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We analyze the electronic properties of the recently discovered stoichiometric superconductor CaKFe4As4 by
combining an ab initio approach and a projection of the band structure to a low-energy tight-binding Hamiltonian,
based on the maximally localized Wannier orbitals of the 3d Fe states. We identify the key symmetries as
well as differences and similarities in the electronic structure between CaKFe4As4 and the parent systems
CaFe2As2 and KFe2As2. In particular, we find CaKFe4As4 to have a significantly more quasi-two-dimensional
electronic structure than the latter systems. Finally, we study the superconducting instabilities in CaKFe4As4 by
employing the leading angular harmonics approximation and find two potential A1g-symmetry representations
of the superconducting gap to be the dominant instabilities in this system.
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I. INTRODUCTION

The discovery of the iron-based superconductors (FeSCs)
in 2008 created a wide and highly interesting field in solid-state
physics [1]. Most of the FeSCs are magnetic metals for
the stoichiometric composition and superconduct once the
magnetism is destroyed by pressure, disorder, or doping, which
results in complex phase diagrams with rich physics [2–4]. The
highest Tc is often found at fractional compositions, which due
to disorder represents a serious challenge in understanding
the pairing mechanism in these systems. In particular, for the
nonphononic mechanisms of Cooper pairing, with anisotropic
or sign-changing superconducting gaps, any disorder adds
extra complications due to a necessity to quantify the pair-
breaking effects. Thus, the presence of the few stoichiometric
FeSCs offers a unique opportunity to study the phenomenon
of superconductivity in these compounds with much higher
accuracy both experimentally and theoretically. Among them
the recently discovered CaKFe4As4 (CaK1144) shows a partic-
ularly high value of the superconducting transition temperature
Tc ≈ 35.8 K and the upper critical field Hc

c2 ≈ 71 T [5–10]. At
the same time if one considers the equal ratio of Ca and K in
CaKFe4As4 one could compare this system with hole-doped
Ba0.46K0.54Fe2As2, which has a similar Tc of 34 K [11,12] but
is randomly disordered on the single (Ba/K) site.

Overall CaKFe4As4 is one of the most important represen-
tatives of the AeA1144 structure family, consisting of alkaline-
earth (Ae) and alkali (A) metals. This structure modifies the
intensively studied 122 materials such that the atom in the
middle of the unit cell is replaced by an alkali-metal atom
[see Fig. 1(a)]. This substitution changes the space group from
I4/mmm to the nonsymmetric group P 4/mmm, since the
different Ae and A layers cause a shift of the intermediate
FeAs layer out of their high-symmetry positions. Moreover, in
those materials the off positions of the As atoms lead to two
different Fe-As distances.

To identify the impact on the superconducting performance,
it is necessary to investigate the interplay between crystal and
electronic structures in particular stoichiometric iron-based
superconductors. To achieve this goal, we investigate the
electronic structure of CaKFe4As4 with ab initio methods

using density functional theory (DFT). In particular, we
systematically compare the electronic structure of the
CaK1144 and the KFe2As2 and CaFe2As2(122) materials and
analyze doping as well as the influences of the off-symmetry
positions of the FeAs layer in CaKFe4As4. In addition we de-
velop the low-energy description of this system by employing
a tight-binding (TB) parametrization of the electronic structure
using maximally localized 3d Wannier orbitals and discuss the
different symmetries within the system. This Hamiltonian will
then be used to analyze the superconducting gap function by
using the leading angular harmonic approximation (LAHA)
method [13–16].

The paper is organized as follows. In Sec. II we present
the results of our DFT calculations and compare the elec-
tronic properties of CaK1144 and 122 structures. In Sec. III
we perform the tight-binding parametrization and discuss
the symmetries of the low-energy Hamiltonian. Section IV
presents the analysis of the superconducting gap symmetries
using LAHA and comparison with the state-of-the-art angle-
resolved photoemission spectroscopy (ARPES) data. Finally,
we conclude the results of our study in Sec. V.

II. ELECTRONIC STRUCTURE

For the DFT part of our work, we use the Vienna
ab initio simulation package (VASP) [17–19] with the pro-
jector augmented wave [20] basis and employ experimentally
obtained crystal parameters for CaKFe4As4, CaFe2As2, and
KFe2As2 as measured previously [5,21,22]. Hereby we use
VASP in the generalized gradient approximation [23]. For a
better convergence we also consider the p-orbital and s-orbital
states of the Fe and As ions as valence states.

For the tight-binding calculations we use the WANNIER90
package [24] with the in VASP implemented VASP2WANNIER

interface, which calculates the maximally localized Wannier
functions [25]. Here we focus only on the Fe 3d orbitals and
neglect the p orbitals. Their influence we will discussed later.

In Fig. 2 we present the electronic band structure of
CaKFe4As4 as obtained by DFT. The result is in agreement
with previous calculations of Mou et al., where the LDA
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FIG. 1. Atomic structure of CaKFe4As4 (a) and the definition of
the two different FeAs layers (layers A/B) (b). In (c) and (d) the space
symmetries of the atom positions of CaFe2As2 and CaKFe4As4 are
illustrated. For CaFe2As2 the Fe atoms are in high-symmetry points
at (0, 1

2 , ± 1
4 ) and ( 1

2 ,0, ± 1
4 ). The distance of the As atoms above and

below the Fe atoms is equivalent. For CaKFe4As4 the FeAs layers are
shifted away from the high-symmetry points; also the distance of the
As atoms is different for the upper and the lower case.

exchange-correlation functional has been used [6]. Note that
the degeneracy of bands along the high-symmetry paths
X → M and R → A, which is characteristic for other
FeSC [3], is not observable in the present materials. This
feature is obviously related to the presence of the Ae and
layers surrounding the FeAs layers and the consequent off-
symmetry positions of the atoms. In addition, the K atom in
CaKFe4As4 lowers the underlying symmetry of the lattice,
which leads to the doubling of the number of electronic bands
present in the electronic structure.

From our calculations we find the doping level of the
Fe 3d shell nCaK1144 = 5.77 to lie between the parent sto-
ichiometric 122 materials, since nCa122 = 6.07 and nK122 =
5.43. To compare the three systems we have added the
letters to Fig. 2 and have performed a rigid band shift for
KFe2As2 and CaFe2As2 to acquire the same doping level
as CaKFe4As4. In contrast to CaKFe4As4, KFe2As2 shows a
strong three-dimensional (3D) -like behavior of the electronic
dispersion along the � → Z direction; a strongly dispersive
hole pocket is observed. For CaFe2As2 the dispersion is more
two-dimensional (2D) -like than in KFe2As2, although the
shape of the electron pockets near the M point differs from
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FIG. 2. Electronic dispersion for CaKFe4As4 (black), CaFe2As2

(shaded red), and KFe2As2 (shaded blue) along the high-symmetry
directions of the first Brillouin zone obtained from DFT using
experimentally determined lattice parameters [5,21,22]. For better
comparison, the electronic structures of CaFe2As2 and KFe2As2 were
shifted with a rigid band shift to acquire the same doping level as
CaKFe4As4.

that at the A point, which indicates a significant corrugation of
the corresponding cylinder as a function of kz in CaFe2As2 as
compared to CaKFe4As4. Thus it seems that CaKFe4As4 can
be considered to be a more 2D-like material with a stronger
tendency toward superconductivity as compared to the 122
counterparts.

