
PHYSICAL REVIEW B 96, 094516 (2017)

Enhanced pinning for vortices in hyperuniform pinning arrays and emergent hyperuniform vortex
configurations with quenched disorder

Q. Le Thien,1,2 D. McDermott,1,3 C. J. O. Reichhardt,1 and C. Reichhardt1
1Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

2Department of Physics, Wabash College, Crawfordsville, Indiana 47933, USA
3Department of Physics, Pacific University, Forest Grove, Oregon 97116, USA

(Received 7 March 2017; revised manuscript received 15 August 2017; published 15 September 2017)

Disordered hyperuniformity is a state of matter exhibiting both isotropic liquid-like properties and crystalline-
like properties such as minimal density fluctuations over long distances. Such states arise for jammed
particle assemblies and in nonequilibrium systems. An open question is whether the properties of disordered
hyperuniformity can be harnessed for technological applications. A major issue for applications of type-II
superconductors is preventing the motion or depinning of magnetic vortices in order to achieve high critical
currents, so there is great interest in identifying optimal pinning site geometries. Using large-scale simulations,
we show that a disordered hyperuniform pinning arrangement produces enhanced vortex pinning compared to
an equal number of purely randomly arranged pinning sites, and that the enhancement is robust over a wide
parameter range for both short- and long-range vortex-vortex interactions. In disordered hyperuniform arrays,
pinning density fluctuations are suppressed, permitting higher pin occupancy and preventing weak links that
lead to easy-flow channeling. We also show that in amorphous vortex states on either random or disordered
hyperuniform pinning arrays, the vortices themselves exhibit disordered hyperuniformity due to the repulsive
nature of the vortex-vortex interactions.
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I. INTRODUCTION

Disordered hyperuniformity describes amorphous systems
that exhibit both liquid and crystalline properties [1,2]. The
amorphous nature of these systems indicates that they are
isotropic, in contrast to crystalline systems which break
spatial symmetries and exhibit Bragg peaks. Disordered
hyperuniform systems also show strong suppression of density
fluctuations out to long length scales, a crystal-like property,
where the density per unit cell is fixed at a constant value. This
is in contrast to a random assembly or Poisson distribution
of particles where large density variations can occur since
it is possible for points to accumulate in certain regions
or to have extended regions devoid of points. In 2003,
Torquato and Stillinger proposed that the concept of disordered
hyperuniformity can be used to describe many-body systems
in which density fluctuations are suppressed out to very
long wavelengths [1]. Since then, disordered hyperuniformity
has been studied in a growing number of systems including
jammed particle assemblies [3–5], block-copolymer systems
[6], near nonequilibrium critical points [7–9], and even in
certain quantum systems [10]. An open question is identifying
possible applications for systems that exhibit disordered
hyperuniformity. There have already been some proposals
along these lines, such as the use of hyperuniformity to create
photonic materials with complete band gaps [11].

Here, we show that pinning sites in a disordered hy-
peruniform arrangement have superior pinning properties
compared to an equivalent number of randomly arranged
pinning sites for magnetic vortices in a type-II superconductor
over a wide range of magnetic fields, substrate strengths, and
applied drives. We show that this enhancement occurs both
for stiff 3D bulk vortex systems with columnar defects and
for vortices in thin-film superconductors. The enhancement
is more pronounced in the thin films since the disordered
hyperuniform arrays suppress the filamentary flow that occurs

near depinning in systems with long-range interactions. One
of the major issues for applications of type-II superconductors
is that the onset of vortex motion limits the magnitude of the
current that can be carried by a sample in the superconducting
state, since the vortex motion produces dissipation through
a voltage response [12–14]. To emphasize the importance of
pinning, a general rule of thumb is that doubling the critical
current reduces the cost of using these materials by half [14].
There have been intense efforts directed at improving vortex
pinning by adding defects to superconducting samples in
order to locally suppress the superconducting order parameter,
creating low-energy regions that trap vortices [14,15]. Since
adding defects to the sample can decrease Tc and the critical
current if the defect volume density becomes too large, there
is a limit to the number of pinning sites that can be added.
Therefore it is important to determine the best way to spatially
distribute a fixed number of pinning sites to create the highest
critical current for a wide range of fields. One method is
to arrange the pinning sites in crystalline lattices [16–23],
diluted ordered lattices [24,25], quasiperiodic arrangements
[26,27], conformal arrangements [28–30], or gradient arrays
[31–33]. Typically in systems with crystalline arrangements of
pinning sites, a strong enhancement of the depinning threshold
compared to random pinning arrangements occurs only for
matching conditions under which the number of vortices is
an integer multiple of the number of pinning sites, whereas
under nonmatching conditions, the periodic pinning arrays
have lower depinning thresholds than random arrays since
the high symmetry of the array allows easy 1D vortex flow
channels to form along symmetry directions of the array
[19,28]. In order to achieve strong pinning for a wide range
of parameters, it would be ideal to place the pinning sites
in a geometry that has reduced pinning density fluctuations,
similar to crystalline arrays, while simultaneously remaining
isotropic in order to eliminate easy-flow symmetry channeling
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effects. This suggests that disordered hyperuniform pinning
arrangements could be ideal for enhancing the critical current.

