in our theory [50,51]. As
depicted in Fig. 1, there is a critical doping pc, situated in the
underdoped region, below which Tprolif 
 0, whereas for p >

pc, Tprolif �= 0. The critical doping pc is a crucial ingredient
of our theory to explain the experimental data in Hg-1201.

B. Spin susceptibility

We turn to the evaluation of the spin susceptibility in the SC
state and the RES. In the SC phase, we expect the spin-exciton
process that explains the spin dynamics in the overdoped
part of the cuprate phase diagram to be strongly affected by
the emergence of RES in the underdoped part of the phase
diagram. The spin operator writes Sq = 1√

N

∑
k c

†
k,−σ ck+q,σ

which destroys a bosonic excitation at momentum q with a
charge 0 and spin 1. Rewriting the Hamiltonian (2) with the
spin operator, we get Hstart = ∑

k,σ ξkc
†
kσ ckσ + 1

2

∑
q JqS

†
qSq.

The spin susceptibility is derived from the linear response
of the spin operator and reads as χS = −iθ (t)〈S†

q(t)Sq(0)〉.
Within the random phase approximation (RPA), the full spin
susceptibility writes

χS(ω,q) = χ0
S (ω,q)

1 + J (q)χ0
S (ω,q)

(6)

with J (q) = 2J0[cos(qxa) + cos(qya)] due to exchange be-
tween near-neighbor copper sites. In Eq. (6), χ0

S is the bare
polarization bubble constructed from the Green’s function
and J (q) is superexchange interaction from Eq. (1). Note
that full diagrammatic contributions to the bare susceptibility
are discussed in Appendix A. The bare polarization can be
evaluated by the formula [34,74]

χ0
S (ω,q) = −T

2

∑
ε,k

Tr[Ĝ(ω + ε,k + q)Ĝ(ε,k)], (7)

where ε(ω) is the fermionic (bosonic) Matsubara frequency,
k,q are the impulsions, T the temperature, and Tr means trace
of the Green function matrix Ĝ deduced from Eq. (3). Using
the relation (7) we describe the spin dynamics in pure RES,
pure SC phase, and coexisting SC-RES phases.

1. Bare spin susceptibility in the SC phase

In the pure d-wave SC state, the bare susceptibility writes
[34,74]

χ0
S,sc(ω,q) =

∑
k

[
1

2

(
1 + ξkξk+q + �SC,k�SC,k+q

EkEk+q

)
nF (Ek+q) − nF (Ek)

ω + iη − (Ek+q − Ek)
+ 1

4

(
1 − ξkξk+q + �SC,k�SC,k+q

EkEk+q

)

× 1 − nF (Ek+q) − nF (Ek)

ω + iη + (Ek+q + Ek)
+ 1

4

(
1 − ξkξk+q + �SC,k�SC,k+q

EkEk+q

)
nF (Ek+q) + nF (Ek) − 1

ω + iη − (Ek+q + Ek)

]
, (8)

where Ek =
√

ξ 2
k + �2

SC,k describes the SC excitations spec-
trum and nF is the Fermi-Dirac statistic. The d-wave form
factor of the SC order parameter implies that the coherence
factor is maximal on the Fermi surface. The imaginary part
of the bubble exhibits a discontinuity at certain threshold, and
coincidentally the real part shows a logarithmic divergence.
This observation alone enables us to explain in a self-consistent
way the formation of the triplet collective mode. Indeed, below
this energy threshold, the divergence in the real part of the
spin polarization cannot be screened by the imaginary part
(which vanishes below the threshold), hence leading to the
emergence of the collective mode. The value of the threshold

is expected to be 2|�SC(kHS)|, the factor 2 coming from the
Green’s functions in the bubble, where kHS is the momentum of
the hot spots. The latter divergence guarantees the emergence
of a collective mode below threshold. In order to explain the
emergence of a collective mode at Q, the coherent factors have
to be nonzero at the Fermi surface while the FS is gapped.
This condition can be fulfilled if we consider a d-wave SC
state [34]. This description well reproduces the imaginary
part of the dynamic spin susceptibility inside the SC state in
the overdoped case [34,42] with, in particular, the “X-shape”
form of the dispersion of the modes around (π,π ) correctly
given in shape and energy within this simple model. Further,
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we consider that this model gives a good description of the phenomenon and focus on its generalization to the PG state.