To make more visible that the structural superposition of
CaFe2As2 and KFe2As2 to CaKFe4As4 is also reflected by
the band structure, we present in Fig. 3 the comparison of
CaKFe4As4 electronic band dispersions with those obtained
after averaging the electronic dispersions of the CaFe2As2

and KFe2As2 systems. We focus the considerations on the
low-energy properties, since they are particularly important for
superconductivity. Both structures match rather well except
for the features related to the off-symmetry position of the
FeAs layers in CaKFe4As4, namely, the additional splitting
of the energy bands at the � point of the Brillouin zone
(BZ). To see this, observe that compared to the 122 materials
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FIG. 3. Electronic dispersion of CaKFe4As4 (black) compared to
the mean of the band energies from CaFe2As2 and KFe2As2 (green).
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FIG. 4. Influence of the off-symmetry position of the FeAs
layers on the electronic band structure of CaKFe4As4. (a) shows the
low-energy part of the electronic dispersion for CaKFe4As4 using
experimental values for the atomic positions, while (b) refers to the
electronic dispersion obtained for the high-symmetry Fe positions at
(0, 1

2 , ± 1
4 ) and ( 1

2 ,0, ± 1
4 ). In the latter case, the distance of the As

atoms is equivalent in ±z direction, using dAs-Fe = 0.105 Å as the
mean of the experimental values.

the FeAs layer of CaKFe4As4 is nearly 7.3% out of the
high-symmetry position at, e.g., (0, 1

2 , ± 1
4 ) [5]. For the band-

structure calculations displayed in Fig. 4 the Fe and As atoms
are forced to be at the same high-symmetry positions as is the
case in 122 materials. Moreover, the two different As atoms are
at equivalent positions with respect to the Fe layer. The system
is therefore again described by a single Fe-As distance, chosen
as the average of the experimental values. The resulting band
structure of the high-symmetry artificial structure turns out to
be quite similar to the real one except for the slightly different
position of the top of the hole bands near the � point and larger
splitting of the electron bands near the M point of the BZ.

Finally, let us note that similar to the CaFe2As2 the
experimental As positions in CaKFe4As4 shift by 10% in the
process of the relaxation in the nonmagnetic ground state of
the DFT calculations. Similar to the recent finding [26], we
find the crystal structure is stabilized for the combined state
consisting of the (π,0) and (0,π ) ordering wave vectors in the
so-called spin-vortex state. However, we are not discussing

this further as we are mostly interested in constructing the
effective low-energy Hamiltonian to analyze potential super-
conducting instabilities in CaKFe4As4 and further employ the
experimental positions for the As.

III. TIGHT-BINDING REPRESENTATION

For a better understanding of the electronic correlation
in the system, we now construct a TB Hamiltonian for
CaKFe4As4 following the procedure made for other iron-based
superconductors [27–29]. For this purpose, we map the orbital-
dependent band structure from the DFT calculations on Fe
3d-orbital Wannier functions using the WANNIER90 package.
In Fig. 5 we present the comparison between the orbitally
resolved DFT calculations (a) and the tight-binding projection
for the band structure (b) in CaKFe4As4 using the energy
window EF − 2.2 eV to EF + 3.1 eV. This corresponds to
the best fitting we could achieve. The taken limits cut the
different energy bands, such that the p orbitals of the As can
be excluded at the lower limit. The energy cutoff is defined
by the character of the bands and cannot be strongly varied.
In addition, we also set the smaller energy window for the
frozen states of ±20 meV near EF to fit the tight-binding
energy bands as accurately as possible. This window is located
near the Fermi surface to adequately represent the symmetries
of the electronic structure. The corresponding terms of the
tight-binding Hamiltonian are given in the Appendix. Observe
that the lobes of the 3d orbitals are not elongated along the
Fe sites [(kx,ky) coordinates], such that the orbital content
is rotated by 45◦ in the xy plane, forming (k1,k2)-plane
coordinates. This, however, does not affect the projection on
the Wannier functions. The orbital content observed within
DFT is in agreement with the one calculated previously [6].
One of the peculiarities of the CaKFe4As4 electronic structure
is a strong admixture of the dz2 orbital to the states near the
Fermi level, which is somewhat different in the CaFe2As2 and
KFe2As2 systems.

The tight-binding parametrization using 3d-Wannier or-
bitals of the Fe sites, shown in Fig. 5(b), reproduces quite
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FIG. 5. Comparison between DFT results (a) and the tight-binding (b) parametrization of the energy dispersion and resulting fermiology
in CaKFe4As4. Here, the WANNIER90 evaluation has been restricted to the Fe 3d-orbital states.
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well the electronic structure including the sizes of the electron
and hole pockets, their group velocities, and the orbital content.
Nevertheless, one can see that for energies outside of a 0.3 eV
interval near EF there are noticeable deviations between DFT
and the tight-binding band structures, which are related to the
influences of the As p orbitals in this region.

The tight-binding Hamiltonian for CaKFe4As4 is a good
instrument to visualize and estimate the symmetries for
this system, which was previously also done for the other
Fe-based superconductors [27–29]. Since we limit the TB
representation to the 3d orbitals, we have only taken the Fe
atoms into account. This leads to a block-diagonal form of the
Hamiltonian caused by the different positions of the As atoms
in typical 122 FeSC material, where one As lies above (+) and
another one below (−) the Fe plane. Thus, the Hamiltonian for
each FeAs layer acquires the form

HFeSC =
(

H++ H+−
H−+ H−−

)
, (1)

where the superindices mark the positions of the As atoms.
Each block contains five Fe 3d orbitals, which leads to the ten
orbital-resolved Hamiltonian for typical FeSC. In addition,
there are symmetries for the terms in the TB Hamiltonian
reflecting the original crystal group symmetry of the lattice in
the FeSC:

H++ = H++†
, H+− = H+−t

,
(2)

H++ = H−−∗
, H+− = H−+∗

.

This reduces the number of necessary TB parameters [27].
With these equations the Hamiltonian gets the form

HFeSC =
(

H++ H+−

H+−∗
H++∗

)
. (3)

For CaKFe4As4 it is important to take two Fe2As2 layers
into account due to the specific symmetry of the system [see
Figs. 1(b) and 1(d)]. As a result, the Hamiltonian requires a
representation with 16 different 5 × 5 blocks:

H1144 =

⎛
⎜⎜⎝

H A1A1 H A1A2 H A1B1 H A1B2

H A2A1 H A2A2 H A2B1 H A2B2

H B1A1 H B1A2 H B1B1 H B1B2

H B2A1 H B2A2 H B2B1 H B2B2

⎞
⎟⎟⎠, (4)

where A/B refers to the two different Fe2As2 layers and the
index 1/2 counts the position of the Fe atoms (see Fig. 1).
Here, the total Hamiltonian for CaKFe4As4 can be separated
into four blocks, each referring to a given Fe2As2 layer:

H1144 =
(

H AA H AB

H BA H BB

)
=

(
H AA H AB

H AB∗
H AA∗

)
. (5)

In the second representation we have utilized the symmetries,
shown by Eq. (2), where the +/− index for the above/below
As atom has been translated to the A/B index of the FeAs layer
within the 1144 family of materials.

Next we look at each particular block within H AA/AB terms
in the Hamiltonian and analyze its symmetry transformations
to reduce the number of independent TB parameters. For
example, if the system is rotated by 180◦ around k2 (R2)
following the initial rotation by 90◦ around the kz (R1) axis the

A2 A1

B1

(a) (b) (c)z

R1 R2

x´

y

y´

x

FIG. 6. Introduced symmetry properties of the TB Hamiltonian.
The operation R1 rotates the unit cell by 90◦ along kz and R2 rotates
by 180◦ around the axis, shown on (c). From (a) to (b) the Fe atom
A2 is mapped on A1, from (b) to (c) A2 is mapped on B1, thus both
Fe2As2 layers can be related by this symmetry operation. The arrows
x and y refer to the basis vectors in the single Fe unit cell (kx,ky in
the reciprocal space), while x′ and y′ denote the basis vectors in the
2Fe unit cell (k1,k2 in the reciprocal space).

transformed coordinates read⎛
⎝k1

k2

kz

⎞
⎠

⎛
⎝ 0 1 0

−1 0 0
0 0 1

⎞
⎠

︸ ︷︷ ︸
R1

⎛
⎝−1 0 0

0 1 0
0 0 −1

⎞
⎠

︸ ︷︷ ︸
R2

=
⎛
⎝ k2

k1

−kz

⎞
⎠. (6)

This yields a transformation matrix U in the orbital basis
(dxy,dx2−y2 ,dxz,dyz,dz2 ):⎛
⎜⎜⎜⎝

1 0 0 0 0
0 −1 0 0 0
0 0 0 −1 0
0 0 −1 0 0
0 0 0 0 1

⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
S

⎛
⎜⎜⎜⎝

xy

x2 − y2

xz

yz

z2

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

xy

−(x2 − y2)
−yz

−xz

z2

⎞
⎟⎟⎟⎠,

(7)

characterized by changes in sign and order. In Fig. 6 we
illustrate the symmetry transformation H A1A1 onto H A2A2,
which also can be written as

H A1A1(k1,k2,kz) = S−1H A2A2(k2,k1, − kz)
∗
S (8)

and H B1B1 can be replaced by H A1A1∗
according to Eq. (2).