Another question is whether amorphous assemblies of vor-
tices in the presence of random pinning arrange themselves in
a disordered hyperuniform state or a random state. Generally,
vortex structures in the presence of pinning are described as
either being ordered, as in a Bragg glass state where there
are no dislocations in the vortex lattice [34], or as amorphous
where numerous topological defects are present [34–36]. Due
to the repulsive interaction between vortices, strong density
fluctuations are highly energetically costly, which suggests
that the amorphous vortex structure may be hyperuniform in
nature when vortex-vortex interactions are relevant, and more
random in nature when pinning or thermal effects dominate.
Since disordered hyperuniform states are expected to occur
for certain charged systems [2], pinned amorphous vortex
systems may be ideal places to seek emergent disordered
hyperuniformity. We show that disordered hyperuniform vor-
tex states arise for vortices interacting with either disordered
hyperuniform or random pinning arrays, which suggests that
disordered hyperuniformity is a general feature of pinned
vortex systems. There are many techniques that have been
used to visualize large amorphous vortex assemblies [37–45],
and it would be interesting to reexamine this data to see
whether disordered hyperuniform or random configurations
occur. Additionally, there is a wide class of systems that have
many similarities to amorphous vortices in the presence of
pinning which may also exhibit disordered hyperuniformity,
including charge-stabilized colloids [46], Wigner crystals [47],
and skyrmions in chiral magnets [48,49].

This paper is organized as follows. In Sec. II we describe
our simulation model. We primarily focus on models of
bulk 3D superconducting samples in which the vortices can
be represented by stiff lines. In Sec. III we show that the
disordered hyperuniform pinning array produces an enhanced
critical current as well as a reduced vortex velocity in the
flowing state compared to a random pinning array with the
same number of pinning sites. We then shift our attention
to the structure of the vortices in the pinned state, and in
Sec. IV we show that the vortices themselves form an emergent
disordered hyperuniform structure even when the underlying
pinning array is random; that is, we observe a disordered
hyperuniform state in the presence of quenched disorder. In
Sec. V we consider a model for long-range interacting vortices
in a 2D thin film, and show that not only is the critical current
enhancement by the disordered hyperuniform pinning array
robust; it is even more pronounced than in the bulk 3D samples
due to the small shear modulus of the thin-film system. We
observe the same emergent disordered hyperuniform vortex
structure in the pinned state that appeared in the bulk 3D
system. Section VI contains a discussion of our results,
including some schematic phase diagrams indicating the
regimes in which disordered hyperuniform vortex states could
be observed experimentally, as well as a demonstration that our
results are robust against the addition of thermal fluctuations. A
unique aspect of our results is the creation of a hyperuniform
arrangement of monodisperse particles through the addition
of quenched disorder. In contrast, many investigations of
two-dimensional particle based systems use bidisperse particle
assemblies in order to prevent crystallization.

II. SYSTEM DESCRIPTION

The key feature of disordered hyperuniformity is the
suppression of density fluctuations out to long distances. This
can be characterized in reciprocal space by the behavior of the
structure factor

S(k) = N−1
v

∣∣∣∣∣

Nv∑

i

exp(−ik · Ri)

∣∣∣∣∣

2

(k �= 0), (1)

where there are Nv particles and Ri are the positions of the
particles. In hyperuniform systems, which include crystals,
S(k) → 0 as |k| → 0, but unlike crystals, S(k) for disordered
hyperuniform systems is isotropic and has no Bragg peaks
[1,2]. In general, for a disordered hyperuniform system S(k)
goes to zero as |k|α , where larger values of α indicate greater
amounts of short-range order. For a random system, S(k)
is isotropic but it approaches a finite value as |k| goes to
zero. Hyperuniformity can also be characterized [2] using the
number variance σ 2(R), which is the variance of N (R), the
number density or the number of points in a region defined by
a d-dimensional sphere �(R) of radius R,

σ 2(R) = 〈N2(R)〉 − 〈N (R)〉2. (2)

For a random or Poisson placement of points in a d-
dimensional region of radius R, σ 2(R) ∼ R2, while for a
hyperuniform point arrangement, σ 2(R) ∼ Rd−α for α <

1, σ 2(R) ∼ Rd−1 for α > 1, and σ 2(R) ∼ Rd−1 ln R for
α = 1 [50].

We consider d = 2 systems in which we place Np pinning
sites arranged in either a random or a disordered hyperuniform
configuration as shown in Figs. 1(a) and 1(b). The pinning sites
are modeled as nonoverlapping local attractive parabolic wells
with radius rp. To construct the disordered hyperuniform array,
we set up a square lattice of cells and place one pinning site
at a randomly chosen location within each cell [1,2,50], while
the random array is produced using a Poisson distribution.
Figures 1(c) and 1(d) show S(k) for the pinning configurations
in Figs. 1(a) and 1(b). At small k, S(k) has constant weight
for the random array but vanishing weight for the disordered
hyperuniform array. In both cases S(k) is isotropic, indicating
that the points are amorphous. In Figs. 1(e) and 1(f) we plot
S(k) versus k for the disordered hyperuniform and random
arrays, showing that S(k) goes to zero at small k for the
disordered hyperuniform system as S(k) ∝ k2, indicating that
α ≈ 2, while for the random array S(k) approaches a finite
constant value at small k. In Fig. 2 we plot the number
variance σ 2 versus R for the pinning site locations from the
system in Fig. 1. For the random array, σ 2 ∝ R2 or σ 2 ∼ Rd

as expected for a Poisson process, while for the disordered
hyperuniform array, σ 2 ∝ R or σ 2 ∼ Rd−1 as expected for a
d = 2 disordered hyperuniform system with α > 1.0 [2].

