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Asymmetric nanowire SQUID: Linear current-phase relation, stochastic switching, and symmetries
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We study nanostructures based on two ultrathin superconducting nanowires connected in parallel to form a
superconducting quantum interference device (SQUID). The measured function of the critical current versus
magnetic field, IC(B), is multivalued, asymmetric, and its maxima and minima are shifted from the usual integer
and half integer flux quantum points. We also propose a low-temperature-limit model which generates accurate
fits to the IC(B) functions and provides verifiable predictions. The key assumption of our model is that each wire
is characterized by a sample-specific critical phase φC defined as the phase difference at which the supercurrent
in the wire is the maximum. For our nanowires φC is much greater than the usual π/2, which makes a qualitative
difference in the behavior of the SQUID. The nanowire current-phase relation is assumed linear, since the wires
are much longer than the coherence length. The model explains single-valuedness regions where only one vorticity
value nv is stable. Also, it predicts regions where multiple vorticity values are stable because the Little-Parks
(LP) diamonds, which describe the region of stability for each winding number nv in the current-field diagram,
can overlap. We also observe and explain regions in which the standard deviation of the switching current is
independent of the magnetic field. We develop a technique that allows a reliable detection of hidden phase slips
and use it to determine the boundaries of the LP diamonds even at low currents where IC(B) is not directly
measurable.
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I. INTRODUCTION

Superconducting quantum interference devices [1,2]
(SQUIDs) are known to be extremely sensitive to weak
magnetic fields, and therefore various forms of supercon-
ducting loops have recently attracted significant attention
[3–11]. Nanowire networks [12] and loops [13–20] are
qualitatively distinct from networks of Josephson junctions
and conventional SQUIDS based on superconductor-insulator-
supercondctor (SIS) junctions. This is because nanowires can
sustain superconductivity by themselves, up to their depairing
current, and because they have a near linear current-phase
relationship (CPR) at low temperatures [13,21,22], which can
be multivalued [23]. The SIS junctions, on the other hand, obey
a sinusoidal CPR, which is single valued and has a critical
phase of π/2, which is the phase difference when the critical
current is achieved.

Nanowire SQUIDs have been used in important applica-
tions such as the detection of macroscopic quantum tunneling
in magnetic systems with large spins [24]. Thus, some
important applications of a nanowire SQUID demand very low
temperatures. Yet virtually all models of nanowire SQUIDs are
based on Ginzburg-Landau equations, which are valid only
near the critical temperature. Thus, one goal of this paper
is to develop a model which would be applicable for low
temperatures. As will be discussed, we find such a model
which provides excellent fits to our data and predicts hidden
phase slips at low bias currents, which we observe.

The properties of unshunted conventional SQUIDs com-
posed of two SIS junctions are well known [2]. In the simplest
case where the loop inductance is negligible, the critical
current of the SQUID is a periodic, single-valued function
of the magnetic field, and its maxima correspond to integer
multiples of the flux quantum, while its minima occur at half
flux quantum plus an integer number of flux quanta [2]. If
the SIS junction SQUID is asymmetric, i.e., if the critical

currents of the two branches forming the SQUID are different,
then the conditions listed above remain true, but the critical
current modulation does not go all the way to zero at half
flux quantum. The fact that the maxima and minima of the
critical current versus magnetic field function IC(B) coincide
with integer and half-integer normalized flux values is due to
the sinusoidal nature of the CPR for the SIS junctions and the
associated critical phase of π/2.

Here we present experiments and propose a model for
asymmetric nanowire SQUIDs in which the critical phase is
significantly larger than π/2. This fact leads to the occurrence
of multiple metastable states which differ by their winding
number (vorticity), nV . We elucidate the qualitative changes
which the function IC(B) exhibits in such cases. The devices
exhibit certain characteristics which make them qualitatively
different from the conventional unshunted SQUIDs based on
SIS junctions [2]. We observe that the critical current of the
nanowire SQUID is multivalued and its minima and maxima
can shift strongly from the usual integer and half-integer flux
quanta values. These features have been observed previously
[14,25–28]. We also observe that the general shape of the IC (B)
curve is made of linear segments rather than being sinusoidal.
At temperatures much lower than the critical temperature TC , a
linear CPR (and therefore a linear relationship between critical
current and field) is both expected [2,21–23,29,30] and has
some experimental evidence [13,15,25–27,31].

Advanced computational simulations based on Ginzburg-
Landau (GL) theory, which is known to be valid at tempera-
tures near the critical temperature TC [32], have been used
to simulate the critical current versus field dependence of
nanowire loops previously [25,27,28]. While some of these
computational models do calculate a piecewise linear or
near-linear dependence of critical current on magnetic field
[25,27], these authors do not present theoretical analysis of
cases in which the loop is asymmetric. Additionally, none plot
theory on top of experimental data to allow direct comparison
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of the two. Here we propose a simple model, based on a linear
CPR, which allows accurate fitting of the critical current versus
field dependence. The model predicts the multi-valuedness,
shifts in maxima and minima, and the linearity of the IC(B)
function. Thus, we confirm theoretical predictions that the CPR
of a thin wire is linear at very low temperatures [2,21,22]. We
address asymmetric systems quantitatively and plot theoretical
curves on top of experimental data for direct comparison.

We also observe and discuss unusual plateaus in the
standard deviation of the switching current distribution.
Furthermore, we observe that the regions of stability of the
vorticity, namely the Little-Parks diamonds [27,33,34], can
overlap significantly, thus generating multivaluedness of the
critical current and of the vorticity at a fixed magnetic field. Yet
we find some magnetic field-bias current parameter regions,
which we call unique-vorticity diamonds, in which only one
vorticity is stable. These results open doors to vorticity-
manipulation experiments. We observe that the critical current
versus field function IC(B) is symmetric with respect to the
origin, if both positive and negative branches are included. This
fact is explained within our linear-CPR model of a nanowire
SQUID. Finally, we observe the presence of hidden phase slips,
i.e., phase slips which are not accompanied by the switching
of the device to the normal state, as predicted in our model.