Similarly we find

H A1A2(k1,k2,kz) = S−1H B2B1(k2,k1, − kz)S

= S−1H A2A1(k2,k1, − kz)
∗
S. (9)

In addition, there are the symmetry relations

H A1A1 = H A1A1∗
, H A2A1 = H A1A2†, (10)

which further simplify Eq. (9) to get

H A1A2(k1,k2,kz) = S−1H A1A2(k2,k1, − kz)
t
S. (11)
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Overall we find for the H AB blocks

H A2B2(k1,k2,kz) = S−1H A1B1(k2,k1, − kz)
∗
S,

(12)
H A1B2(k1,k2,kz) = S−1H A1B2(k2,k1, − kz)

†
S,

where in the second line we employed

H A1B1 = H A1B1t
, H A2B1 = H A1B2t

, (13)

which stems from the symmetry H AB = H ABt
. Moreover,

the chosen symmetry operations (rotations R1 and R2) are
necessary to present the tight-binding Hamiltonian in the
proper Hermitian form as only the upper triangle of the blocks
are sufficient to construct the full Hamiltonian. As a result only
four blocks H A1A1, H A1A2, H A1B1, and H A1B2 appear now to
have an independent form.

Observe that the 122 and 1144 tight-binding Hamiltonians
are similar except that the higher symmetry of the 122 systems
yields identical hopping matrix elements along the k1 and k2

directions [see Eq. (A15) in the Appendix], which is not the
case for CaKFe4As4. Moreover, the hopping for the dxz and
dyz orbitals of 122 are interchanged, i.e., (kx,ky) → (ky,kx),
except for the sign. The special symmetries of the 122 materials
are also present in the hoppings of A1B1 and A1B2. Here, the
hoppings along kz are identical to the hoppings in the (k1,k2)
plane. This is the result of the gliding symmetry present in
122 and again absent in CaKFe4As4. Interestingly, this is one
of the reasons for the stronger quasi-two-dimensionality in
CaKFe4As4 as compared to the 122 structures. In turn, the
quasi-two-dimensional electronic structure allows a relatively
straightforward analysis of the superconducting instabilities,
which we do in the next section.

IV. HUBBARD-HUND HAMILTONIAN AND
SUPERCONDUCTING INSTABILITIES

Based on the single-particle low-energy Hamiltonian, we
analyze the superconducting instabilities in CaKFe4As4 by
employing the random phase approximation (RPA) within the
LAHA for the Hubbard-Hund Hamiltonian [13,15,16]. This
Hamiltonian is given by

Hint = U

2

∑
i,s

σ

nisσ nisσ̄ + U ′

2

∑
i,s �=t

σ,σ ′

nisσ nitσ ′

− J
∑
i,s �=t

Sis · Sit + J ′

2

∑
i,s �=t

σ

d
†
isσ d

†
isσ̄ ditσ̄ ditσ . (14)

where s and t here refer to the orbital indices. The other
symbols label the intraorbital Hubbard interaction U , the in-
terorbital Hubbard interaction U ′, the interorbital exchange J ,
and the pair hopping term J ′. We assume that the interactions
originate from a single two-body term with spin rotational
invariance, i.e., J ′ = J and U ′ = U − 5J/2. This leaves U

and J as the only two parameters in the problem. Here, U

defines the overall magnitude of the pairing interaction, while
the structure of the superconducting gap depends on the single
parameter J/U , which we will vary.

In order to study the BCS-type superconductivity in the
band representation, the interactions need to be rewritten in

k
z
=0

- 0
k

1

-

0k
2

k
z
=

xy x2-y 2 xz
yz z2

- 0
k

1

-

0 k
2

FIG. 7. Fermi surface structure of the CaKFe4As4 for two
different kz cuts with six hole and four electron Fermi surface pockets.
The electronic states at the Fermi level are colored regarding their
largest contribution from the iron 3d orbitals.

terms of the band operators. The transformed interactions
describe the repulsion between band fermions and acquire a
momentum (angular) dependence because of the underlying
orbital structure. We use the LAHA formalism to solve
the BCS-type gap equation [14–16] by separating each
interaction between fermions on the i and j pockets (i,j =
h1, . . . ,h6 and e1, . . . ,e4) into s-wave, dx2−y2 , and dxy chan-
nels. As the superconducting gap symmetry in CaKFe4As4

belongs to the A1g-symmetry representation [6] we restrict
ourselves only to these solutions to make the gap equation
tractable semianalytically and to be able to follow the gap
evolution upon changing the parameters.

We apply LAHA, solve for superconductivity, and vary
the parameters of the underlying model to see whether the
solutions that we find are stable with respect to the variation
of the interactions. Choosing this approach, orbital effects and
spin fluctuations will determine the strength of the effective
interactions that describe the scattering of a Cooper pair
between different Fermi surface pockets and will determine
the gap structure. We extend the computational procedure
described in [13] to the fermiology of Ca1144 to compare
possible superconducting s-wave spin-singlet states.

The transformation for the repulsive on-site Coulomb
interactions is a consequence of the diagonalization of the
kinetic part of the Hamiltonian, which is given in a tight-
binding representation (Sec. III). In the notation of [13,15],
the effective interactions are named �ij (k,k′).

Once the problem is reduced to Cooper pairs near the
Fermi level, i.e., once the momenta are constrained to the
contours of the Fermi surface pockets in the kx-ky plane,
the momentum dependence can be decomposed into leading
angular harmonics. The Fermi surface pockets are quasi-2D
cylinders (Fig. 7), which are periodic in the kz direction.
Therefore, it is also possible to find the leading harmonics of
the kz momentum dependence of the effective interactions and
the gap function. However, we note that the first harmonic, i.e.,
a constant, is already a good approximation. In other words,
we solve the 3D BCS-type gap equations, but only give the
2D result as first-order approximation, since the gap function
is only weakly dispersing in the kz direction.

Since the Fermi surface topology of CaKFe4As4 consists
of electron and hole pockets of a relatively small radius and
shows a weak kz dispersion, we can apply LAHA, where
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FIG. 8. Multiorbital spin susceptibility within RPA approxima-
tion at zero temperature for qz = 0 (a), qz = π (b), Coulomb repulsion
U = 1.5 eV, and Hund J = 0.1U .

the Cooper-pair scattering can be distinguished between the
intraband (small q) and interband (large q) ones. Interestingly,
in contrast to the situation of some ferropnictides like LiFeAs,
where a strong orbital differentiation for some of the pockets
takes place, here the orbital character of dxz, dx2−y2 , and dyz is
nearly equally distributed between electron and hole pockets,
which is also seen in Fig. 5. Furthermore, the hole bands also
acquire some dz2 character, which is often also the case in
other iron-based superconductors. Its influence was usually
ignored in effective models, which consider a dxz, dx2−y2 , and
dyz orbital character only [15].