Within the sample we place Nv vortices modeled as point
particles with a repulsion given by a pairwise Bessel function
K1(r) interaction as used in previous vortex simulations
[19,24,28,32]. This model represents the behavior of stiff 3D
vortex lines in a bulk sample. The initial vortex positions are
obtained by starting from a high-temperature state and cooling
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FIG. 1. The pinning site locations (open circles) for (a) a
disordered hyperuniform array and (b) a random array. (c) The
structure factor S(k) for the disordered hyperuniform pinning array,
where the weight vanishes at small k and the system is isotropic.
(d) S(k) for the random pinning array, where the system is isotropic
but the weight approaches a finite value at small k. (e) S(k) vs k = |k|
for the disordered hyperuniform array. The dashed line is a fit to
S(k) ∝ k2. (f) S(k) vs k for the random array approaches a constant
value at small k.

to T = 0. After the initialization we apply a driving force,
which experimentally corresponds to the application of an
external current that creates a Lorentz force on the vortices.
We wait a fixed time at each drive increment to ensure that the
system has reached a steady state, and then we measure the
average vortex velocity 〈V 〉 = N−1

v

∑Nv

i=1 vi · x̂ in the direction
of the driving force to determine when the vortices depin
and to construct velocity-force curves that are proportional
to experimentally measurable current-voltage curves.

To describe the vortex motion, we utilize a particle model
based on the London equations. The dynamics of a single
vortex i is governed by the following overdamped equation of
motion:

η
dRi

dt
= Fvv

i + Fvp

i + FD, (3)

where vi = dRi/dt is the vortex velocity, Ri is the vortex
position, and η is the damping term which is set to unity.
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FIG. 2. The number variance σ 2 vs region radius R for the pinning
site configurations in Fig. 1. Red squares: disordered hyperuniform
array, with the orange dashed line indicating a fit to σ 2 ∝ R1.0; blue
circles: random array, with the green dashed line indicating a fit to
σ 2 ∝ R2.0.

The interaction with the other vortices is repulsive and
described by the term Fvv

i = ∑Nv

j=1 F0K1(Rij/λ)r̂ij where
F0 = φ2

0/2πμ0λ
3, φ0 is the elementary flux quantum, μ0 is

the permittivity, Rij = |ri − rj |, r̂ij = (ri − rj )/Rij , K1 is
the modified Bessel function which falls off exponentially
for large Rij , and λ is the London penetration depth which
we set equal to 1.0. We place a cutoff on the interactions for
vortex separations Rij/λ > 6.0 for computational efficiency.
At T = 0 and in the absence of pinning, the vortices form a
triangular solid due to their mutually repulsive interactions.
The pinning force Fvp

i is produced by Np non-overlapping
harmonic potential traps with a radius Rp = 0.15 which can
exert a maximum pinning force of Fp on a vortex. The
driving term FD = FD x̂ represents a Lorentz force from an
externally applied current interacting with the magnetic flux
carried by the vortices [26]. Our system is of size L × L

with L = 36, and has periodic boundary conditions in the
x and y directions. The vortex density is nv = Nv/L

2 and
the pinning density is np = Np/L2. In this work all forces
are measured in units of F0 and lengths in units of λ. In the
bulk system, for np = 0.7 the pinning sites are spaced by
approximately 1.2λ, so at a field B/Bφ = 1.0, the vortices are
separated by ≈1.2λ. These parameters fall within the same
range of values used in previous simulations of vortex systems
that have accurately captured the vortex pinning behavior
in random [24,26–28], periodic [19,24,25], spin ice [22,23],
quasiperiodic [26,27], and conformal pinning arrays [28,29].
As an example of the magnitude of magnetic fields that these
length scales represent, the vortex separation mentioned above
at B/Bφ = 1.0 corresponds to a field of 0.7φ0/λ

2. Since
φ0 = 2.0678 × 10−15 T/m2, we obtain fields of 0.059 T for
YBCO (λ = 156 nm), 0.083 T for MgB2 (λ = 132 nm), and
0.535 T for Nb (λ = 52 nm).

Experimentally our system could be realized with artificial
pinning arrays, in which the pinning sites could be arranged
in a Poisson distribution [27] and compared to arrays with a
hyperuniform pinning arrangement. Poisson pinning distribu-
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tions also arise in samples containing columnar defects created
using heavy ion irradiation [51,52]. Through use of a mask,
it should be possible to create a hyperuniform arrangement of
areas containing columnar pins, and compare this to a Poisson
arrangement of areas containing columnar pins.

III. ENHANCED PINNING WITH DISORDERED
HYPERUNIFORM SUBSTRATES

In Fig. 3 we plot the vortex velocity 〈V 〉 vs applied
driving force FD for a system with Fp = 2.55 and a pinning
density of np = 0.7 with Np = 900 pinning sites arranged in
either a disordered hyperuniform or a random array. Since
the vortex density is proportional to the magnetic field, we
define the matching field Bφ as the field at which there is
exactly one vortex per pinning site. The depinning threshold is
defined to be the lowest value of FD for which a persistent
flow of vortices occurs so that 〈V 〉 > 0. At B/Bφ = 0.3
in Fig. 3(a), the depinning threshold for the disordered
hyperuniform array is F