2. Bare spin susceptibility in the RES

In our theory for the PG state, we evaluate the spin susceptibility in the RES. The bare spin susceptibility in the RES
writes [74]

χ0
S,RES(ω,q) =

∑
k

[
1

4

(
1 + (ξk − ξk+2pF(k))(ξk+q − ξk+q+2pF(k+q)) + 4�RES,k�RES,k+qf (q)

(W+,k − W−,k)(W+,k+q − W−,k+q)

)

×
(

nF (W−,k) − nF (W−,k+q)

ω + iη + W−,k − W−,k+q
+ nF (W+,k) − nF (W+,k+q)

ω + iη + W+,k − W+,k+q

)

+ 1

4

(
1 − (ξk − ξk+2pF(k))(ξk+q − ξk+q+2pF(k+q)) + 4�RES,k�RES,k+qf (q)

(W+,k − W−,k)(W+,k+q − W−,k+q)

)

×
(

nF (W−,k) − nF (W+,k+q)

ω + iη + W−,k − W+,k+q
+ nF (W+,k) − nF (W−,k+q)

ω + iη + W+,k − W−,k+q

)]
, (9)

where W±,k = 1
2 (ξk + ξk+2pF(k) ±

√
(ξk − ξk+2pF(k))2 + 4�2

RES,k) is the RES excitation spectrum and f (q) a function of
momentum q that takes into account the coherence conditions of the RES, as detailed further in the text and in
Appendix A.

The contribution to the bare spin susceptibility in the RES
[Eq. (9)] can be divided in two parts: the intraband contribution
[upper terms in relation (9)] and the interband contribution
[lower terms in the relation (9)]. Close to q = Q, the intraband
contribution can be neglected and the whole signal is produced
by interband processes. As the FS formed by the hybridized
bands cannot be connected by the vector Q, the bare spin
susceptibility is gapped up to the energy 2|�RES(kHS)|.
Far from q = Q, the intraband processes become non-
negligible.

Deeper investigation on the SU(2) symmetry has shown
that the SU(2) pairing fluctuations emerging from nonlinear σ

model only exist in a restricted area Sk in the AN part of the
first BZ (see Ref. [50] for the detailed demonstration and par-
ticularly the Fig. 9 where Sk is represented). In the following,
one important element is that we assume a symmetrization of
this restricted area between two adjacent AN area [in k and
k + Q with Q = (π,π )] such that Sk = Sk+Q.

The coherence terms are described by the Feynman diagram
shown in Fig. 3(a) and we observe that the outgoing vector of
the Feynman diagram does not equal the incoming vector q up
to the difference δ̄2pF = 2pF(k + q) − 2pF(k). The difference
δ̄2pF vanishes (δ̄2pF = 0) only if q is commensurate and differs
from zero (δ̄2pF �= 0) for incommensurate q vectors (see Fig. 3).
Consequently, the coherence terms exist only close to q =
0,Q and cannot exist far from commensurate vectors. In the
following, we modelize the RES coherence terms in Eq. (9)
by the the terms �RES,k�RES,k+qf (q) where f (q) vanishes
for incommensurate q vectors. More precisely, the function
f (q) equals one around q = 0 and q = Q and vanishes for
other vectors. A full description of the function f (q) is done
in Appendix A while the effect of the function f (q) on the
spin susceptibility is studied in Appendix B.

In contrast to the preformed Cooper pair scenario [34],
we observe a resurgence of the coherence terms around
incoming wave vectors commensurate with the lattice, like
q = Q. In the RES scenario, the coherence terms only exist

close to commensurate q vectors. This peculiar behavior is
different from the scenario of preformed Cooper pairs where
the coherence terms vanish for all q vectors.

ky
kx

(a)

(b)

FIG. 3. (a) Diagrammatic contribution that describes the co-
herence between two particle-hole patches. The outgoing vector
depends on the difference 2pF(k + q) − 2pF(k) which vanishes at
commensurate q vectors. This Feynman diagram must vanish for
incommensurate q vectors and exists close to commensurate q
vectors. (b) Representation of the Fermi surface of the electrons at k
(solid line) and the electrons at k + Q (dashed line). The 2pF vectors
of the electrons at k + Q are the same as the electrons at k (yellow
arrows).
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Close to the FS, we can linearize the shifted spectrum
ξk−2pF(k). This linearization leads to the relation ξk−2pF(k) ≈
−ξk only valid close to the FS. In this approximation, the
relation (9) is equal to the relation (8). We can deduce that the
low-energy spectrum in the RES and the SC state are nearly
the same.