II. EXPERIMENT

All three measured nanowire SQUIDs, Device 7715s1
(Fig. 1), Device 51215s3, and Device 31414s1 are produced
by a molecular templating method [35,36]. In brief, the
nanowires were made by depositing carbon nanotubes across
a 100–200 nm trench on a Si chip coated with a bilayer of SiO2

and SiN. A layer of Mo75Ge25 was sputtered on the entire chip
coating both the carbon nanotubes and the SiN surface. This
layer was 18 nm thick for Device 7715s1, 17 nm thick for
Device 51215s3, and 10 nm thick for Device 31414s1. This
process creates both the Mo75Ge25 nanowires and the wide
electrodes connected to them simultaneously; thus contact
resistance does not occur. Contact pads and electrodes were
then patterned by photolithography such that after etching
with H2O2, only the two desired nanowires remained as weak

FIG. 1. An SEM image of Device 7715s1. Two nanowires (gray)
lay across a 140 nm wide trench (black). The distance between the
wires is 2.5 μm. The superconducting electrodes appear as the gray
areas above and below the nanowires.

superconducting links between the electrodes (Fig. 1). The
width of the electrodes is 20 μm.

Each device consists of two nonidentical nanowires which
are connected in parallel, forming an asymmetric supercon-
ducting loop (Fig. 1). The bias current flows from one of
these electrodes, through the pair of nanowires, to the second
electrode. One nanowire of Device 7715s1 is 42 nm wide and
140 nm in length, and the other one is 26 nm wide and 158 nm
in length. The nanowires are separated by 2.5 μm. Device
51215s3 consists of a 29 nm wide and 190 nm long nanowire,
separated from a 19 nm wide and 170 nm long nanowire by a
distance 1.3 μm. Device 31414s1 consists of a 35 nm wide and
225 nm long wire, separated from a 23 nm wide and 216 nm
long wire by a distance of 2.6 μm.

Device 7715s1 is measured at 320 mK in a He3 system, and
all devices are measured at and above 1.5 K in a He4 cryostat.
A current biasing is achieved by placing larger resistors in
series with the device and a sinusoidal voltage source (function
generator DS360). Two resistors have been used, 1 k� and
47 k�. Current is calculated using Ohm’s law by measuring
the voltage across the 1 k� resistor whereas the voltage on the
sample is measured on the contact pads, which are connected to
the superconducting electrodes of the SQUID. The bias current
is a sinusoidal function of time, the frequency being 1.1 Hz (for
Device 7715s1 in the He3 measurements), or 3.5 Hz (Device
7715s1 and Device 51215s3 in the He4 setup) or 11 Hz (Device
31414s1 in the He4 setup). The voltage-current (V-I) curves
have been acquired using LabVIEW. At low bias linear
V-I curves have been observed and the slope was determined,
providing the sample resistance.

As temperature is decreased, the resistance of each device
shows two transitions [Fig. 2(a)]. At the higher temperature
transition, the contact pads and electrodes become super-
conducting, while at the lower temperature transition the

FIG. 2. (a) The resistance of Device 7715s1 plotted vs tempera-
ture shows two transitions. The higher temperature transition occurs
when the larger features of the device (the electrodes and contact
pads) become superconducting. The lower temperature transition
occurs when the nanowires become superconducting. (b) The voltage
vs current (V-I) curve is measured at temperatures far below the
critical temperature. As current through the device is increased from
zero, the voltage suddenly jumps at the critical currents (labeled on
the plot as IC+ at positive applied bias current or IC− at negative
applied bias current). If the V-I curve is measured again, it would
look qualitatively similar except that the voltage jump would occur
at a somewhat different current. Thus, every measured V-I curve
generates one particular value of the switching current.
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nanowires become superconducting. The temperature at which
the nanowires becomes superconducting is taken as the critical
temperature TC .

Let us now discuss the voltage-current (V-I) dependence
of our SQUIDs [Fig. 2(b)]. At temperatures sufficiently below
TC , as the current is increased from zero, the voltage across
the device is initially zero, but at some critical value of the
applied current the voltage suddenly jumps from zero to a
large value of the order of tens of mV [Fig. 2(b)]. Such a
sudden jump indicates that the device switches to the normal
(i.e., nonsuperconducting) state. The current at which this
transition takes place is recorded as the critical current, IC ,
of the SQUID device. As shown in Fig. 2(b) there are two
such critical currents, one at positive applied bias, IC+, and
one at negative applied bias, IC−, for each complete V-I curve.
Note that the V-I curve has a clear hysteresis. This is because,
after a switching event, the device becomes trapped in the
normal state due to Joule heating [37]. As the current is
reduced significantly, the Joule heating diminishes and the
device switches back to the superconducting state.

If we repeat the V-I curve measurement under the same
conditions then there are two possibilities. First, if the vorticity
of the loop is not changed then the new V-I curve will exhibit
very similar positive and negative critical currents. A small
difference might still be present since the measured critical
current is sensitive to internal fluctuations of the supercurrent
in the nanowires. Due to this, the measured critical current
is sometimes called “switching current”, simply because it
is usually a little bit smaller than the true depairing critical
current, due to the fluctuations. The second possibility is
that the vorticity of the loop will accept a different value
as the current is reduced and the device switches back to
its superconducting state. In this case, the measured critical
currents of the new vorticity state may deviate significantly
from the initial measurement. As will be discussed later, our
experiments suggest that by cycling the device between the
superconducting and normal states (by sweeping the current
up and down) it is possible to cause a change in the winding
number of the condensate on the loop. Yet, if the current and
the temperature stay low, the winding number does not change
on its own.