hyper
c /Fp = 0.936, while that of the

random array is F random
c /Fp = 0.832. We quantify the pinning

enhancement Re as the ratio of these two depinning thresholds,
Re = F

hyper
c /F random

c . At B/Bφ = 0.3, Re = 1.125, while for
FD/F

hyper
c > 1.0, the velocity response for both pinning arrays

is almost the same. In general, at lower fields where the
vortices are widely spaced, the vortex-vortex interactions
are less relevant and the depinning threshold is dominated
by the strength of the individual pinning sites, so in the
extremely low field limit of a single vortex, Re = 1.0. At
B/Bφ = 1.0, Fig. 3(b) shows that the depinning threshold is
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FIG. 3. Vortex velocity 〈V 〉 vs driving force FD for a disordered
hyperuniform pinning array (red, lower curves) and random pinning
array (blue, upper curves) for systems with pinning density np = 0.7
and pinning strength Fp = 2.55. (a) B/Bφ = 0.3, where Bφ is the
field at which there is one vortex per pinning site. The ratio of the
depinning threshold for the disordered hyperuniform array to that
of the random array is Re = 1.125. (b) At B/Bφ = 1.0, Re = 1.8.
(c) At B/Bφ = 2.7, Re = 1.2.
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FIG. 4. (a) The depinning force Fc vs B/Bφ for disordered
hyperuniform arrays with Fp = 2.55 (dark blue circles), 1.05 (dark
green squares), and 0.53 (dark red left triangles), and for random
pinning arrays with Fp = 2.55 (light blue diamonds), 1.05 (light
green up triangles), and 0.53 (orange down triangles). The inset shows
a blowup of the behavior at higher fields. (b) The depinning threshold
ratio Re = F

hyper
c /F random

c vs B/Bφ for Fp = 2.55 (dark blue circles),
1.05 (light blue triangles), and 0.53 (green squares), showing that
the pinning is consistently enhanced for the disordered hyperuniform
pinning arrays.

larger for the disordered hyperuniform array, with Re = 1.8.
Here, once both systems have depinned, the velocity response
for the random array is higher than that of the disordered
hyperuniform array, indicating that even within the sliding
state, the disordered hyperuniform array is more effective in
reducing the dissipation. For B/Bφ = 2.7 in Fig. 3(c), there
is a smaller enhancement of Re = 1.2, and above depinning,
the velocity response of the disordered hyperuniform array
is slightly below that of the random array. In general, at
higher vortex densities the vortex-vortex interactions begin
to dominate over the vortex-pin interactions, so the difference
in the pinning effectiveness of the two pinning geometries is
reduced.

In Fig. 4(a) we plot F
hyper
c and F random

c versus B/Bφ for
the system in Fig. 3 at varied pinning strengths of Fp = 2.55,
1.05, and 0.53. For all cases, Fc decreases monotonically with
increasing B/Bφ and is consistently higher in the disordered
hyperuniform arrays than in the random arrays. In Fig. 4(b)
the corresponding depinning threshold ratio Re versus B/Bφ

approaches Re = 1.0 in the B/Bφ = 0 limit. The largest
enhancement of Fc by the disordered hyperuniform arrays
occurs over the range 0.5 < B/Bφ < 2.5. In this regime,
for some fields in the Fp = 2.55 system the enhancement
is as large as Re = 2.75. At higher values of B/Bφ , the
vortex-vortex interactions begin to dominate over the pinning
interactions, and the differences in Fc between the disordered
hyperuniform and random arrays are reduced.

In Fig. 5 we plot F
hyper
c and F random

c versus pinning
strength Fp at B/Bφ = 0.6 and B/Bφ = 1.9, and show the
corresponding Re vs Fp curves in the inset. The value of
Re can be as large as R = 2.75 for B/Bφ = 0.6, but falls to
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FIG. 5. The depinning force Fc vs Fp for disordered hyperuni-
form arrays at B/Bφ = 0.6 (dark blue circles) and B/Bφ = 1.9 (dark
green diamonds) and for random arrays at B/Bφ = 0.6 (light blue
squares) and B/Bφ = 1.9 (light green triangles). Inset: the depinning
current ratio Re vs Fp for B/Bφ = 0.6 (red squares) and B/Bφ = 1.9
(pink circles).

Re = 1.25 for higher Fp when the pinning begins to dominate
the behavior. For B/Bφ = 1.9, the maximum enhancement is
only Re = 1.5, but the enhancement is more robust and persists
up to higher values of Fp.

To better understand how the disordered hyperuniform
arrays produce enhanced pinning, in Fig. 6(a) we plot the
fraction Pv of vortices located at pinning sites versus B/Bφ

at Fp = 2.55, 1.05, and 0.53 for the random and disordered
hyperuniform arrays, showing that Pv is higher for the
disordered hyperuniform array than for the random array. In
Fig. 6(b) we plot Pv versus Fp for samples with B/Bφ = 1.9
and 0.6, where a similar trend appears. Figures 6(c) and 6(d)
illustrate the vortex and pinning site locations in a small portion
of the sample for B/Bφ = 1.9 and Fp = 2.55. Here, there are
five unoccupied pinning sites in the disordered hyperuniform
array in Fig. 6(c), while there are eleven unoccupied pinning
sites in the random array in Fig. 6(d). In the random array,
local clumping of the pinning site positions can occur, and
if a vortex is trapped by one pinning site in such a clump,
its repulsive force screens the remaining pins and prevents
other vortices from occupying them. The random array can
also contain large spatial regions in which there are no pinning
sites, and vortices located in these regions can flow relatively
easily along river-like channels or weak links, depressing the
value of Fc. In the disordered hyperuniform array, pinning
density fluctuations are suppressed, so there is less screening of
the pinning sites and a correspondingly higher pin occupation
fraction, as shown in Fig. 6. In periodic pinning arrays, pinning
density fluctuations are absent; however, due to the symmetry
of the pinning lattice, there are easy-flow directions along
which vortices can form one-dimensional easy-flow channels,
particularly at incommensurate fillings [32]. It may be possible
to construct other types of hyperuniform arrays beyond the
ones we consider here which would allow for even stronger
enhancement of the pinning, or to create a pinning lattice that
is hyperuniform along only one direction.