3. Bare spin susceptibility in the coexisting SC+RES phase

A detailed study of the whole Feynman diagram that con-
tributes to the bare spin susceptibility is done in Appendix A.
The main contribution of the SC and the RES state does
not qualitatively change regarding the pure state study. The
threshold in the bare spin susceptibility occurs at an energy
2
√

�2
RES(kHS) + �2

SC(kHS) and depends on both SC and RES
state. In addition to the RES coherent terms, note that a
mixed SC+RES exists and also contributes only close to
commensurate q vector (see Appendix A).

C. Raman response function

The Raman response χλ is the response function of a
modified density operator χλ = −i�(τ )〈ρλ(τ )ρλ(0)〉 with
ρλ = ∑

k γ λc
†
kck where γ λ is the Raman vertex in the sym-

metry λ [47,75]. The Raman susceptibility strongly depends
on the symmetry of the system. We can take into account
these symmetries by considering vertices in the phonon-matter
interaction different from unity. In cuprate compounds, we
typically study three symmetries which are written within the
effective mass approximation:

γ B1g = 1

2

[
∂2ξk

∂k2
x

− ∂2ξk

∂k2
y

]
, γ B2g = 1

2

[
∂2ξk

∂kx∂ky

+ ∂2ξk

∂ky∂kx

]
,

γ A1g = 1

2

[
∂2ξk

∂k2
x

+ ∂2ξk

∂k2
y

]
, (10)

where the B1g symmetry probes the AN zone of the first BZ,
the B2g symmetry probes the N zone of the first BZ, and the
A1g symmetry probes the whole Brillouin zone. Here, we do
not consider the A2g symmetry, γ A2g = 0. In the following, we
only focus on the B1g and B2g symmetries. The specific case
of A1g symmetry has already been studied in the framework
of a charge order and superconducting coexisting state [76]. In
both the B1g and the B2g symmetries, the Coulomb screening
can be neglected [75]. In the B1g and B2g symmetries, the bare
Raman susceptibility writes [47,75]

χλ(ω,q = 0) = −T

2

∑
ε,k

Tr[γ̄ λ(k)Ĝ(ω + ε,k)γ̄ λ(k)Ĝ(ε,k)],

(11)

where γ̄ λ(k = γ λ(k)τ̄3 with τ3 is the Pauli matrix evolving in
the particle-hole space in the λ symmetry (with λ = B1g or
B2g).

III. RESULTS

We perform a study at optimal doping p = 0.16 and in
the underdoped regime p = 0.1 in Hg-1201. At both p = 0.1
and 0.16, the SC critical temperature Tc is lower than the T ∗,

45 60 75
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(e
V
)

0.5*(cos(k )-cos(k ))

-0.4 -0.2 0.0 0.2 0.4
0

1

2
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p=0.1

ρSC (ω)
 ρRES (ω)
ρN (ω)

(a
.u
.)

ω (eV)

Van Hove Singularity (ω=-171meV)

FIG. 4. Dependence of the RES (solid line), SU(2) envelope
(dotted line), and SC gap (dashed line) on the FS as a function of (left
panel) the θ angle and (right panel) the d-wave factor at p = 0.1. The
SC gap exhibits a d-wave behavior close to the nodal zone and its
intensity decreases in the AN zone. (Bottom panel) density of states
in the normal metal ρN (ω) (dotted lines), the RES ρRES(ω) (solid
lines), and the SC state ρSC(ω) (dashed line) as a function of energy
ω for p = 0.1. The SC and RES order parameters open a symmetric
gap centered around the Fermi level ω = 0 eV. The d-wave symmetry
leads to the typical form of the density of states at low energy. The Van
Hove singularity arises in the metallic spectrum at ω = −171 meV
for p = 0.1. The magnitude of the gap is 54 meV in the SC phase
and 75 meV in the RES phase. Note that the amplitude of the gaps is
qualitatively in accordance with the experimental data.

Tc < T ∗. We consider that in the SC state T < Tc, the SC
and RES coexist while above Tc (Tc < T < T ∗) only the RES
remains. The RES disappears at T ∗.

At p = 0.1, we choose �0
RES = 0.09 eV and �0

SC = 0 eV
in the RES state while �0

RES = 0.06 eV and C0 = 0.06 eV in
the SC state. The order magnitude of the RES and SC order
parameters on the Fermi surface is presented in Figs. 4(a)
and 4(b). The SC order parameter develops in the N region
and decreases in the AN zone while the RES order parameter
vanishes in the N region and increases in the AN region. At
the zone edges, the SC gap represents 30% of the whole gap
magnitude while the RES is at 70%.