In Fig. 3(a) we plot the critical current (black dots) of the
SQUID 7715s1 versus applied perpendicular magnetic field B.
Each dot is obtained from a single V-I curve measurement.
Multiple measurements of the critical current are taken at each
value of magnetic field. Each V-I curve measured possesses
one voltage jump at the positive critical current and one voltage
jump at the negative critical current. If the measurement is
repeated the jumps occur at different values of the current. The
measured critical current values tend to cluster along certain
lines on the B-I plane. Due to this, the resulting critical current
plot is a multivalued periodic function of the magnetic field,
composed of approximately linear segments and resembling a
periodic sequence of diamonds. Note that a linear dependence
of the critical current on the magnetic field has been observed
previously [13,15,25–27].

The switching current versus field graph appears multival-
ued (Fig. 3) because the winding number of the order parameter
(the vorticity) influences the value of the critical current. The
vorticity can fluctuate from one measurement to the next one

FIG. 3. (a) The critical current (black points) plotted against
magnetic field. Fits, in solid lines forming diamond shapes, show
the Little-Parks diamonds generated by our model (see text). They
predict the critical currents associated with states characterized by
certain fixed vorticity values. From left to right, the vorticity of
the fitting curves increments from nv = −2 to 2. Fit parameters are
listed in Table I. (b) To compare positive and negative branches, the
absolute value of the critical current and fits of the critical current
for states nv = 0 and 1 are plotted. Black squares denote positive
critical currents and red circles denote the absolute value of the
negative critical currents. The shaded area in both figures shows the
positive-current “unique-vorticity diamond” for the state nv = 0.

because when the current is swept above its critical value
the superconductivity is destroyed and the winding number
is erased. Then, when the current is reduced back to zero,
superconductivity occurs again and a new vorticity value is
created. If the vorticity would always be equal to the value
minimizing the energy then we would not see the multivalued
graph of Fig. 3; the result would be single valued. Yet, due to
thermal fluctuations, the SQUID loop can freeze into a vorticity
which is somewhat different from the value minimizing the
energy. Such freezing of different vorticity values appears
similar to the one observed in the experiments demonstrating
Kibble-Zurek mechanism in superconducting rings [38].

In Fig. 3(b), the positive critical current IC+ is compared
to the negative critical current IC−, which was multiplied by
−1. Some asymmetry with respect to the sign of the bias
current is clearly visible at nonzero fields. In conventional
SIS junction SQUIDs the maximum in the switching current
always occurs at zero field [2] and the minimum occurs if
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the applied flux equals half of the flux quantum. However,
this is not true in general in our nanowire SQUIDs. In this
example of the representative Device 7715s1 measured at
T = 320 mK [Fig. 3(b)], one can see that IC+ = IC− at
B = 0. Yet, neither the maxima nor the minima occur at
B = 0. This happens because the kinetic inductance values
are different for the two wires. To achieve the maximum
supercurrent for the SQUID both wires need to achieve their
critical currents simultaneously. Yet, as the external current is
slowly ramped up the electric potential is the same at all points
of each superconducting electrode. Thus the supercurrent
increases inversely proportional to the wire inductance. So the
supercurrent is smaller in the wire with the larger inductance
(the kinetic inductance is dominant in very thin wires). This
means the supercurrent will be lower in the longer wire if
all other parameters are identical. Yet if the wires have the
same diameter they have the same critical current. Thus when
the shorter wire reaches the critical current the longer wire
remains subcritical. Thus the maximum possible supercurrent
cannot be achieved at zero field. But, if an appropriate magnetic
field is applied, which generates an excess Meissner current
in the loop, then both wires can come to their critical state
simultaneously. At such a magnetic field the critical current
of the device will be the maximum. For this to happen the
Meissner current should be such that it reduces the total current
in the shorter wire and increases the total current in the longer
wire.

III. MODEL

The results can be understood as follows. The total bias
current is split between the two wires, i.e., I = I1 + I2. We
assume the current in each individual wire is given by a linear
current-phase relationship

Ij = IC,jφj /φC,j , (1)

where j = 1 or 2 is the wire number. Ij is the supercurrent
through the wire j , IC,j is the critical current of wire j , and φj

is the difference of the phase of the complex superconducting
order parameter taken between the end points of the wire j .
We also use the concept of the critical phase φC,j , which
is the phase difference at which the supercurrent reaches
its maximum possible value and the superconductivity gets
destroyed. In long wires the critical phase is much greater
than π/2. This is the case for our samples since our wires
are much longer than the coherence length. The critical phase
would be φC = π/2, as in JJs, if the nanowires would be much
shorter than the coherence length. But this is not the case since
the coherence length is of the order of 10 nm in the samples
discussed and the length is typically larger than 150 nm (the
length for each wire is given above).

In this model, the critical current of each nanowire is
assumed independent of the magnetic field because the wires
are thin and the magnetic field is weak. To understand this
recall that the applied field is much smaller than the field
needed to create a single flux quantum through the area of
a typical nanowire. Thus internal Meissner currents in the
nanowire are negligible. The assumption of the independence
of each nanowire critical current on the magnetic field is
confirmed by the experimental observation that all maxima

of the periodic critical current of the SQUID occur at the same
current value. For example in Fig. 3(b) the red curve has three
maximum and all of them occur at about 48 μA.