In the next step we compute the spin response functions
within RPA, following the original proposal in Ref. [28]. The
spectral representation of the Green’s function is given as

Gsp(k,iωn) =
∑

μ

as
μ(k)ap∗

μ (k)

iωn − Eμ(k)
. (15)

Here, the matrix elements as
μ(k) = 〈s|μk〉 connect the orbital

indices s,p and the band index μ and are the components
of the eigenvectors resulting from the diagonalization of
the tight-binding Hamiltonian. We find the noninteracting
susceptibilities

χ
pq
st (q,ω) = − 1

N

∑
k,μν

as
μ(k)ap∗

μ (k)aq
ν (k + q)at∗

ν (k + q)

ω + Eν(k + q) − Eμ(k) + i0+

× {f [Eν(k + q)] − f [Eμ(k)]}. (16)

The RPA expression for the spin susceptibility is given in the
form of the Dyson-type equation(

χRPA
1

)pq

st
= χ

pq
st + (

χRPA
1

)pq

uv
(Us)uv

wzχ
wz
st , (17)

where the summation is assumed over repeated indices. Here
the nonzero components of the matrices of the spin-dependent
interaction Us are given as

(Us)aa
aa = U, (Us)aa

bb = 1
2J,

(Us)ab
ab = 1

4J + U ′, (Us)ba
ab = J ′,

where a �= b.
The results of the calculations are shown in Fig. 8 for

two different kz cuts. One could clearly see that even for
the moderate values of the interaction the susceptibilities are
enhanced for the antiferromagnetic wave vector reflecting
the nesting of the hole and electron dispersions, Ee(k) =

TABLE I. Effective interactions; scattering of Cooper pairs from
one hole pocket to another.

�ij h1 h2 h3 h4 h5 h6

h1 0.61 0.61 0.12 0.08 0.09 0.08
h2 0.58 0.11 0.06 0.08 0.07
h3 0.49 0.07 0.32 0.33
h4 1.10 0.08 0.09
h5 0.42 0.44
h6 0.39

−Eh(k + Q) for Q = (π,π ) in the two Fe BZs. Furthermore,
one clearly sees the peaks at smaller wave vectors, resulting
from the scattering between the hole bands.

The spin fluctuation component of the interaction is
obtained by summing up second- and higher-order ladder
diagrams in the orbital formalism. The total interaction is then
converted from orbital to band basis by dressing it by matrix
elements associated with the hybridization of Fe orbitals [13].
Aiming at the analysis of superconductivity, the end result of
this procedure is the effective BCS-type Hamiltonian in the
band description

H =
∑
i,k

εi(k)c†ikcik +
∑

i,j,k,k′
�ij (k,k′)c†ikc

†
i−kcjk′cj−k′ .

(18)
The quadratic term describes low-energy excitations near hole
and electron Fermi surface sheets, labeled by i and j , and the
interaction term describes the scattering of a pair (k ↑ , − k ↓)
on the pocket i to a pair (−k′ ↑ ,k′ ↓) on the pocket j . The
effective singlet interaction �ij (k,k′) is then given by

�ij (k,k′) =
∑

s,t,p,q

at∗
νi

(−k)as∗
νi

(k)Re
[
�

pq
st (k,k′,0)

]

× ap
νj

(k′)aq
νj

(−k′), (19)

with

�
pq
st (k,k′,ω) = [

3
2UsχRPA

1 (k − k′,ω)Us + 1
2Us

]tq

ps
. (20)

Here we drop the orbital (charge) -fluctuation contribution as
described in Ref. [13].

In Tables I–III we present exemplarily for U = 1.5 eV
and J/U = 0.1 the results of the LAHA projection for
the intraband and interband interaction for the ten pockets
in CaKFe4As4. As experimentally the angular variation of
the superconducting gap on each pocket is found to be
negligible [6] and its global symmetry is consistent with an
A1g irreducible symmetry representation, we restrict ourselves

TABLE II. Effective interactions; scattering of Cooper pairs from
one electron pocket to another.

�ij e1 e2 e3 e4

e1 0.42 0.06 0.30 0.35
e2 1.08 0.04 0.04
e3 0.75 0.28
e4 0.66
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TABLE III. Effective interactions; scattering of Cooper pairs
from hole pockets to electron pockets.

�ij e1 e2 e3 e4

h1 0.87 0.10 0.87 0.46
h2 0.47 0.19 0.42 0.31
h3 0.57 0.12 0.53 0.54
h4 0.42 0.46 0.54 0.33
h5 0.50 0.68 0.37 0.83
h6 0.12 1.50 0.10 0.13

to the constant superconducting gaps on each Fermi surface
pocket and constant interactions. On average we find that the
Cooper-pairing interactions are stronger between electron and
hole bands than between bands of the same character, i.e., hole-
hole or electron-electron bands, which is a result of the spin
fluctuation enhancement of the Cooper-pairing interaction.
Nevertheless, there is still strong intraband repulsion for some
of the bands such as e2 or h4.

We substitute the obtained interactions into the multiband
version of the coupled linearized BCS equation, which has the
form

(−λ)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝


h1

...

h6


e1

...

e4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= L

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�h1h1 . . . �h1h6 �h1e1 . . . �h1e4

...
. . .

...
...

. . .
...

�h6h1 . . . �h6h6 �h6e1 . . . �h6e4

�e1h1 . . . �e1h6 �e1e1 . . . �e1e4

...
. . .

...
...

. . .
...

�e4h1 . . . �e4h6 �e4e1 . . . �e4e4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝


h1

...

h6


e1

...

e4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(21)

We solve it numerically for various strengths of the intraorbital
on-site Coulomb repulsion U and Hund coupling J , following
the original procedure [15]. The resulting phase diagram of
the leading instabilities in the A1g channel is shown in Fig. 9.
Observe also that once the spin fluctuations, which enhance
the interaction between electron and hole bands, are included
the dx2−y2 -wave (B1g) and dxy-wave (B2g) symmetry solutions

(a)

(b)

0 0.05 0.1 0.15 0.2
J/U

1.2

1.25

1.3

1.35

1.4

1.45

1.5

U
 (

eV
)

s -state [++++++|----]

A-state [+++++-|----]

B-state [+-+++-|----]

C-state [+-+++-|-+--]

FIG. 9. Sign structure of the leading solution in the A1g channel
of the linearized BCS-type gap equations as a function of U and
the J/U ratio. The superconducting gap at the six-hole and four-
electron Fermi surface pockets can either have a positive or negative
sign, which is denoted by the vector [h1 . . . h6,e1 . . . e4]. We find that
spin fluctuations at an antiferromagnetic wave vector determine the
sign structure of the superconducting gap and lead to a conventional
s±-wave state. In particular, this scenario is likely for U � J . The
crosses refer to the particular ratio of the gaps presented in Fig. 10.

appear to lose against the s-wave ones. Moreover, the angular
variation of the gaps within the A1g symmetry representations
[i.e., higher harmonics such as cos(4φ) on the hole pockets
near the � point of the BZ] is also quite weak.

As a consequence, the phase diagram is dominated by
two types of solutions: The first one could be regarded as
a conventional s± wave in which the order parameter changes
sign between hole and electron pockets. This symmetry is
promoted by the strong intraorbital antiferromagnetic spin
fluctuations, enhanced by the Coulomb repulsion, U . At the
same time, for larger J/U ratios and smaller U the sign
structure of the superconducting gaps is distributed in a
more sophisticated way between the pockets and involves an
additional sign change within the hole and electron pockets.
This is mainly due to the fact that for increased J/U ratio
some of the interband interactions change sign and become
weakly attractive. In addition the spin fluctuation enhancement
is weaker for smaller U values. This modifies the balance for
the conventional s±-wave state and promotes states where the
order parameter also changes sign within the electron or hole
pockets. We obtain the most stable solution of this type, when
at least one of the hole and one of the electron pockets changes
its sign with respect to their counterparts, which we denote the
C-state solutions.