At optimal doping (p = 0.16), we choose �0
RES =

0.065 eV and �0
SC = 0 eV in the RES state while �0

RES =
0.01 eV and C0 = 0.042 eV in the SC state as presented on
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FIG. 5. Dependence of the RES (solid line), SU(2) envelope
(dotted line), and SC gap (dashed line) on the FS as a function of (left
panel) the θ angle and (right panel) the d-wave factor at p = 0.1. The
SC order parameter as d-wave behavior in the whole Brillouin zone.
(Bottom panel) density of states in the normal metal ρN (ω) (dotted
lines), the RES ρRES(ω) (solid lines), and the SC state ρSC(ω) (dashed
line) as a function of energy ω for p = 0.16. The SC and RES order
parameters open a symmetric gap centered around the Fermi level
ω = 0 eV. The d-wave symmetry leads to the typical form of the
density of states at low energy. The Van Hove singularity arises in the
metallic spectrum at ω = −292 meV for p = 0.16. The magnitude of
the gap is 39 meV in the SC phase and 59 meV in the RES phase.
Note that the amplitudes of the gaps are qualitatively in accordance
with the experimental data.

Fig. 5. The SC order parameter develops on the whole Fermi
surface while the RES order parameter only exists in the AN
zone. At the zone edges, the SC gap represents 95% of the
whole gap magnitude while the RES is at 5%. The SC order
parameter exhibits a d-wave aspect at optimal doping while
this aspect is weakened in the underdoped regime. The RES
gap dependence is different than a pure d-wave dependence
as observed by ARPES in Bi-2212 [71] and Hg-1201 [70].
Note that the relation between the magnitude of the effective
gaps and the magnitude of the SC and PG order parameters
is not obvious regarding the order parameters’ momentum
dependence as well as the possible competition between them.
In the following, we calculate the DOS in both phases and we
compare the gap magnitude with the experimental ones.

From a technical point of view, the calculation of the bare
polarization bubbles is done as follows. The summation over

the internal impulsion is done in a 400 × 400 grid in the first
BZ after doing the analytical integration over the internal
Matsubara frequencies at T = 0 K. Note that we neglected
the temperature dependence of the order parameters. We have
done the analytical continuation on the external Matsubara
frequency replacing iω by ω + iη where η is a small damping
parameter taken here to η = 3 meV. This small parameter can
be understood as residual scattering caused by the impurities.
The susceptibilities are in the unit of states per eV per CuO2

formula unit and should be multiplied 2μ2
B to compare to

neutron-scattering data (μB is the Bohr magneton).

A. Density of states

The electronic density of states (DOS) ρ(ω) =
−2
π

∑
k [Im(limη→0G

11(ω + iη,k))] in the normal metal, RES,
and SC phases are plotted in Fig. 4 for hole doping p = 0.1 and
in Fig. 5 for p = 0.16. Both SC and RES open a symmetric gap
at the Fermi level (ω = 0). To the best of our knowledge, there
are no direct measurements of the DOS by STM in Hg-1201
compounds.

In the underdoped regime (p = 0.1), the magnitude of the
gap is 54 meV in the SC phase and 75 meV in the RES phase.
In the SC phase, the amplitude of the gaps seems in qualitative
agreements with the one observed by Raman scattering [48,49]
or by ARPES [70]. Note that the RES gap has not yet been
measured in Hg-1201 but the value here is comparable with
the one measured in Bi-2212 compound at similar doping [71].

In the overdoped regime (p = 0.16), the magnitude of the
gap is 39 meV in the SC phase and 59 meV in the RES phase.
The value of the SC gap is directly comparable with the one
observed by ARPES [70]. In the RES phase, the gap magnitude
is in qualitative agreement with the one measured in Bi-2212
compound at similar doping [71]. The low-energy behavior of
the DOS differs a little between the RES and the SC states.
The coherent peak seen in the SC state is weakened in the RES
state as observed in cuprate compounds [77]. Note that the Van
Hove singularity is well defined by a peak at negative energy.
The form of the DOS at low energy (close to ω = 0 eV) is
typical of the d-wave momentum dependence of the SC gap
[77] but does not give more information about the nature of
the order parameter. In order to observe specific signature of
both RES and SC states, we need probes that are sensitive
to the coherence between the quasiparticles such as Raman
scattering and INS.

B. Raman susceptibility

We calculate the Raman response in the B1g and the B2g

symmetries in the SC state at p = 0.1 and 0.16 (see Fig. 6)
[47,75]. Our approximation is able to reproduce the decreasing
of the frequency resonance in the B1g symmetry with hole
doping (see Fig. 6) from ωsc = 101 meV at p = 0.1 until
ωsc = 77 meV at p = 0.16. Moreover, the intensity of the
B1g Raman resonance is lower at low doping (p = 0.1) than
close to optimal doping (p = 0.16). Both features are in good
agreement with experimental Raman scattering in Hg-1201
compound [48,49].