To complete the model we need to take into account that
the order parameter must be single valued. Hence, the total
phase around our superconducting loop must be an integer
multiple of 2π . Therefore, the phases across each wire and the
electrodes (i.e., on a closed trajectory around the loop) must
add up as [17,20]

φ1 − φ2 + 2δ = 2πnv. (2)

Here, the vorticity (the winding number) of the SQUID loop
is nv . The phase difference within each electrode δ = δ(B)
(defined between the ends of the two nanowires connected to
the same electrode) is assumed to be the same on both the
electrodes; thus, the factor of 2 occurs in the phase balance
equation given above. This Meissner phase difference can be
computed as 2δ(B) = 2π (B/�B), where �B is the Little-
Parks period and B is the external field applied perpendicular
to the SQUID loop [17]. Note that the model assumes that at
zero field the phase gradient is zero in each electrode even
if some external bias current is applied. This is motivated
by the fact that the superconducting films are much stronger
superconductors because they are wider and usually have a
higher critical temperature (the TC of the nanowires is reduced
due to enhanced electron-electron repulsion). Thus the phase
gradient in the electrodes is assumed to be negligibly affected
by the supercurrents in the nanowires following the argument
of Ref. [17].

In this simplified model only the kinetic energy of the
superconducting condensate is taken into account and the
magnetic field distortion by the Meissner effect is neglected.
A more rigorous theoretical model might need to include
the magnetic moment of the supercurrent in the loop and its
interaction with the applied field [39,40]. In the present model,
the phase gradients in the electrodes are assumed to be created
by the Meissner current only.

Combining equations (1) and (2), and the requirement that
superconductivity should be destroyed if φj ≥ φC,j in any of
the wires, we have calculated the total critical current of the
nanowire SQUID for a given vorticity nv and magnetic field B.
We assume the total critical current of the device, IC (B), equals
the smallest total applied current at which the current across
either wire reaches its critical value. Different values of nv

result in different critical currents. When the critical current
of a vorticity state nv is plotted against magnetic field, we find
the boundaries of the region in which the vorticity state nv is
stable, which are called Little-Parks (LP) diamonds because
their periodicity corresponds to Little-Parks oscillations of the
nanowire loop. Outside its LP diamond, the vorticity state nv

cannot exist because the critical current of at least one wire
is exceeded according to the equations (1) and (2). When the
system reaches the boundary of its vorticity state, either the
vorticity of the system will change to a new, stable vorticity,
by means of a phase slip, or the device switches to the
normal state. In the latter case multivalued IC(B) functions
are observed.

The critical currents of Device 7715s1 are calculated using
equations (1) and (2) and shown in Fig. 3 by the straight
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TABLE I. Fitting parameters. The fitting parameters for our linear
CPR model of nanowires include the critical currents of each wire,
IC1 and IC2, and the critical phase of each wire, φC1 and φC2.

Device IC1 (μA) IC2 (μA) φC1 (rad) φC2 (rad)

7715s1 (at T = 0.3 K) 16.9 31.1 23.6 21.1
7715s1 (at T = 1.5 K) 15.9 29.5 21.9 19.4
51215s3 21.5 15.8 19.6 20.4
31414s1 10.0 5.3 19.8 23.9

lines. The fitting parameters are listed in Table I. The model
gives good fits, thus confirming that the CPR is linear with a
high accuracy. Many Little-Parks diamonds overlap over wide
ranges of fields and currents. This explains why the critical
current is multivalued (because the initial vorticity can be
different). Another interesting fact is that the model does not
involve the geometric inductance of the nanowires. Thus, only
their kinetic inductance is essential. Therefore, it should be
possible to reduce the dimensions of such nanowire SQUIDS
by a large factor without compromising their performance
(since the kinetic inductance can be large even if the wire is
small, provided the critical current of the wire is small).

A linear or almost linear CPR has been predicted for thin
and long wires at T = 0 [2,21–23,29,30]. For example, in
the limit of an infinite disordered wire the nonlinearity η,
described by the equation IC/φC = (1 − η) dI

dφ
|φ=0, is only

about 2% according to Ref. [22]. Our nanowires qualify as
disordered since they are amorphous and the mean free path
is only about 3 Å. Note that previously many computationally
advanced models based on Ginzburg-Landau theory have
been developed [25,27,28]. Yet, they are applicable to higher
temperatures. Our goal is to address the low-temperature
limit. Here, we have shown that a simple model based on
a linear CPR provides excellent fits to our critical current
data. Below, we will show how this model leads to a thorough
understanding of the critical current vs magnetic field function,
and reveals the process by which the system switches from the
superconducting state to the normal state, and how it correctly
predicts the existence of hidden phase slips.

IV. ANALYSIS

According to our model, if the wires are different, the
optimal vorticities [the one which produces the largest IC(B)]
are not always equal for positive and negative currents. At the
largest currents at which the sample is still superconducting,
only the optimal vorticity state is stable because for any other
winding number the current would be larger than the critical
current. The region in field and current in which the optimal
vorticity is the only stable superconducting state will be
referred to as the unique-vorticity diamond (UVD). The UVD
is a region of a Little-Parks diamond which does not overlap
with any other LP diamond. For example, the UVD for state
nv = 0 at positive currents of Device 7715s1 is shown as the
shaded region in Fig. 3. If the system is superconducting within
the unique vorticity diamond then the vorticity state is known.
This explains that nanowire SQUIDs may be applicable as
memory devices using the unique-vorticity diamond to write a

known vorticity state [41]. At low current bias, the device can
have many different vorticity values, all except one of which
are metastable. This metastability results in a multivaluedness
of the critical current. It should be noted that the proposed
model predicts the existence of many critical currents for a
fixed field. Yet, experimentally, we cannot see all of them
simply by measuring the critical current. This fact indicates
that when the bias current reaches the critical current for a
given vorticity state, the system is sometimes able to modify
its vorticity without switching to the normal state. Thus, hidden
phase slips can be predicted.