FIG. 6. (a) Fraction Pv of vortices located at pinning sites vs
B/Bφ for disordered hyperuniform arrays at Fp = 2.55 (dark blue
circles), 1.05 (dark green squares), and 0.53 (red diamonds), and
random arrays at Fp = 2.55 (light blue up triangles), 1.05 (light
green left triangles), and 0.53 (orange down triangles), showing that
there is a consistently higher fraction of occupied pinning sites in
the disordered hyperuniform arrays. (b) Pv vs Fp for disordered
hyperuniform arrays at B/Bφ = 1.9 (dark blue circles) and 0.6
(dark green squares) and random arrays at B/Bφ = 1.9 (light blue
diamonds) and 0.6 (light green triangles), showing a similar trend.
(c) The vortex (blue filled circles) and pinning site (orange open
circles) locations in a small portion of the sample for a disordered
hyperuniform array at Fp = 2.55 and B/Bφ = 1.5. (d) Vortex (blue
filled circles) and pinning site (orange open circles) locations in
a small portion of the sample for the random array under the
same conditions showing that a higher fraction of pinning sites are
unoccupied.

IV. EMERGENT DISORDERED HYPERUNIFORMITY IN
VORTEX SYSTEMS

We next consider whether amorphous vortex configurations
in the presence of random or disordered hyperuniform pin-
ning arrays exhibit disordered hyperuniformity. As described
above, disordered hyperuniform systems have two identifying
characteristics in the structure factor S(k): it is isotropic,
and it goes to zero as |k|α at small |k|. In Figs. 7(a)–7(c)
we show S(k) of the vortex configuration for a random
pinning array at np = 0.7 with Fp = 0.53, 1.05, and 2.55 for
B/Bφ = 0.6, 1.9, and 2.7, while in Figs. 7(d)–7(f) we plot
the same quantities for vortices interacting with a disordered
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FIG. 7. (a)–(c) S(k) of the vortex positions for np = 0.7 at Fp =
0.53 (green), 1.05 (orange), and 2.55 (purple) for a random pinning
array at (a) B/Bφ = 0.6, (b) B/Bφ = 1.9, and (c) B/Bφ = 2.7. (d)–(f)
S(k) of the vortex positions for np = 0.7 at the same Fp values as
above for a disordered hyperuniform pinning array at (d) B/Bφ = 0.6,
(e) B/Bφ = 1.9, and (f) B/Bφ = 2.7. In each case k goes to zero as
a power law S(k) ∝ |k|α , as indicated by the dashed lines which are
all power law fits with exponent α = 2.0.

hyperuniform pinning array. All of the curves in Fig. 7 exhibit
a power law decay with S(k) approaching zero as S(k) ∝ kα

with α = 2, as indicated by the dashed lines. In each case the
vortices form an amorphous structure, as shown in Figs. 8(a)
and 8(b) for the disordered hyperuniform and random arrays at
B/Bφ = 1.9 and Fp = 2.55. The corresponding plots of S(k)
for the vortex configurations appear in Figs. 8(c) and 8(d), and

FIG. 8. Vortex (blue filled circles) and pinning site (orange open
circles) location in the entire sample at B/Bφ = 1.9 at Fp = 2.55 for
(a) a disordered hyperuniform pinning array and (b) a random pinning
array. (c) Structure factor S(k) for the vortex positions in panel (a).
(d) S(k) for the vortex positions in panel (b).
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FIG. 9. (a)–(c) σ 2 of the vortex positions vs R at Fp = 0.53
(green), 1.05 (orange), and 2.55 (purple) for the system in Figs. 7(a)–
7(c) with a random pinning array with np = 0.7 at (a) B/Bφ = 0.6,
(b) B/Bφ = 1.9, and (c) B/Bφ = 2.7. (d)–(f) σ 2 of the vortex
positions vs R at the same Fp values as above for the system in
Figs. 7(d)–7(f) with a disordered hyperuniform pinning array at (d)
B/Bφ = 0.6, (e) B/Bφ = 1.9, and (f) B/Bφ = 2.7. The dashed brown
lines in each panel are fits to σ 2 ∝ Rd−1.

show a ring feature indicating that the vortices are arranged
isotropically for both types of pinning. In Figs. 9(a)–9(c)
we plot σ 2(R) for the vortex positions for the random
pinning arrays from Figs. 7(a)–7(c) at Fp = 0.53, 1.05, and
2.55 for fields of B/Bφ = 0.6, 1.9, and 2.7 along with
fits to σ 2 ∝ Rd−1. Figures 9(d)–9(f) show σ 2(R) for the
vortex positions in the disordered hyperuniform arrays from
Figs. 7(d)–7(f) at the same values of Fp and B/Bφ where again
we find σ 2 ∝ Rd−1 consistent with a disordered hyperuniform
structure [2].