In the B1g , the superconducting coherence peak occurs

at the energy 2
√

�2
RES(kZE) + �2

SC(kZE), where kZE is the
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FIG. 6. The Raman susceptibility in the B1g and the B2g symme-
tries at (a) p = 0.1 in the RES state and (b) p = 0.16. The calculated
responses are in promising agreement with the experimental data.
In the B2g channel, the intensity does not vary with doping but the
frequency resonance increases at low doping. In the B1g channel, the
frequency resonance increases at low doping but the intensity falls
down as observed experimentally.

point of the FS localized at the zone edge (see Fig. 2). The
frequency of the superconducting coherent peak depends on
the magnitude of both the SC and RES order parameters at the
zone edge. Consequently, this frequency is larger than twice
the magnitude of the SC order parameter and does not scale
with Tc. However, the intensity of the SC coherent peak only
depends on the magnitude of the SC order parameter at the
zone edge. In step with the SC gap dependence discussed in
Sec. II A and shown in Figs. 4 and 5, the intensity of the SC
coherent peak in the B1g symmetry increases with the hole
doping.

In the B2g channel, we see the emergence of a peak at low
frequency [48,49]. The d-wave symmetry of the gap implies a
small intensity of the SC coherent peak.

C. Bare spin susceptibility

The real and imaginary parts of the bare polarization bubble
in the RES and SC phases at hole doping p = 0.1 and 0.16
are presented in Fig. 7 as a function of ω at Q = (π,π ). In
the RES [Figs. 7(a) and 7(b)], a gap opens in the imaginary
part of χ0

S very similarly than the quasiparticle gap opening in
the SC state [Figs. 7(c) and 7(d)]. In the RES, the threshold
in the imaginary part and the logarithmic divergence in the
real part occur at energies close to 2�RES(kHS). The energy of
the threshold moved from 94 meV at p = 0.1 until 64 meV
at p = 0.16 in the RES. On the other hand, the threshold is
defined at the energy 2

√
�2

RES(kHS) + �2
SC(kHS) in the SC

phase. The energy of the threshold moves from 129 meV at
p = 0.1 down to 66 meV at p = 0.16 in the SC. The bare
spin susceptibilities in the SC and RES states are very similar
because the gap mechanism is nearly the same close to the FS.
This feature is emphasized by the fact that close to the FS,
we can apply the identity ξk−2pF(k) = −ξk and the bare spin
susceptibility in the RES becomes the same as the SC one.
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FIG. 7. The real and imaginary parts of the bare polarization
bubble at Q = (π,π ) for (a) p = 0.1 in the RES state, (b) p = 0.16
in the RES state, (c) p = 0.1 in the SC state, and (d) p = 0.16 in
the SC state. The amplitude of the order parameters is the same as in
Figs. 4 and 5. We observe a gap opening in both SC state and RES.

D. RPA spin susceptibility

The amplitude of the imaginary part of the RPA suscep-
tibility for the RES and SC phases is presented in Figs. 8
and 9 for p = 0.1 and 0.16, respectively, as a function of ω in
the diagonal direction qy = qx and qx from −π/2a to 3π/2a

(with a that the unit-cell parameter set to unity).
At p = 0.16, the magnitude of the superexchange interac-

tion J0 = 151 meV is adjusted to set the resonance at Q at
60 meV while at p = 0.1, we put J0 = 169 meV to ensure a
resonance at 50 meV. In both RES and SC states, we observe
a resonance at Q. The intensity as well as the form of the
resonance does not vary a lot between the two states at
both doping [Figs. 8(c) and 9(c)]. The shape of the energy
fluctuations close to Q does not qualitatively change between
the SC and RES at p = 0.1 [Figs. 8(a) and 8(b)] while this
change is strong at optimal doping [Figs. 9(a) and 9(b)]. The
change in the form is a clear effect of the loss of coherence
between the patches away from the Q vector in the RES.

At p = 0.1, the RES order parameter is dominant in both
SC and RES states resulting on a Y shape in both cases. At
optimal doping, the SC order parameter dominates in the SC
states leading to the X shape. The loss of coherent terms in the
RES erases the X shape observed in the SC state.