Each maximum in magnitude of IC(B) and the two critical
current branches extending from it correspond to the critical
currents associated with a particular vorticity state. We define
a critical current branch as a continuous line segment of
critical current when plotted versus magnetic field. The
maximum itself occurs at the field when both wires reach
their corresponding critical currents (and the critical phases)
simultaneously. The reason that the crossing branches have
different slopes is due to the fact that they represent different
wires reaching their corresponding critical current and critical
phase.

The critical phases (listed in Table I) are found to be
approximately 20 radians in each device. Note that the critical
phase of a Josephson junction is only φCJJ = π/2 = 1.57 rad.
If we would connect two Josephson junctions in series then
we would need to apply a twice larger phase difference
between the ends of the chain to achieve the phase difference
of π/2 rad on each junction. Thus, the critical phase of a
chain of two Josephson junctions connected in series would
be φCJJ = π rad. If the chain contains three junctions in
series then the critical phase is φCJJ = 3π/2 = 4.7 rad. To
have a critical phase of about 20 rad we would need to
create a chain of about 13 JJs. Of course, our nanowires
do not have Josephson junctions inside them, in the sense
that there are no insulating barriers or weak links in them,
since the wires are homogeneous. Yet every segment of size
∼2ξ can be considered as an independent region (junction)
because a phase slip can occur within such a region. Note that
the size of the phase slip core is ∼2ξ [42]. Thus, to estimate
the critical phase, roughly, we can take the critical phase for
one junction (φCJJ = π/2) and multiply this by the number of
independent segments (L/2ξ ). Then the wire can be modeled
as a chain of junctions of the total number nj = L/2ξ . The
critical phase for each junction is π/2. Thus the coherence
length for a nanowire can be estimated from the equation
φC ≈ (π/2)(L/2ξ ). If φC ≈ 20 rad (as seen in Table I) and
L 200 nm then ξ ≈ 8 nm. This value of coherence length is
consistent with those found in previous studies of Mo75Ge25

nanowires [43–45].

A. Standard deviation

In measurements on superconducting SIS junctions in
which the current is slowly increased from zero, the measured
switching current is typically slightly less than the true critical
current of the junction [46]. The same phenomenon occurs
in superconducting nanowires. Namely, as the bias current is
swept up, thermal or quantum fluctuations (i.e., phase slips)
can cause the nanowire to escape from the superconducting
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FIG. 4. (a) The switching current vs magnetic field for Device
31414s1. Device 31414s1 only shows one critical current branch at
each magnetic field, i.e., the IC(B) function is single valued (however
the switching current itself is stochastic due to thermal or quantum
fluctuations). The mean switching current is plotted as a blue line.
A minimum in the IC(B) function is denoted as “min.” Dotted blue
lines extend from this minimum as an example of where our model
would predict phase slips to occur at nonoptimal vorticities. (b) The
standard deviation of the switching distribution vs magnetic field is a
periodic sequence of plateaus. Along each plateau, a switching event
is caused by a particular wire reaching its critical current. Horizontal
lines in red (at 80 nA) and blue (at 105 nA) have been plotted as a
guide to the eye.

regime before the depairing current is reached [37,47,48].
Thus, thermal and/or quantum fluctuations cause a stochastic
distribution of the switching current. In our model presented
above we have treated the average switching current and the
ideal, fluctuation-free critical current as if they are equal, for
simplicity, because the fluctuations are small. Now we address
the fluctuations of the switching current explicitly. In Fig. 4(a)
we plot the switching currents of Device 31414s1 at 1.5 K as
black points and the average switching current as a solid blue
curve. The corresponding standard deviations of the switching
current distributions are plotted in Fig. 4(b). We choose to
analyze the switching current distribution of Device 31414s1
because it turns out to be single valued, i.e., it shows only
one critical current branch at any magnetic field. While the
switching current is stochastic due to thermal or quantum
fluctuations, we do not see multiple clusters of switching
currents at the same magnetic field which might be expected,
for example, along the dotted blue lines in Fig. 4(a).

To explain this single valuedness consider the following
argument. At 1.5 K, Device 31414s1 has a lower critical
current than the other measured devices. The heat produced
by single phase slips at lower branches of the critical current
in Device 31414s1 is insufficient to produce a switching event
and to drive the device normal. Rather, when the system is in a
nonoptimal vorticity state, a phase slip can transfer the system
into a different vorticity state characterized by a higher critical
current. This is because the heat released by a single slip is
proportional to the value of the bias current.

For the purpose of the statistical analysis, the switching
current is measured 300 times at each magnetic field. The
average switching current is plotted in Fig. 4(a) as a solid
blue line and the standard deviation σ of the switching current
distribution is shown in Fig. 4(b). We find, quite surprisingly,
that there are regions in which the standard deviation does
not depend on the magnetic field, while the mean value of
the switching current changes with the magnetic field. In
other words, the standard deviation of the switching current
distribution is a periodic sequence of plateaus. Along each
branch of the critical current, the standard deviation is constant.
This fact gives us an important insight into the switching
mechanism. As we will discuss below, these plateaus indicate
that the switching events are initiated by phase slips in a single
wire, namely the wire in which the critical current condition
is reached first.