V. DISORDERED HYPERUNIFORM VORTEX STATES IN
THIN FILM SUPERCONDUCTORS

Up to this point we have considered vortex-vortex interac-
tions with a Bessel function form that is exponentially screened
at larger distances. Such interactions are appropriate for
describing stiff 3D vortices in bulk materials; however, many
experiments on nanostructured pinning arrays are performed
in thin film superconductors where the vortex interaction takes
the form of a long-range logarithmic Pearl potential [53]. To
compare the performance of disordered hyperuniform and
random pinning arrays in thin-film materials, we conduct
simulations utilizing Eq. (3) but with the vortex-vortex
interaction force replaced by

Fvv
i = −

Nv∑

j �=i

Av∇Uv(Rij )R̂ij , (4)

where the Pearl vortex-vortex interaction potential is U (r) =
− ln(r), Av = φ2

0/8π2	, and 	 = λ2/t where t is the film
thickness. We calculate the long-range interactions in the
periodic boundary conditions with a Lekner summation
technique [54,55]. This approach has previously been used
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FIG. 10. Vortex velocity 〈V 〉 vs FD for a model of vortices
in a thin-film superconductor with ln(r) vortex-vortex interaction
potentials using the same parameters as in Fig. 3 with np = 0.7 and
Fp = 2.55. The red lower curves are for a disordered hyperuniform
pinning array and the blue upper curves are for a random pinning
array. (a) B/Bφ = 0.44. (b) B/Bφ = 0.67. (c) B/Bφ = 0.89. In all
cases there is an enhancement of the pinning for the disordered
hyperuniform pinning arrays.

to numerically examine vortex states and dynamics in random
[56] and periodic pinning arrays [57,58]. We use the same
number of pinning sites and vortices and the same system
size as in the bulk simulations described in Sec. II and set
Av = 1.0. Since the Pearl interaction form is appropriate for
vortices within a distance of a few penetration depths of one
another, the simulation would be valid for a system of order a
few Pearl lengths in size.

In Fig. 10 we plot 〈V 〉 versus FD for systems with
B/Bφ = 0.44, 0.67, and 0.89 at Fp = 2.55 for the random
and disordered hyperuniform pinning arrays. In all cases,
the disordered hyperuniform pinning substantially increases
the depinning threshold with Re = 3 to 5, which is a larger
enhancement than that found for vortices with the shorter-
range Bessel function interactions. In Fig. 11(a) we plot Fc

versus B/Bφ for random and disordered hyperuniform pinning
arrays with Fp = 2.55. The corresponding Re versus B/Bφ

curve in Fig. 11(b) indicates that for low fillings Re ≈ 1.0,
while at B/Bφ = 0.89 Re reaches its maximum value of
Re ≈ 7. In the thin-film system, the depinning threshold falls
off rapidly for B/Bφ > 1.0 for both the random and disordered
hyperuniform pinning arrays; however, even within the moving
phase, the net vortex velocity is significantly lower for the
disordered hyperuniform arrays than for the random arrays
as long as FD/Fp < 1.0. In Fig. 11(c) we plot Fc versus Fp

for the disordered hyperuniform and random pinning arrays
at fixed B/Bφ = 0.67, and in Fig. 11(d) the corresponding Re

versus Fp plot shows that there is a strong enhancement of the
depinning threshold for the disordered hyperuniform pinning
array.
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FIG. 11. (a) The depinning force Fc vs B/Bφ for random pinning
arrays (squares) and disordered hyperuniform pinning arrays (circles)
with Fp = 2.55 for the system in Fig. 10 with long-range vortex-
vortex interactions. (b) The depinning threshold ratio Re vs B/Bφ

shows a strong enhancement of Fc in the disordered hyperuniform
array. (c) Fc vs Fp for random (squares) and disordered hyperuniform
(circles) pinning arrays at B/Bφ = 0.67. (d) The corresponding Re

vs Fp shows pinning enhancement in the disordered hyperuniform
array.

Studies of Grønbech-Jensen et al. [56] on the depinning of
logarithmically interacting vortices in random disorder offer
insights into the origin of the larger pinning enhancement by
disordered hyperuniform arrays that occurs in thin films as
compared to bulk superconductors. The shear modulus C66 of
the thin-film vortex lattice is much lower than the compres-
sion modulus C11 since the long-range interactions favor a
homogeneous vortex density. As a result, near depinning there
is an onset of filamentary 1D flow channels aligned with the
driving direction that can form without altering the local vortex
density. In a random pinning array, rare regions of low pinning
density occur that serve as easy nucleation sites for filamentary
flow channels that reduce the depinning threshold. In Fig. 12(a)
we highlight the vortex trajectories for the random pinning
array system in Fig. 10(b) with B/Bφ = 0.67 at FD = 0.7.

x(a) (b)

y

x

y

FIG. 12. Pinning site locations (open circles), vortex positions
(red dots), and vortex trajectories (blue lines) for the thin-film
superconductor model from Fig. 10 at B/Bφ = 0.67, Fp = 2.55, and
FD = 0.7. (a) For a random pinning array, numerous 1D filamentary
flow channels form. (b) In the disordered hyperuniform pinning array,
the filamentary channels are suppressed.
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Numerous 1D filamentary flow channels appear. In contrast,
for the same drive and filling in Fig. 12(b) in the disordered
hyperuniform pinning array, far fewer flow channels can form.
The flow channels are unstable in the disordered hyperuniform
pinning array and channels can appear and disappear from
one driving force increment to another, whereas the flow
channels in the random pinning array are quite persistent
and the number of flow channels increases monotonically
with FD . The suppression of the filamentary flow channels
in the disordered hyperuniform arrays results from the lack
of rare regions of low local pinning density. These results
indicate that the enhanced pinning produced by disordered
hyperuniform arrays is a general property observable in both
bulk and thin-film superconductors, and that the enhancement
is expected to be stronger in the thin films.