IV. DISCUSSION

As emphasized in former studies [34,42], our approach well
accounts on low-energy spin susceptibility. The high-energy
part of the spin susceptibility may originate localized spins
physics [42,46] and is not considered here. We have chosen
an interaction parameter J that decreases with doping but
does not depend on temperature contrarily to previous studies
[34]. This condition is rather constraining and our model is
able to reproduce qualitatively the experimental observation
of spin susceptibility and Raman susceptibility in Hg-1201
compounds simultaneously. We discuss below the three main
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FIG. 8. Amplitude of the imaginary part of the spin susceptibility
χS as a function of ω, for qy = qx and qx from −π/2a to 3π/2a at
p = 0.1 for J0 = 169 meV and V = 100 in (a) the SC state and (b)
the RES. The solid line is set at q = (π/a,π/a). (c) Cut at Q = (π,π )
of the imaginary part of χS in the RES (dashed line) and SC (solid
line) state. Our model well accounts for low-energy spin excitation.
The high-energy part of the spin susceptibility may originate localized
spin physics that is not taken into account in this paper.
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FIG. 9. Amplitude of the imaginary part of the spin susceptibility
χS as a function of ω, for qy = qx and qx from −π/2a to 3π/2a at
p = 0.16 for J0 = 151 meV and V = 100 in (a) the SC state and (b)
the RES. The solid line is set at q = (π/a,π/a). (c) Cut at Q = (π,π )
of the imaginary part of χS in the RES (dashed line) and SC (solid
line) state. Our model well accounts for low-energy spin excitation.
The high-energy part of the spin susceptibility may originate localized
spin physics that is not taken into account in this paper.
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findings of our theory, compared to other approaches proposed
so far.

First, as shown in Figs. 8 and 9, the model gives a good
agreement for the frequency resonance and the intensity of
the resonance observed at Q in Hg-1201. The frequency
resonance is determined by the values of the RES and SC
order parameters as well as the value of the superexchange
J0. The values of the RES and SC order parameters have
been determined to reproduce the Raman coherent peak in
the B1g and B2g symmetries. The value of J0 = 169 meV at
p = 0.1 and J0 = 151 meV at p = 0.16 is in the right range of
values for cuprate compounds. Moreover, the decrease of the
magnitude with doping is consistent with the decrease of the
two-magnon peak in Raman data [48,49]. The frequency and
intensity of the resonance is the same in both the SC and the
RES in the underdoped regime and optimal doping [27–29]. At
optimal doping, the same intensity observed in both RES and
SC states is in agreement with the absence of any signature on
the intensity of the resonance at Tc [27–29]. The same intensity
in both the RES and SC states is a by-product of our model
where we did not adjust the damping that could be higher in
a nonhomogeneous state as RES. Indeed, our model produces
naturally intrinsical inhomogeneities due to the proliferation of
local objects. This aspect will be studied in future publications.

Second, our model reproduces in a promising agreement the
fluctuation spectrum around Q in both the SC and RES states.
The disappearance of the low-energy fluctuation spectrum
in the SC state when we pass to the RES (and then the
transformation from the X shape to the Y shape) can be
explained by the loss of the coherence terms in the RES away
from the vector Q. The enhancement of the coherence close
to the Q vector leads to the increasing of the value of the
spin susceptibility at Q in the RES and the emergence of the
Y shape in the energy fluctuation spectrum. In our model, we
have modelized this loss of coherence by a function f (q) which
vanishes away from Q. The effect of the width of the function
f (q) on the spin susceptibility is studied in Appendix B.

A simple explanation for the emergence of spectral weight
at Q in the pseudogap phase can be given as follows. Since
their origin lies in the SU(2) fluctuations, the RES patches
are acting on a small part of the BZ, and are gapping out
the antinodal region of the Fermi surface, close to the hot
spots. Fluctuations associated with the SU(2) scenario are thus
restricted to these regions. The typical wave vectors connecting
these regions to one another are q = Q and 0, but due to
the presence of the d-wave phase factor, the positive sign
necessary for forming bound state (as opposed to antibound)
selects the wave vector Q. Hence, the two main ingredients for
the emergence of spectral weight at Q and the presence of the
factor f (q) in Eq. (9) are the localization of the RES around the
hot spots (which selects the mode modulation vectors q = 0
and Q) in the antinodal region and retaining a certain coherence
with d-wave form factor ( which finally selects the modulation
vector around q = Q). In order to test this idea, we show
in Appendix C the same calculation for a SC state with the
SC gap formation restricted to a small region around the hot
spots. We see in Fig. 12 that it gives some additional spectral
weight around q = Q as desired. For a SC state, the form of
the additional spectral weight is more like a spot rather than
the “Y” shape. The elongation of the tail of the “Y” at Q is a

consequence of the “nesting” feature k → k − 2pF when the
energy is lowered.