In order to understand the plots in Fig. 4, consider first
the case in which a switching event occurs because the total
current in wire 1, I1, reaches its critical value IC,1. Given that
I1 = IC,1, the total applied current can be calculated using
Eqs. (1), (2), and conservation of current, namely I = I1 + I2

where I is the applied current and I2 is the current in wire
2. In the model, if one wire reaches the critical current then
the entire SQUID reaches its critical current also. Therefore
the total current calculated when I1 = IC,1 is the total critical
current of the device. This calculated critical current of the
SQUID changes linearly with magnetic field. Obviously, as
long as switching events are caused by wire 1 reaching its
critical current, the total current in wire 1, I1, will always
(i.e., at any magnetic field) be equal to its critical value IC,1

if the critical current of the device is approached. Remember
also that IC,1 and IC,2 are independent of the magnetic field
in the range of fields we study. At the same time, the total
current in wire 2 is subcritical for the considered group of the
switching events. In this case, the standard deviation of the
switching current distribution is related to the rate of phase
slips as a function of the total current in wire 1 and not of
the total applied current. This rate does not change noticeably
with magnetic field because when the switching happens the
total current in wire 1 is near its critical current, at any value of
magnetic field. Thus, as long as a switching event is caused by
wire 1 reaching its switching current, σ is constant because σ

is defined by the rate of phase slips near the switching current.
Another, alternative way to discuss the constant sigma is to

conjecture that the fluctuations of the switching current orig-
inate from the critical current fluctuations caused by thermal
energy fluctuations or quantum zero-point fluctuations. Since
the critical current of each individual wire remains unchanged
with magnetic field, its fluctuations remain unchanged also.
Therefore, sigma remains unchanged as magnetic field is
swept, as long as the phase slips causing the switching events
occur in one particular nanowire.

In accord with the above discussion, σ will also be constant
in the range of magnetic fields in which switching events are
caused exclusively by wire 2 reaching its critical current. Such
regions will be characterized by a different plateau since the
rate of phase slips in wire 2 is different from wire 1, if the
wires have different dimensions and/or critical temperature.
Note that the critical temperature of the wire depends on its
width as well as its thickness.
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This explanation is based on the fact that there exist rather
wide ranges of the magnetic field in which the switching of the
device is always caused by a phase slip in the same wire. Such
field regions are characterized, also, by linear dependence
of the switching current on the applied field. Indeed, each
plateau in Fig. 4(b) (see red and blue guide-to-the-eye lines) is
a region in magnetic field over which switching events of the
entire device are all caused by one particular wire reaching its
critical current.

We notice also that a dip in the standard deviation occurs at
fields where the switching current is the minimum. Below we
suggest an explanation for this dip. First, notice that, according
to our model, at the minima of the mean switching current
shown in Fig. 4(a), there are two metastable vorticity states, nv

and nv + 1. [This is unlike any other region in the solid blue
curve of Fig. 4(a), where there is just one metastable vorticity
state and all others are unstable.] Thus, just below the IC(B)
minimum, phase slips might not always cause a switching
event. Rather, the vorticity can change without causing a
switching event since the SQUID might transition between
the two available metastable states.

Since we observe no switching events at currents below
the switching current minima [e.g., along the blue dotted
lines in Fig. 4(a)], we suggest that a single phase slip in a
nonoptimal vorticity state does not produce enough heat to
drive the system normal in Device 31414s1. Thus near the
minima, where multiple vorticity states are metastable, we do
not expect a single phase slip to result in a switching event
either. Therefore, a possible scenario to describe a switching
event at a minimum in IC(B) is as follows. We begin with zero
applied bias current through the device and a magnetic field
corresponding to the minimum of the switching current. At
the minimum of the switching current, wire 1 nears its critical
current if the system is in state nv while wire 2 nears its critical
current if the system is in state nv + 1. We will assume the
systems start with vorticity nv . As the current is increased and
approaches the critical current of the device, a phase slip occurs
on wire 1 (which has a current near its critical value) and the
vorticity of the SQUID changes to state nv + 1. This phase slip
does not cause a switching event and thus remains unregistered.
However, now the current in wire 2 is near its critical value.
So another phase slip occurs, returning the system to state nv .
Note that such a pair of phase slips is equivalent to a vortex
passing across both nanowires. This process repeats until the
heat produced by phase slips suppresses the critical current
of the SQUID below the applied current, driving the system
normal and creating a switching event.

What is special in this scenario is that some phase slips
remain undetected. As will be argued below, in such a regime
where multiple phase slips are required to produce switching
events, the dispersion of the switching current is reduced.
Additionally, this scenario can only occur near the minima
where two metastable vorticity states have similar critical
currents. Thus it is supported by the fact that we do not see
a multivalued IC(B) function which would be represented by
clusters of switching currents along the blue dotted lines in
Fig. 4(a).

We suggest that the dip in the standard deviation may be due
to the switching caused by multiple phase slips, as discussed
above. This means that single phase slips do not always cause

FIG. 5. (a) Raw critical current data. The magnitudes of the
positive critical current (black squares) and the negative critical
current (red circles) are not equal at zero field (vertical black line).
(b) The entire critical current plot is shifted along the magnetic field
axis such that the largest magnitude positive and negative critical
currents are equal at zero field. Such a shift compensates for the initial
unaccounted offset magnetic field in the setup. This corrected data is
fit to our model and the fits are shown in blue lines. Fit parameters are
listed in Table I. (c) The magnitude of the negative critical current is
flipped about (mirror reflected) the vertical B = 0 line. The overlap
of the black and red curves is consistent with the physical symmetry
of the system: Reversing the direction of the current and the applied
field at the same time should produce no change to the system.

switching. Yet a coincidence or near coincidence of two or
more phase slips in time can switch the SQUID to the normal
state. Quantitative statistical analysis of such multiple phase
slips regime is more complicated; it certainly goes beyond
the Kurkijärvi model [46]. The analysis of multiple phase slip
switching events was done numerically [37,49]. One important
result was that the standard deviation is reduced when multiple
phase slips are needed to switch the device [37,49], compared
to the single phase slip switching, where each phase slip
generates a switching event. Thus, we suggest that multiple
phase slip switching processes can explain the observed dips
in the standard deviation plot, located at magnetic fields at
which the switching current is the minimum.