We note that our theory contains more bands than seen in
ARPES experiments [6]. This could be partially due to the
near degeneracy of some of the hole pockets as well as the
electron ones and their similar orbital content, which prevents
their straightforward identification in the ARPES experiments.
In addition we also find that the electron and hole bands
experience the so-called red/blue shift, i.e., their kF values
are smaller than those found in DFT calculations. This is a
general feature observed in many FeSCs [30] and is believed to
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FIG. 10. Mean values of the s±-wave superconducting gap evaluated on the different Fermi surface pockets for two different values of
U = 1.5 eV: (a) the conventional s± state and U = 1.2 eV and (b) the so-called C state and J/U = 0.1. The red points refer to experimental
values [6].

arise from the effect of the strong interband repulsion between
electron and hole bands [31]. Nevertheless, we do not expect
that this changes the results of the theoretical calculations as
the density of states in two dimensions does not depend on the
radius of the Fermi surface sheet, and therefore the interaction
strength, determined from LAHA, remains unaffected. In
addition we also checked that the orbital character of the bands
does not change once the Fermi radius of each of the bands is
reduced. Furthermore, the actual value of EF , counted from
the bottom of the electron band, or the top of the hole bands is
still much larger than the superconducting gap values, which
legitimizes the use of the standard multiband BCS theory. Note
that varying slightly the size of the electron and hole pockets
will also effectively change the electronic interactions in the
band representation and should be equivalent to the change
of the initial intra- and interorbital electronic interactions
we made to analyze the stability of the A1g symmetry
state.

Experimentally, also the sizes of the superconducting gap
on some of the Fermi surface sheets, namely, on three
hole pockets and one electron pocket, were measured by
ARPES [6]. In particular, it was found that the largest gap
appears for the electron and hole pockets that are nearly
perfectly nested, which was interpreted in favor of the
conventional s±-wave gap. In Fig. 10 we present the results of
our calculations from the phase diagram, shown in Fig. 9 for the
s± wave (a) and the C state (b) that best match the experimental
values [6]. We observe that the sizes of the gaps for the s±-wave
states is closer to the values found experimentally. For the
C state it turns out that there is a larger distribution of the
gaps on the electron Fermi surface cylinders, which would
be reflected in the near-nodal behavior of the quasiparticle
excitations on some of the electron pockets, which is not seen
up to now. The conventional s± state shows values which
are quite consistent with those found experimentally. This is
further supported by the proximity to the nesting of the electron
and hole bands. Nevertheless, phase sensitive experiments are
needed to confirm this state in CaKFe4As4.

Unfortunately, the three-dimensional character of the bands
in CaFe2As2 or KFe2As2 does not allow an immediate
application of the LAHA approach to these 122 systems.
However, on general grounds one would expect the stronger
tendency toward s± superconductivity in CaKFe4As4 due
to the revealed two-dimensional character of the electronic

bands in the latter. In principle, we expect that moving
the layers in the nonsymmetric position should enhance the
two-dimensionality of the system, allowing easier formation
of unconventional superconductivity.

V. CONCLUSION

To conclude, we investigated the electronic structure in
CaKFe4As4 using density functional theory. We systematically
compared the electronic structure of the 1144 and the 122
materials and analyzed the influences of the off-symmetry po-
sitions of the FeAs layer in CaKFe4As4. In particular, we find
that CaKFe4As4 could be well described as a doped 122 system
with some caveat, introduced by the off-symmetry position
of the Fe2As2 layers in CaKFe4As4. Among them is a near
degeneracy of several hole bands near the Fermi level and their
multiple orbital content, consisting of dyz, dxz, dxy (dx2−y2 ),
and dz2 orbitals. One of the most important consequences,
however, is the actual two-dimensional electronic structure in
CaKFe4As4 as compared to 122 materials, which arise due to
the absence of the gliding symmetry in CaKFe4As4.

We develop the low-energy description of this system by
projecting the DFT electronic structure on the tight-binding
(TB) Hamiltonian based on the Fe 3d orbitals only and discuss
the different symmetries within the system. We then use this
Hamiltonian and Hubbard-Hund intrasite interaction terms as
a basis to investigate potential superconducting instabilities in
CaKFe4As4. The nesting between strongly two-dimensional
electron and hole bands supports strongly the A1g symmetry
representation for the superconducting gap with most likely
s±-wave symmetry where the gap magnitude changes phase
between electron and hole pockets. For the increased Hund
coupling, J other solutions are also possible and it remains to
be determined experimentally which particular phase structure
the superconducting order parameter has in CaKFe4As4.

Note added. After our study was completed, inelastic neu-
tron scattering experiments on CaKFe4As4 have reported the
observation of the so-called neutron spin resonance peak in the
superconducting state of this system at the antiferromagnetic
wave vector QAF = (π,π ) [32]. Most importantly, the position
of the spin resonance at h̄�res = 12.5 meV occurs at energies
below the smallest sum of the superconducting gaps on the
electron and hole pockets (h̄�res � |
e| + |
h|) [6]. This
supports the conventional s±-wave symmetry of the supercon-

094521-8



ELECTRONIC PROPERTIES, LOW-ENERGY . . . PHYSICAL REVIEW B 96, 094521 (2017)

ducting gap with gap changing sign between hole and electron
pockets and is in full agreement with our theoretical analysis.
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APPENDIX: TIGHT-BINDING HAMILTONIAN

In this Appendix we present the tight-binding Hamiltonian
as obtained with the VASP2WANNIER package. This representa-
tion is applicable not only for the 1144 materials, but also for
the 122 compounds, which underlines the similarity of both
systems. In particular, the elements of Eq. (4) read

H A1A1
11 = t000

11 + 2t010
11 cos k2 + 2t100

11 cos k1

+ 2t020
11 cos(2k2) + 2t200

11 cos(2k1)

+ 4t110
11 cos k1 cos k2,

H A1A1
12 = 4t110

12 sin k1 sin k2,

H A1A1
13 = 2it010

13 sin k2 − 4it110
13 cos k1 sin k2,

H A1A1
14 = 2it100

14 sin k1,

H A1A1
15 = 4t110

15 sin k1 sin k2,

H A1A1
22 = t000

22 + 2t010
22 cos k2 + 2t100

22 cos k1

+ 2t020
22 cos(2k2) + 2t200

22 cos(2k1)

+ 4t110
22 cos k1 cos k2,

H A1A1
23 = 2it100

23 sin k1 + 2it200
23 sin(2k1)

+ 4it110
23 sin k1 cos k2

+ 4it210
23 sin(2k1) cos k2,

H A1A1
24 = 2it010

24 sin k2 + 4it110
24 cos k1 sin k2

+ 4it120
24 cos k1 sin(2k2), (A1)

H A1A1
25 = t000

25 + 2t010
25 cos k2 + 2t100

25 cos k1

+ 2t020
25 cos(2k2) + 2t200

25 cos(2k1)

+ 4t110
25 cos k1 cos k2,

H A1A1
33 = t000

33 + 2t010
33 cos k2 + 2t100

33 cos k1

+ 2t200
33 cos(2k1) + 4t110

33 cos k1 cos k2

+ 2t300
33 cos(3k1),

H A1A1
34 = 4t110

34 sin k1 sin k2,

H A1A1
35 = 2it100

35 sin k1 + 2it200
35 sin(2k1),

H A1A1
44 = t000

44 + 2t010
44 cos k2 + 2t100

44 cos k1

+ 2t020
44 cos(2k2) + 4t110

44 cos k1 cos k2

+ 2t030
44 cos(3k2),

H A1A1
45 = 2it010

45 sin k2 + 2it020
45 sin(2k2),

H A1A1
55 = t000

55 + 2t010
55 cos k2 + 2t100

55 cos k1

+ 2t020
55 cos(2k2) + 2t200

55 cos(2k1)

+ 4t110
55 cos k1 cos k2

and

H A1A2
16 = 2t000

16 (cos kx + cos ky),

H A1A2
17 = 2t000

17 (cos kx − cos ky)

+ 2t010
17 [cos(2kx − ky) − cos(kx − 2ky)]

+ 2t100
17 [− cos(2kx + ky) + cos(kx + 2ky)],

H A1A2
18 = 2it000

18 (sin kx − sin ky)

+ 2it100
18 [sin(2kx + ky) − sin(kx + 2ky)]

+ 2it200
18 [sin(3kx + 2ky) − sin(2kx + 3ky)],

H A1A2
19 = 2it000

19 (sin kx + sin ky)

+ 2it010
19 [sin(2kx − ky) − sin(kx − 2ky)]