The long-range nature of the thin-film vortex-vortex inter-
actions should make this system ideal for observing disordered
hyperuniform vortex states. In Fig. 13(a) we plot S(k) for
the thin-film vortex system with a random pinning array at
B/Bφ = 0.67 for Fp = 0.53, 1.05, and 2.55. Figure 13(b)
shows the same system at B/Bφ = 1.9. The dashed lines
are power law fits to S(k) ∝ |k|−α with α = 4.0, indicating
a greater amount of short-range order compared to the bulk
Bessel function system for which α = 2.0. Overall the vortex
states in the thin-film system are more homogeneous than
in the bulk system since the long-range interactions favor a
more uniform vortex density. As noted, the ln(r) interaction
is valid for thin-film vortices interacting within a distance
of a few Pearl penetration depths. Beyond that distance, the
form of the potential changes to 1/r . This is still a long-range
interaction that should suppress the formation of large local
density fluctuations, so we expect that the system would still
exhibit hyperuniformity on larger length scales. Under these
conditions, the scaling of S(k) ∝ kα may change from α = 4.0
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FIG. 13. S(k) of the vortex positions in the thin-film supercon-
ductor model from Fig. 10 with a random pinning array at Fp =
2.55 (purple), 1.05 (orange), and 0.53 (green). (a) B/Bφ = 0.67.
(b) B/Bφ = 1.9. As in Fig. 7, we find a power law decay S(k) ∝ |k|α
indicative of disordered hyperuniformity, where the dashed lines are
fits with exponent α = 4.0.

to smaller values of α, but we expect that the hyperuniform
condition of α > 1 would still be met. It is likely that α would
be larger in the thin-film system than in the bulk system, so
that the enhancement of the pinning would remain larger in
the thin-film samples than in bulk samples.

VI. DISCUSSION AND PROPOSED PHASE DIAGRAMS

In general, if Fp is large or the vortex-vortex interactions are
weak, the vortex configurations are dominated by the locations
of the pinning sites, so in the Poisson random pinning array,
the vortices would sit in the pinning sites and themselves
form a spatial Poisson distribution. The resulting structure
factor of the vortex positions would approach a constant
value as k → 0. In real superconductors, the vortex-vortex
interaction strength is nonmonotonic as a function of field
and temperature, as indicated by the behavior of the bulk
pinning force BJc(T ,B), so the pinning energy dominates
the vortex-vortex interaction energy as a critical field or
critical temperature is approached. It is therefore possible that
as a function of increasing field or increasing temperature,
a transition could occur from a crystalline to a disordered
hyperuniform vortex state, followed by a second transition
to a truly random state with Poisson properties. There are
already numerous experimental observations of amorphous
vortex states with and without large density fluctuations at
higher magnetic fields [42–45], and it would be interesting
to reexamine this experimental data to determine whether
the vortex configurations appear to be purely random with
Poisson statistics or whether they are in fact in a disordered
hyperuniform state.

In Fig. 14(a) we show a proposed generic phase diagram
for repulsively interacting particle systems as a function
of temperature versus the pinning strength Fp. At high
temperatures or for strong disorder, the system is disordered
and the particle positions are random with Poisson statistics.
Between the crystalline state and the purely random state
we propose that a disordered hyperuniform state exists for
intermediate disorder strength.

In Fig. 14(b) we illustrate a proposed variation of the vortex
phase diagram for a high-temperature superconductor [34–36]
in the presence of quenched disorder. Due to the nonmonotonic
behavior of the effective vortex-vortex interactions as a
function of magnetic field and temperature, there is a transition
from a Bragg glass state at lower fields where the vortices are
dislocation-free to a vortex glass state for increasing field or
increasing temperature. We conjecture that between the Bragg
glass and the random amorphous vortex glass with Poisson
properties, there is a state in which the vortex arrangement
is disordered with hyperuniform properties. We note that
for some systems, there can also be reentrant disordered
phases at lower fields where the vortices are far apart and
the pinning becomes dominant again, so this reentrant region
could be another place in which a crossover from a disordered
hyperuniform to a Poisson random vortex arrangement could
occur. Data from imaging or neutron scattering experiments
could show whether the vortex configurations are disordered
hyperuniform at the transition between the Bragg glass and
a higher field random state with Poisson characteristics. The
Bragg glass state would exhibit Bragg peaks, the disordered
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FIG. 14. (a) Schematic proposed phase diagram of temperature
T vs disorder strength Fp for a system of repulsively interacting
particles in the presence of quenched disorder. Between the crys-
talline state and a random phase with Poisson characteristics, there
could be a disordered hyperuniform state (DHyper). (b) Schematic
proposed modified vortex phase diagram for a high-temperature
superconductor as a function of magnetic field H in arbitrary units
vs reduced temperature T/Tc, where Tc is the critical temperature
of the material. As a function of increasing H , there is a transition
from a dislocation-free Bragg glass into a disordered hyperuniform
state, followed by a transition to a random glassy state with Poisson
characteristics at higher fields.

hyperuniform glass would have no Bragg peaks but would
have a structure factor that drops to zero as a power law for
small k, and the Poisson random phase would have no Bragg
peaks and finite weight in S(k) at small k.