B. Symmetry 1

A transformation consisting of reversing both the direction
of applied current and the direction of the magnetic field will
reproduce the initial untransformed state [15]. We illustrate
the symmetry transformation on Device 51215s3, in Fig. 5.
In Fig. 5(a) the raw critical current data is presented. We
expect the positive critical current IC+ (black squares) and
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the negative critical current IC−, multiplied by −1, (red dots)
to be equal at zero magnetic field (for zero vorticity). This
is not the case in the raw data, due to the presence of an
unaccounted offset magnetic field in the cryostat. The offset
may be due to the Earth field or some other unaccounted
sources. Therefore in Fig. 5(b) we shift the data horizontally,
along the B axis, thus compensating for the unaccounted
magnetic field. Now the positive (black) and the negative
(red) branch of critical current (corresponding to the same
vorticity nv = 0) intersect at B = 0 [Fig. 5(b)]. The fits (blue
lines) produced by our model exhibit an excellent agreement
with the data. In Fig. 5(c) the symmetry transformation is
completed by multiplying by −1 the magnetic field value of
each data point corresponding to the negative critical currents.
Thus, modified negative branches (red) match perfectly well
the corresponding positive branches (black) [see Fig. 5(c)].
To summarize, the discussed current-field reversal symmetry
can be expressed as −IC−(−B) = IC+(B) where the critical
current function is the complete multivalued function.

C. Symmetry 2

Now we discuss the position of the crossing points of the
plots representing the magnitudes of the positive and negative
critical currents. At integer flux quanta and half-integer
flux quanta the positive critical current of some vorticity
state nv+ and the negative critical current of the matching
vorticity state nv− are equal to each other in magnitude,
i.e., IC+(B,nv+) = −IC−(B,nv−). For this to hold true, the
vorticity states nv+ and nv− must be related by nv+ + nv− =
int( 2B

�B
) = int(2δ(B)/π ) where �B is the period. Mathemati-

cally, magnetic fields of integer flux quanta can be expressed
as B = n�B and half-integer flux quanta magnetic fields can
be expressed as B = (n + 1/2)�B. Here n is an integer. The
experiment supports our conclusions: The magnitudes of the
negative (red) and the positive (black) experimental critical
current curves in Fig. 3(b) intersect at integer and half-integer
flux quanta, i.e., at B = n�B and B = (n + 1/2)�B. To
derive this equality theoretically, we will consider the cases
when the current through wire 1 reaches its positive critical
value at I1 = IC,1 and when the current through wire 1 reaches
its negative critical value at I1 = −IC,1. In these cases, the total
current ITotal through the device (which is the total critical
current of the device) can be written as

ITotal = IC+(B,nv+) = I1 + I2 = IC,1 + I2 (3)

for positive current and

ITotal = IC−(B,nv−) = I1 + I2 = −IC,1 + I2 (4)

for negative current. Here, nv+ and nv− are two unknown
vorticity states. We can then calculate the current in wire 2, I2,
using Eqs. (1) and (2). At positive currents

I2 = IC,2

φC,2
(φC,1 + 2δ − 2πnv+) (5)

and at negative currents

I2 = IC,2

φC,2
(−φC,1 + 2δ − 2πnv−). (6)

Next, we multiply the negative total critical current by −1

and set it equal to the total positive critical current.

IC,1 + IC,2

φC,2
(φC,1 + 2δ − 2πnv+)

= −
(

− IC,1 + IC,2

φC,2
(−φC,1 + 2δ − 2πnv−)

)
(7)

This reduces to

2δ − 2πnv+ = −2δ + 2πnv− (8)

or more simply,

nv+ + nv− = 2

π
δ. (9)

Recall that δ, the phase difference between the ends of
wire 1 and wire 2 within an electrode and is related to the
magnetic field by δ = πB/�B where �B is the period. Thus,
we find that

nv+ + nv− = 2B

�B
. (10)

For this equation to hold, 2B
�B

must be an integer (as the vorticity
values must also be integers). Therefore, solutions exist only if
B = n�B/2 where n is an integer, i.e., when the magnetic field
is either at an integer multiple of the period (and the flux is at an
integer flux quanta) or when the magnetic field is at an integer
plus one-half period (and the flux is at a half-integer value
of flux quanta). Thus, the crossing points of the negative and
positive critical currents are located at integer and half-integer
fluxoid values for the nanowire SQUID.

This analysis considered positive total critical currents
achieved when I1 = IC,1 and the total negative critical current
when I1 = −IC,1. A similar analysis can be done considering
the total positive critical current when I2 = IC,2 and the total
negative critical current when I2 = −IC,2. The same result will
be found. We therefore conclude that at integer flux quanta and
half-integer flux quanta, for each positive critical current, there
will be a negative critical current of equal magnitude and vice
versa. This relationship can be written as

IC+(B,nv+) = −IC−(B,nv−), (11)

where nv+ + nv− = int( 2B
�B

). In the general condition given
above, the integer vorticity values nv+ and nv−, which
index the positive and the negative critical current branches
respectively, may be equal or not equal. For example, at
zero field IC+(B = 0,nv+ = 0) = −IC−(B = 0,nv− = 0) at
the largest magnitude critical currents, but IC+(B = 0,nv+ =
1) = −IC−(B = 0,nv− = −1) is also true at a smaller mag-
nitude critical current, meaning that there could be more than
one crossing point at B = 0 in this example. To illustrate this
conclusion, consider Fig. 3(b) where two crossing points are
visible between the black curves and red curves at each period
and half period in magnetic field.