+ 2it020
19 [sin(3kx − 2ky) − sin(2kx − 3ky)],

H A1A2
1,10 = 2t000

1,10(− cos kx + cos ky)

+ 2t010
1,10[− cos(2kx − ky) + cos(kx − 2ky)]

+ 2t100
1,10[− cos(2kx + ky) + cos(kx + 2ky)],

H A1A2
27 = −2t000

27 (cos kx + cos ky)

+ 4t010
27 [cos(2kx) cos ky + cos kx cos(2ky)],

H A1A2
28 = 2it000

28 (sin kx + sin ky)

+ 2it010
28 [sin(2kx − ky) − sin(kx − 2ky)]

+ 2it100
28 [sin(2kx + ky) + sin(kx + 2ky)],

H A1A2
29 = 2it000

29 (− sin kx + sin ky)

− 2it010
29 [sin(2kx − ky) + sin(kx − 2ky)]

+ 2it100
29 [− sin(2kx + ky) + sin(kx + 2ky)],

H A1A2
2,10 = −2t000

2,10(cos kx + cos ky)

− 2t010
2,10[cos(2kx − ky) + cos(kx − 2ky)]

+ 2t100
2,10[cos(2kx + ky) + cos(kx + 2ky)],

H A1A2
38 = −2t000

38 (cos kx + cos ky)

+ 2t010
38 [cos(2kx − ky) + cos(kx − 2ky)]

− 2t100
38 [cos(2kx + ky) + cos(kx + 2ky)],

H A1A2
39 = 2t000

39 (− cos kx + cos ky)

+ 4t010
39 [cos(2kx) cos ky − cos kx cos(2ky)],

H A1A2
3,10 = 2it000

3,10(sin kx + sin ky),

H A1A2
48 = 2t000

48 (− cos kx + cos ky)

+ 4t010
48 [cos(2kx) cos ky − cos kx cos(2ky)],

H A1A2
49 = −2t000

49 (cos kx + cos ky)

− 2t010
49 [cos(2kx − ky) + cos(kx − 2ky)]
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+ 2t100
49 [cos(2kx + ky) + cos(kx + 2ky)],

H A1A2
4,10 = 2it000

4,10(− sin kx + sin ky)

− 2it010
4,10[sin(2kx − ky) + sin(kx − 2ky)],

H A1A2
5,10 = 2t000

5,10(cos kx + cos ky)

− 4t010
5,10[cos(2kx) cos ky + cos kx cos(2ky)]

+ 2t110
5,10[cos(3kx) + cos(3ky)]. (A2)

H A1B1
1,11 = t000

1,11 + 2t010
1,11 cos k2 + 2t100

1,11 cos k1

+ 4t110
1,11 cos k1 cos k2,

H A1B1
1,12 = 0,

H A1B1
1,13 = 2it010

1,13 sin k2,

H A1B1
1,14 = 0,

H A1B1
1,15 = 0,

H A1B1
2,12 = t000

2,12 + 2t010
2,12 cos k2 + 2t100

2,12 cos k1

+ 2t020
2,12 cos(2k2),

H A1B1
2,13 = 2it100

2,13 sin k1,

H A1B1
2,14 = 2it010

2,14 sin k2 + 4it110
2,14 cos k1 sin k2,

H A1B1
2,15 = t000

2,15 + 2t010
2,15 cos k2 + 2t100

2,15 cos k1

+ 2t020
2,15 cos(2k2), (A3)

H A1B1
3,13 = t000

3,13 + 2t010
3,13 cos k2

+ 4t110
3,13 cos k1 cos k2,

H A1B1
3,14 = 0,

H A1B1
3,15 = 2it100

3,15 sin k1,

H A1B1
4,14 = t000

4,14 + 2t010
4,14 cos k2 + 2t100

4,14 cos k1

+ 4t110
4,14 cos k1 cos k2

+ 4t120
4,14 cos k1 cos(2k2),

H A1B1
4,15 = 4it110

4,15 cos k1 sin k2,

H A1B1
5,15 = t000

5,15 + 2t010
5,15 cos k2 + 2t100

5,15 cos k1

+ 2t020
5,15 cos(2k2) + 4t110

5,15 cos k1 cos k2,

and for the A1B2 block

H A1B2
1,16 = 0,

H A1B2
1,17 = 2t000

1,17(cos kx − cos ky),

H A1B2
1,18 = 2it000

1,18(sin kx − sin ky)

− 2it010
1,18[sin(2kx − ky) + sin(kx − 2ky)]

+ 2it100
1,18[sin(2kx + ky) − sin(kx + 2ky)],

H A1B2
1,19 = 0,

H A1B2
1,20 = 0,

H A1B2
2,17 = 2t000

2,17(cos kx + cos ky),

H A1B2
2,18 = −2it000

2,18(sin kx + sin ky)

+ 2it010
2,18[sin(2kx − ky) − sin(kx − 2ky)],

H A1B2
2,19 = 2it000

2,19(− sin kx + sin ky)

+ 2it010
2,19[sin(2kx − ky) + sin(kx − 2ky)],

H A1B2
2,20 = 2t000

2,20(cos kx + cos ky)

+ 2t010
2,20[cos(2kx − ky) + cos(kx − 2ky)],

H A1B2
3,18 = −2t000

3,18(cos kx + cos ky)

+ 2t110
3,18[cos(3kx) + cos(3ky)],

H A1B2
3,19 = 0,

H A1B2
3,20 = −2it000

3,20(sin kx + sin ky),

H A1B2
4,19 = H A1B2

3,18 ,

H A1B2
4,20 = 2it000

4,20(sin kx − sin ky),

H A1B2
5,20 = −2t000

5,20(cos kx + cos ky)

+ 4t010
5,20[cos(2kx) cos ky + cos kx cos(2ky)]. (A4)

The dispersion part involving the kz direction has for the A1A1
term

H A1A1
22 = 2t001

22 cos kz, (A5)

and for the A1B1 term

H A1B1
1,11 = +(

t001
1,11 + 2t011

1,11 cos k2 + 2t101
1,11 cos k1

+ 4t111
1,11 cos k1 cos k2

)
e−ikz ,

H A1B1
1,12 = 0,

H A1B1
1,13 = 0,

H A1B1
1,14 = +2it101

1,14 sin k1 e−ikz ,

H A1B1
1,15 = 0,

H A1B1
2,12 = +(

t001
2,12 + 2t011

2,12 cos k2 + 2t101
2,12 cos k1

+ 2t201
2,12 cos(2k1) + 4t111

2,12 cos k1 cos k2
)
e−ikz ,

H A1B1
2,13 = +2it101

2,13 sin k1 e−ikz ,

H A1B1
2,14 = 0,

H A1B1
2,15 = +[

t001
2,15 + 2t011

2,15 cos k2 + 2t101
2,15 cos k1

+ 2t201
2,15 cos(2k1)

]
e−ikz , (A6)

H A1B1
3,13 = +[

t001
3,13 + 2t011

3,13 cos k2 + 2t101
3,13 cos k1

+ 4t111
3,13 cos k1 cos k2 + 4t211

3,13 cos(2k1) cos k2
]
e−ikz ,

H A1B1
3,14 = 0,

H A1B1
3,15 = +(

2it101
3,15 sin k1 − 4it111

3,15 sin k1 cos k2
)
e−ikz ,

H A1B1
4,14 = +(

t001
4,14 + 2t011

4,14 cos k2 + 2t101
4,14 cos k1

+ 4t111
4,14 cos k1 cos k2

)
e−ikz ,

H A1B1
4,15 = +(

2it011
4,15 sin k2 + 4it111

4,15 cos k1 sin k2
)
e−ikz ,

H A1B1
5,15 = +[

t001
5,15 + 2t011

5,15 cos k2 + 2t101
5,15 cos k1

+ 2t201
5,15 cos(2k1) + 4t111

5,15 cos k1 cos k2
]
e−ikz ,
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as well as the A1B2 part

H A1B2
1,16 = 0,

H A1B2
1,17 = +2t001

1,17(− cos kx + cos ky)e−ikz ,

H A1B2
1,18 = 0,

H A1B2
1,19 = +{

2it001
1,19(sin kx + sin ky)