Lastly, the dependence in doping of the fluctuation spectrum
can be explained by the nature of the RES. The proliferation
of excitonic patches occurs at zero temperature at low doping
while it occurs at much higher temperature close to optimal
doping (see Fig. 1). This difference implies that RES order
is strong at low doping and coexists with SC order parameter
while it weakens at optimal doping consistently with Raman
experiments [48,49]. Consequently, the RES state drives the
physics close to AF critical vector at low doping explaining the
Y shape of energy fluctuation spectrum in both SC and RES.
At optimal doping, the RES weakens in the AN zone and the
physics is dominated by SC order parameter which implies the
appearance of the X shape.

A possible extension of this work should be the calculation
of the RES response in bilayered systems. In such systems,
the interlayer coupling creates bonding and antibonding states
and gives rise to even and odd spin susceptibilities. Leaving
aside the stability of the RES in such bilayer compounds, we
expect the even and odd susceptibilities to behave similarly
than in the monolayer compound. However, the exact vector
where the resonance occurs could change because of the mis-
match between the bonding and antibonding Fermi surfaces.
In YBCO compounds, the presence of exotic structures like
CuO chains could affect the spin susceptibility. For example,
the CuO chains could stabilize nematic orders [78] that
could affect reciprocally the spin susceptibility. The presence
of nematic order should produce incommensurabilities and
deviate the spin response from the vector Q [78]. In our
SU(2) scenario, nematic orders are naturally present [50]. The
inclusion of such nematic order on the spin susceptibility is
left to forthcoming publications.

V. CONCLUSION

We proposed a description of the energy spectrum of
the dynamic spin susceptibility, observed by INS in recent
experiments on the cuprate compounds Hg-1201, for both the
SC and the PG states. This explanation is based on a concept
for the PG phase which shows the emergence of particle-hole
pairs, forming excitonic droplets, or patches with multiple
modulation wave vectors 2pF. The RES state behaves “almost”
like a d-wave SC, but gaps out the antinodal region of the first
BZ, leading to the formation of Fermi “arcs” [68]. In the PG
regime, this restriction provokes a loss of coherence terms
except at some peculiar wave vectors commensurate with the
lattice, like the AF vector Q. This description of the PG phase
is able to reproduce the main features of the Raman scattering
in Hg-1201, and is a promising candidate for PG state of
superconducting cuprates.
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APPENDIX A: FEYNMAN DIAGRAM IN THE
SPIN SUSCEPTIBILITY

We consider the spin susceptibility originating the t−J

model [32,66] which writes

χS(ω,q) = χ0
S (ω,q)

1 + J (q)χ0
S (ω,q)

(A1)

with J (q) = J0[cos(qxa0) + cos(qya0)]. In Eq. (6), χ0
S is

the bare polarization bubble constructed from the Green’s
function and J (q) is superexchange interaction. Note that
momentum dependence of the superexchange term J (q)
originates the exchange between near-neighbor copper site.
The bare polarization can be evaluated by the formula [34,74]

χ0
S (ω,q) = −T

2

∑
ε,k

Tr[Ĝ(ω + ε,k + q)Ĝ(ε,k)], (A2)

where ε(ω) is the fermionic (bosonic) Matsubara frequency,
k(q) is the impulsion, T the temperature, and Tr means trace
of the Green function matrix Ĝ. The relation (A2) describes
the whole polarization of the system that is the sum of the
polarizations �:

χ0
S = 1

8

⎛
⎝∑

i,j

�ij

⎞
⎠, (A3)

where �ij are the polarizations described by the diagrams
of Fig. 10 with �ij = −T

∑
ε,k [Gij (ω + ε,k + q)Gij (ε,k)]

with �ij = �ji for j �= i. �11(44) {diagram (a) [and (d)]
of Fig. 10} is the response of the electrons (holes) with
momentum k while �22(33) {diagram (b) [and (c)] of Fig. 10}
is the response of the electrons (holes) with momentum
k + 2pF(k). The polarization �41(32) {diagram (e) [and (f)]
of Fig. 10} is the response of the Cooper pairs while �31(42)

{diagram (g) [and (h)] of Fig. 10} is the response of the
particle-hole pairs. The polarization �21(43) {diagram (i) [and
(j)] of Fig. 10} is the mixed SC-RES response. Note that the
superconducting coherent factors come from the terms �

41(32)
SC .