To check whether the disordered hyperuniform states
are robust against thermal fluctuations, we have performed
finite-temperature simulations for both the bulk and thin-
film vortex models. We represent thermal fluctuations using
Langevin kicks FT

i which have the properties 〈FT
i 〉 = 0 and

〈FT
i (t)FT

j (t ′)〉 = 2ηkBT δij δ(t − t ′). We report our results in
terms of FT , the maximum amplitude of the Langevin
kicks. In Fig. 15(a) we plot 〈V 〉 versus FD for the bulk
sample with short-range vortex interactions at B/Bφ = 0.67
and Fp = 2.55 at FT = 2.0 for random and disordered
hyperuniform pinning arrays, showing that the enhancement of
pinning in the disordered hyperuniform array is robust against
thermal fluctuations. For these parameters, the finite depinning
threshold vanishes for FT > 2.5 and the system enters a liquid
state. In Fig. 15(b) we plot 〈V 〉 versus FD under the same
conditions but with long-range vortex interactions appropriate
for a thin-film sample, and find that the enhanced pinning
effect in the disordered hyperuniform array is maintained at
finite temperature.

In Fig. 16(a) we plot S(k) of the vortex positions for a
bulk sample with short-range vortex-vortex interactions in
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FIG. 15. 〈V 〉 vs FD for samples with nonzero thermal fluctuations
of magnitude F T = 2.0. Here np = 0.7, Fp = 2.55, and B/Bφ =
0.67. The red lower curves are for a disordered hyperuniform
pinning array and the blue upper curves are for a random pinning
array. (a) Bulk vortices with short-range Bessel function interactions.
(b) Thin-film vortices with long-range ln(r) interactions. In both cases
the enhancement of the pinning by the disordered hyperuniform array
remains robust at finite temperatures.

the presence of a random pinning array at Fp = 2.55 at
different temperatures of FT = 10.0, 5.0, and 1.0. At low
temperatures, we find a fit of S(k) ∝ |k|α with α = 2.25, while
at higher temperatures we find a similar fit with α = 1.25. As
α decreases, the amount of short-range order in the system
decreases, so at the higher temperatures where the system is
in a liquid phase, the vortex configuration is becoming more
random and less hyperuniform. For temperatures above the
range that we can access with our model, the system should
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FIG. 16. S(k) of the vortex positions in samples with random
pinning arrays at B/Bφ = 1.9 and Fp = 2.55 for differing levels of
thermal fluctuations F T = 10 (purple), 5 (orange), and 1 (green).
(a) Bulk vortices with short-range Bessel function interactions.
Dashed lines are fits to S(k) ∝ |k|α; the upper dashed line has
α = 1.25 and the lower dashed line has α = 2.25. (b) Thin-film
vortices with long-range interactions. The upper dashed line is a
power law fit with α = 2.0 and the lower dashed line is a fit with
α = 4.0.
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enter a gas phase, and in this case we would expect a fit to give
α = 0 indicating that the vortex configuration has become
fully random. Our numerical algorithm for finite vortex
interactions becomes unstable when the vortices approach
each other too closely, limiting the upper temperature we
can simulate. The overall behavior of S(k) as a function of
temperature that we observe is consistent with our proposed
2D phase diagram in Fig. 14(a), where the system exhibits
disordered hyperuniformity for finite temperature and finite
quenched disorder. We find a similar trend for long-range
vortex interactions appropriate for thin-film samples, as shown
in Fig. 16(b) where we find α = 4.0 at lower temperatures and
α = 2.0 at higher temperatures. The longer-range interactions
favor a more uniform vortex density, giving an extended region
of disordered hyperuniformity.

VII. SUMMARY

We have shown that pinning sites in a disordered hyper-
uniform arrangement provide enhanced pinning compared to
an equivalent number of randomly placed pinning sites. In
disordered hyperuniform arrays, the structure is isotropic like
a liquid; however, the density fluctuations in the pinning site
locations are strongly reduced out to large distances, similar
to what is found in a crystal. Random arrays are also isotropic
but can have strong density fluctuations of the type found in
liquids. In the disordered hyperuniform pinning arrays, we find
that the probability for pinning site occupation is enhanced,
while weak links or easy-flow channels are minimized due
to the isotropic nature of the pinning arrangement. There are
no symmetry directions along which easy vortex flow can
occur, unlike in crystalline pinning arrays. We also show

that in the presence of random or disordered hyperuniform
pinning arrays, the amorphous vortex states themselves exhibit
disordered hyperuniformity due to the repulsive nature of the
vortex-vortex interactions, and we propose that there may be
additional disordered hyperuniform phases that are distinct
from random amorphous phases in the vortex phase diagram.
We find that these results are robust for both short-range
vortex interactions appropriate for bulk samples as well as
for long-range vortex interactions appropriate for thin-film
superconductors.

Our results should be general to the wider class of systems
of repulsively interacting particles in the presence of either
random or disordered hyperuniform pinning arrays, including
Wigner crystals, colloids, disordered charge systems, and
skyrmions in chiral magnets. We note that recently we became
aware of simulations using a Landau-Ginzburg approach to
model vortices interacting with pinning sites in a disordered
hyperuniform arrangement that also show an enhancement
of pinning compared to random pinning arrangements [59].
Although these studies were performed on a much smaller
system than we consider, they confirm that the pinning
enhancement by disordered hyperuniform arrays is robust in
both the London model particle-based approach we consider
as well as the Landau-Ginzburg approach.
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