+ 2it011
1,19[sin(2kx − ky) − sin(kx − 2ky)]

− 2it101
1,19[sin(2kx + ky)

+ sin(kx + 2ky)]
}
e−ikz ,

H A1B2
1,20 = +2t001

1,20(− cos kx + cos ky)e−ikz ,

H A1B2
2,17 = +2t001

2,17(cos kx + cos ky)e−ikz ,

H A1B2
2,18 = +{

2it001
2,18(sin kx + sin ky)

− 2it101
2,18[sin(2kx + ky)

+ sin(kx + 2ky)]
}
e−ikz ,

H A1B2
2,19 = +{

2it001
2,19(sin kx − sin ky)

+ 2it101
2,19[− sin(2kx + ky)

+ sin(kx + 2ky)]
}
e−ikz ,

H A1B2
2,20 = +{

2t001
2,20(cos kx + cos ky)

− 2t101
2,20[cos(2kx + ky)

+ cos(kx + 2ky)]
}
e−ikz , (A7)

H A1B2
3,18 = +{ − 2t001

3,18(cos kx + cos ky)

+ 2t111
3,18[cos(3kx) + cos(3ky)]

}
e−ikz ,

H A1B2
3,19 = 0,

H A1B2
3,20 = +{

2it001
3,20(sin kx + sin ky)

+ 2it011
3,20[− sin(2kx − ky)

+ sin(kx − 2ky)]
}
e−ikz ,

H A1B2
4,19 = H A1B2

3,18 ,

H A1B2
4,20 = +{

2it001
4,20(− sin kx + sin ky)

− 2it011
4,20[sin(2kx − ky)

+ sin(kx − 2ky)]
}
e−ikz ,

H A1B2
5,20 = +{ − 2t001

5,20(cos kx + cos ky)

+ 4t101
5,20[cos(2kx) cos ky

+ cos kx cos(2ky)]
}
e−ikz .

Below we give the parameters of the hopping integrals for
the CaKFe4As4 system for the A1A1 term:

t000
11 = 0.247 088, t010

11 = −0.128 852,

t100
11 = −0.015 027, t020

11 = 0.019 461,

t200
11 = 0.022 313, t110

11 = −0.036 534,

t110
12 = 0.018 133, t010

13 = 0.174 436,

t110
13 = 0.010 374, t100

14 = −0.126 588,

t110
15 = 0.019 849, t000

22 = 0.040 038,

t010
22 = 0.233 719, t100

22 = −0.084 639,

t020
22 = −0.041 893, t200

22 = 0,

t110
22 = −0.017 867, t100

23 = −0.058 680,

t200
23 = −0.028 825, t110

23 = 0,

t210
23 = 0, t010

24 = 0.141 905,

t110
24 = 0, t120

24 = 0,

t000
25 = −0.212 933, t010

25 = −0.051 335,

t100
25 = −0.085 047, t020

25 = 0.013 004,

t200
25 = 0.016 189, t110

25 = −0.013 983,

t000
33 = 0.183 023, t010

33 = 0.140 469,

t100
33 = 0.336 148 t110

33 = −0.015 620,

t200
33 = 0.077 006, t300

33 = 0.022 415,

t110
34 = −0.032 167, t100

35 = 0.201 822,

t200
35 = 0, t000

44 = 0.147 106,

t010
44 = 0.429 681, t100

44 = 0.142 601,

t110
44 = −0.011 815, t020

44 = 0.082 600,

t030
44 = 0.021 224, t010

45 = −0.078 445,

t020
45 = −0.024 122, t000

55 = 0.067 747,

t010
55 = −0.112 947, t100

55 = 0.248 170,

t110
55 = −0.024 991, t200

55 = −0.043 234,

t020
55 = 0 (A8)

and A1A2:

t000
16 = −0.381 198, t000

17 = 0.202 289,

t010
17 = 0.018 080, t100

17 = 0,

t000
18 = 0.347 157, t100

18 = 0.039 476,

t200
18 = 0.011 114, t000

19 = 0.254 869,

t010
19 = 0.022 287, t020

19 = 0.010 527,

t000
1,10 = 0.264 651, t010

1,10 = 0,

t100
1,10 = 0.017 994, t000

27 = 0.111 094,

t010
27 = 0.027 008, t000

28 = 0.204 372,

t010
28 = 0, t100

28 = 0,

t000
29 = 0.081 707, t010

29 = 0.021 110,

t100
29 = 0, t000

2,10 = 0.066 480,

t010
2,10 = 0, t100

2,10 = 0.028 756,

t000
38 = 0.229 540, t010

38 = 0,

t100
38 = 0.035 261, t000

39 = 0.103 442,

t010
39 = 0.032 044, t000

3,10 = 0.220 496,
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t000
48 = 0.167 758, t010

48 = 0.019 836,

t000
49 = t000

38 , t010
49 = t100

38 ,

t100
49 = t010

38 , t000
4,10 = 0.054 671,

t010
4,10 = 0.021 606, t000

5,10 = 0.113 811,

t010
5,10 = 0.029 265, t110

5,10 = 0. (A9)

The parameters for the A1B1 block read

t000
1,11 = −0.014 187, t010

1,11 = 0,

t100
1,11 = 0, t110

1,11 = 0,

t010
1,13 = 0, t000

2,12 = −0.178 573,

t010
2,12 = −0.079 501, t100

2,12 = 0,

t020
2,12 = 0, t100

2,13 = −0.011 803,

t010
2,14 = −0.012 294, t110

2,14 = 0.010 139,

t000
2,15 = 0.022 342, t010

2,15 = 0,

t100
2,15 = 0.017 056, t020

2,15 = 0, (A10)

t000
3,13 = 0.018 604, t010

3,13 = 0.010 938,

t110
3,13 = 0, t100

3,15 = 0,

t000
4,14 = 0.022 463, t010

4,14 = 0,

t100
4,14 = 0, t110

4,14 = 0,

t120
4,14 = 0, t110

4,15 = 0,

t000
5,15 = −0.015 017, t010

5,15 = 0,

t100
5,15 = −0.011 221, t110

5,15 = 0,

t020
5,15 = 0

and for A1B2

t000
1,17 = 0, t000

1,18 = 0,

t010
1,18 = 0, t100

1,18 = 0,

t000
2,17 = 0.084 500, t000

2,18 = 0,

t010
2,18 = 0.010 832, t000

2,19 = 0,

t010
2,19 = 0, t000

2,20 = 0.015 346, (A11)

t010
2,20 = 0, t000

3,18 = 0,

t110
3,18 = 0, t000

3,20 = 0,

t000
4,20 = 0, t000

5,20 = 0,

t010
5,20 = 0.

Similarly, we find parameters A1A1 3D

t001
22 = 0, (A12)

A1B1 3D

t001
1,11 = −0.061 912, t011

1,11 = −0.014 910,

t101
1,11 = 0.032 455, t111

1,11 = 0.013 021,

t101
1,14 = −0.033 288, t001

2,12 = −0.040 849,

t011
2,12 = −0.018 842, t101

2,12 = 0.021 234,

t111
2,12 = 0.010 619, t201

2,12 = 0,

t101
2,13 = −0.028 809, t001

2,15 = 0.055 394,

t011
2,15 = 0.028 108, t101

2,15 = 0.012 610,

t201
2,15 = 0, t001

3,13 = 0.117 064,

t011
3,13 = −0.014 458, t101

3,13 = 0.063 591,

t111
3,13 = −0.017 604, t211

3,13 = −0.017 878,

t101
3,15 = 0.027 871, t111

3,15 = 0.015 766,

t001
4,14 = 0.077 263, t011

4,14 = −0.018 486,

t101
4,14 = 0.034 123, t111

4,14 = 0,

t011
4,15 = 0.029 779, t111

4,15 = 0.011 809,

t001
5,15 = −0.354 701, t011

5,15 = 0.021 342,

t101
5,15 = −0.164 139, t111

5,15 = 0,

t201
5,15 = 0.014 937, (A13)

and parameters A1B2 3D

t001
1,17 = 0.016 345, t001

1,19 = 0.049 462,

t011
1,19 = 0.012 258, t101

1,19 = 0,

t001
1,20 = 0.010 052, t001

2,17 = 0.012 790,

t001
2,18 = 0.027 296, t101

2,18 = 0,

t001
2,19 = 0, t101

2,19 = 0, (A14)

t001
2,20 = 0.028 421, t101

2,20 = 0,

t001
3,18 = 0.044 275, t111

3,18 = 0.010 797,

t001
3,20 = 0, t011

3,20 = 0.011 906,

t001
4,20 = 0, t011

4,20 = 0.013 628,

t001
5,20 = 0.167 859, t101

5,20 = 0.