As shown in the diagrams (g)–(j) of Fig. 10, the outgoing
external vector depends on the difference δ̄2pF = 2pF(k + q) −
2pF(k). In order for these diagrams to contribute to the global
polarization (�21(31,42,43) �= 0), this difference must vanish,
δ̄2pF = 0. Obviously, this difference vanishes for q = 0. This
difference also vanishes for q = Q. The RES polarization
contributes around q ≈ 0 and q ≈ Q but will vanish if q
is far from 0 or Q. To modelize this effect, we introduce
a momentum-dependent function in the relation (A3) which
transforms itself as

χ0
S = 1

8

[
�11 + �22 + �33 + �44 + 2(�32 + �41)

+ 2f (q)
(
�21

RES + �31
RES + �42

RES + �43
RES

)]
, (A4)

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

(k)

FIG. 10. Polarizations �ij that contribute to the bare polarization
χ0 [see Eq. (A3)]. In (a)–(d) are the diagrammatic representations
of the polarization with normal contribution. In (e) and (f) are
presented the contribution of superconducting state. In (g) and (h)
are presented the contribution of the RES. In (i) and (j) are shown
the mixed SC-RES contribution. The contribution of the RES and
SC-RES mixed polarization [diagrams (g)–(j)] only exist for q close to
(0,0) and (π,π ). In (k) are presented the diagrammatic representations
of the Green function.

where f (q) acts on the RES and SC-RES mixed polarizations.
The function f (q) has the form

f (q) = 1

1 + V [sin2(qxa) + sin2(qya)]
, (A5)

which is a Lorentzian centered in q = (0,0) and
q = Q = (π,π ) whose width can be tuned by the parameter
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(a)
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(b)
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(c)
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FIG. 11. Amplitude of the imaginary part of the spin susceptibil-
ity χS as a function of ω, for qy = qx and qx from −π/2a to 3π/2a

at p = 0.16 for J0 = 0.2225 as a function of the parameter V . In
(a) V = 100, in (b) V = 1, and in (c) V = 0. The solid line is set at
q = (π/a,π/a). The susceptibility χS is calculated in the RES state at
p = 0.16 and the order-parameter magnitudes are �0

SC = 0 meV and
�0

RES = 100 meV. The value of V affects the width of the function
f . For V = 0, we clearly observe two branches from either side of
momentum Q which are cut with higher value of V .

V . If V tends toward zero, the function f (q) uniformly tends
to unity. If V tends toward infinity, the function f (q) is a
Dirac distribution centered in (0,0) and (π,π ). The effect
of the function f on the spin susceptibility is detailed in
Appendix B.

(a)

(b)
0.00

0.05

0.10
Im(χ )

0.010

0.13

1.6

20
(π/2,π,2) (π,π) (3π/2,3π,2)

FIG. 12. (a) Amplitude of the superconducting gap in the first
Brillouin zone. The superconducting gap is centered on the hot spots.
(b) Amplitude of the imaginary part of the spin susceptibility χS as a
function of ω, for qy = qx and qx from −π/2a to 3π/2a at p = 0.16
for J0 = 0.2225. The amplitude is centered in the (π,π ) and the X
shape disappears.

APPENDIX B: EFFECT OF THE f FUNCTION
ON THE SPIN SUSCEPTIBILITY χS AROUND Q

In this Appendix we present the effect of the width of
the function f on the spin susceptibility χS . The function f

is a Lorentzian whose width can be tuned by the value of
the parameter V [see formula (A5)] . If V vanishes, then f

is uniformly unity, f = 1. If V tends toward infinity, then
f becomes a Dirac function centered in Q. In Fig. 11, we
present the spin susceptibility χS as a function of the parameter
V . We observe that the for V = 0 [Fig. 11(c)], the energy
fluctuation in the RES looks like the one in the pure SC
state [34] with the two branches from either side of the
momentum Q but with a particle-hole continuum at Q. When
the parameter V increases [Figs. 11(a) and 11(b)], the two
branches are completely lowered and only the resonance at Q
remains.
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APPENDIX C: EFFECT OF THE SC ORDER-PARAMETER
MOMENTUM DEPENDENCE ON THE SPIN

SUSCEPTIBILITY

In this Appendix, we present the effect of the momentum
dependence of the SC order parameter on the form of the spin

susceptibility. If we consider a SC gap centered only on the hot
spot [see Fig. 12(a)], the spin susceptibility is maximal around
the vector (π,π ) only and the X shape disappears, as shown in
Fig. 12(b).
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