The same parameters for CaFe2As2 are as follows.
Parameter A1A1:

t000
11 = −0.365 859, t010

11 = −0.052 564,

t100
11 = t010

11 , t110
11 = −0.019 398,

t020
11 = 0.016 116, t200

11 = t020
11 ,

t110
12 = 0, t010

13 = 0.120 333,

t110
13 = 0, t100

14 = −t010
13 ,

t110
15 = 0.019 057, t000

22 = 0.264 452,

t010
22 = 0.161 138, t100

22 = t010
22 ,

t110
22 = 0.013 436, t020

22 = −0.040 903,

t200
22 = t020

22 , t100
23 = 0.068 608,

t110
23 = 0.013 523, t210

23 = −0.011 030,

t200
23 = 0, t010

24 = t100
23 ,
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t110
24 = t110

23 , t120
24 = t210

23 ,

t000
25 = 0, t010

25 = 0.174 989,

t100
25 = −t010

25 , t110
25 = 0,

t020
25 = −0.020 306, t200

25 = −t020
25 ,

t000
33 = 0.012 164, t010

33 = 0.104 970,

t100
33 = 0.324 250, t110

33 = 0,

t200
33 = 0.069 523, t300

33 = 0.017 765,

t110
34 = −0.038 357, t100

35 = 0.151 463,

t200
35 = 0.031 583, t000

44 = t000
33 ,

t010
44 = t100

33 , t100
44 = t010

33 ,

t110
44 = 0, t020

44 = t200
33 ,

t030
44 = t300

33 , t010
45 = −t100

35 ,

t020
45 = −t200

35 , t000
55 = −0.089 032,

t010
55 = 0, t100

55 = 0,

t110
55 = −0.033 271, t020

55 = −0.015 254,

t200
55 = t020

55 . (A15)

Parameter A1A2:

t000
16 = −0.363 661, t000

17 = 0,

t010
17 = 0.010 562, t100

17 = t010
17 ,

t000
18 = 0.244 647, t100

18 = 0.022 411,

t200
18 = 0, t000

19 = t000
18 ,

t010
19 = t100

18 , t020
19 = t200

18 ,

t000
1,10 = 0.304 047, t010

1,10 = 0.011 386,

t100
1,10 = t010

1,10, t000
27 = 0.211 970,

t010
27 = 0.035 072, t000

28 = 0.154 401,

t010
28 = 0.014 769, t100

28 = 0.021 142,

t000
29 = t000

28 , t010
29 = t100

28 ,

t100
29 = t010

28 , t000
2,10 = 0, (A16)

t010
2,10 = 0.019 052, t100

2,10 = t010
2,10,

t000
38 = 0.183 874, t010

38 = 0.011 643,

t100
38 = 0.041 421, t000

39 = 0.113 111,

t010
39 = 0.023 085, t000

3,10 = 0.092 244,

t000
48 = t000

39 , t010
48 = t010

39 ,

t000
49 = t000

38 , t010
49 = t100

38 ,

t100
49 = t010

38 , t000
4,10 = −t000

3,10,

t010
4,10 = 0, t000

5,10 = 0.059 586,

t010
5,10 = 0.024 878, t110

5,10 = 0.013 588.

Parameter A1B1:

t000
1,11 = −0.062 812, t010

1,11 = 0.035 863,

t100
1,11 = −0.018 856, t110

11 = 0.016 659,

t010
1,13 = 0.030 549, t000

2,12 = −0.262 053,

t010
2,12 = −0.072 906, t100

2,12 = −0.025107,

t020
2,12 = 0.010 635, t100

2,13 = 0,

t010
2,14 = −0.056 892, t110

2,14 = 0,

t000
2,15 = −0.170 028, t010

2,15 = −0.090 345, (A17)

t100
2,15 = 0.031 744, t020

2,15 = 0.012 453,

t000
3,13 = 0.068 646, t010

3,13 = 0.045 685,

t110
3,13 = −0.011 647, t100

3,15 = −0.018 612,

t000
4,14 = 0.110 209, t010

4,14 = 0.059 951,

t100
4,14 = −0.016 171, t110

4,14 = −0.018 985,

t120
4,14 = −0.016 778, t110

4,15 = 0.020 444,

t000
5,15 = −0.156 738, t010

5,15 = −0.062 072,

t100
5,15 = 0.037 088, t110

5,15 = 0.021 684,

t020
5,15 = 0.010 814.

Parameter A1B2:

t000
1,17 = 0.020 947, t000

1,18 = 0.051 860,

t010
1,18 = 0.011 344, t100

1,18 = 0.012 005,

t000
2,17 = 0.119 800, t000

2,18 = 0.022 801,

t010
2,18 = 0.014 765, t000

2,19 = 0.030 462,

t010
2,19 = 0.012 601, t000

2,20 = −0.083 382, (A18)

t010
2,20 = 0.011 417, t000

3,18 = 0.045 360,

t110
3,18 = 0.011 536, t000

3,20 = 0.023 115,

t000
4,20 = 0.011 132, t000

5,20 = 0.072 867,

t010
5,20 = 0.010 693.

Parameter A1A1 3D:

t001
22 = 0.016 488. (A19)

Parameter A1B1 3D:

t001
1,11 = t000

1,11, t011
1,11 = t100

1,11,

t101
1,11 = t010

1,11, t111
1,11 = t110

1,11,

t101
1,14 = −t010

1,13, t001
2,12 = t000

2,12,

t011
2,12 = t100

2,12, t101
2,12 = t010

2,12,

t111
2,12 = 0, t201

2,12 = t020
2,12,

t101
2,13 = t010

2,14, t001
2,15 = −t000

2,15,

t011
2,15 = −t100

2,15, t101
2,15 = −t010

2,15,

t201
2,15 = −t020

2,15, t001
3,13 = t000

4,14,
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t011
3,13 = t100

4,14, t101
3,13 = t010

4,14,

t111
3,13 = t110

4,14, t211
3,13 = t120

4,14,

t101
3,15 = 0, t110

3,15 = t110
4,15,

t001
4,14 = t000

3,13, t011
4,14 = 0,

t101
4,14 = t010

3,13, t111
4,14 = t110

3,13,

t011
4,15 = −t100

3,15, t111
4,15 = 0,

t001
5,15 = t000

5,15, t011
5,15 = t100

5,15,

t101
5,15 = t010

5,15, t111
5,15 = t110

5,15,

t201
5,15 = t020

5,15. (A20)

Parameter A1B2 3D:

t001
1,17 = t000

1,17, t001
1,19 = t000

1,18, t011
1,19 = t100

1,18, t101
1,19 = t010

1,18,

t001
1,20 = 0, t001

2,17 = t000
2,17, t001

2,18 = t000
2,19, t101

2,18 = t010
2,19,

t001
2,19 = t000

2,18, t101
2,19 = t010

2,18,

t001
2,20 = −t000

2,20, t101
2,20 = t010

2,20, (A21)

t001
3,18 = t000

3,18, t111
3,18 = t110

3,18,

t001
3,20 = t000

3,20, t011
3,20 = 0,

t001
4,20 = t000

3,20, t011
4,20 = 0,

t001
5,20 = t000

5,20, t101
5,20 = t010

5,20.
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