D. Shifts in the maxima

The maximum of the critical current deviates from zero
field if the critical phases of the two wires are different. The
maximum in IC(B) at zero vorticity occurs when the total
critical current is equal to the sum of the individual critical
currents of the wires, IC = IC,1 + IC,2. Thus, to achieve the
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maximum the phase differences imposed on each wire must
equal their critical phases. If the magnetic field is zero then
the phases imposed on the wires are either equal to each other
or differ by 2π if the number of phase slips passed through
one wire is not equal to the number of phase slips passed
through the second wire. This is because the phase gradient is
assumed zero inside the electrodes, unless a nonzero magnetic
field is applied. Thus, to achieve the maximum some magnetic
field is needed to fine tune the phase difference on each wire
to its critical value. To see this consider initially Eq. (2)
assuming the vorticity of the loop is zero and the phases of both
wires are critical: δ(B) = 1

2 (φC,2 − φC,1). Obviously the phase
difference induced by the magnetic field has to be nonzero if
two critical phases are not equal. Recall that δ(B) is linearly
proportional to B [17]. Thus, if the critical phases of the wires
are not equal one has to apply a nonzero perpendicular field
to achieve the maximum possible supercurrent through the
SQUID. The largest critical current at negative bias and zero
vorticity can similarly be found when δ(B) = 1

2 (φC,1 − φC,2).
Thus the largest positive critical currents and the largest
negative critical currents of the state nv = 0 are shifted from
zero field in equal amounts, but opposite directions, and the
magnitude of the shift is determined by the differences in the
critical phases of the two wires.

E. Metastability

Using our model, we can calculate the conditions for which
multiple vorticity states are metastable. For example, at zero
field and zero bias current, if we assume the two wires are
identical (IC,1 = IC,2 and φC,1 = φC,2) then φ1 = −φ2 [this is
found using Eq. (1) and conservation of current] and Eq. (2)
becomes

2φ1 = 2πnv. (12)

The value of φ1 can range from −φC,1 to φC,1. Thus, the
value of nv at zero current and field can be any integer
between −φC,1/π and φC,1/π . So, as long as φC,1,φC,2 � π ,
vorticity states nv = −1, 0 and 1 will be stable at zero field
and current. It has been shown that asymmetric SQUIDS
composed of Josephson junctions can have multiple metastable
vorticity states [50], however, this result is derived considering
geometric inductance. Our nanowire loops depend on kinetic
inductance rather than geometric inductance, making our
analysis of the metastability of vorticity states qualitatively dif-
ferent from studies of traditional Josephson junction SQUIDs.
Note that this analysis is performed assuming the CPR is linear
which is not expected to be true for very short nanowires.

F. Hidden phase slips

Next, we demonstrate a method by which we can observe
hidden phase slips which do not produce switching events.
We begin with the Device 7715s1 in the superconducting state
and in the unique vorticity diamond for state nv = 0. More
specifically, our starting point is at B = −0.1mG and I =
4.2 μA. Therefore we know the device must have a vorticity
of zero as nv = 0 is the only allowed superconducting state in
the UVD for state nv = 0. We drive the system to a value of
current and field, which we call a testing point, and then return

FIG. 6. The borders of vorticity states (Little-Parks diamonds)
nv = −1, 0 and 1 for Device 7715s1 are found experimentally as
described in the text and are plotted as green, red, and blue points
(testing points where a change of the vorticity first occurs). Solid
lines show theoretical fits of the vorticity stability regions. Black
points show the switching currents.

the system to the unique vorticity diamond of state nv = 0, i.e.
to the same starting point as specified above. The testing point
is chosen at different locations of the I-B (current-field) plane,
progressively further from the UVD of the nv = 0 state. If
the testing point stays within the nv = 0 Little-Parks diamond,
i.e., the region where the vorticity nv = 0 is stable, then as
we return to the UVD we never detect a switching event. But,
if the testing point reaches the boundary of the LP diamond
then the vorticity changes somewhere near the testing point
and either a switching event or a hidden phase slip occurs. If
a hidden phase slip occurs, then the obtained vorticity n′

v does
not equal 0. Upon returning to the UVD of state nv = 0 from
a state n′

v �= 0, the system must cross the boundary of the LP
diamond for n′

v . This boundary crossing results in a phase slip,
which may cause a switching event. To ensure we detect when
n′

v = ±1, we enter the UVD of state nv = 0 at a magnetic field
where the critical currents of both states nv = −1 and nv = 1
produce switching events (see Fig. 6). So to summarize, if
the testing point is within the original LP diamond, then no
switching events occur as we return to the starting point at the
UVD. If the testing point reaches the LP diamond boundary,
then we detect switching events either at this boundary or as we
return to the starting point at the UVD with some probability
above zero. Thus the boundaries of the LP diamond can be
determined, even in regions where there is no switching at the
boundary and only hidden phase slips occur.

If at any point, the system switches to the normal state,
either upon reaching the testing point or returning to the unique
vorticity diamond, we record the testing point as a boundary
of state nv = 0. This process is repeated for states nv = −1
and nv = 1. Results are shown in Fig. 6. Black points are the
critical currents. Green, red, and blue points are the testing
points which correspond to the borders of vorticity states
nv = −1,0 and 1. Solid lines show theoretical fits and fitting
parameters are listed in Table I. We find that the boundaries
of each vorticity states matches theoretical predictions. Thus,
we are able to observe signatures of phase slips which do not
produce switching events (at low currents) and confirm the
accuracy of our model.
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We can also determine the positive and negative UVDs of
the same vorticity state. If the effects of external magnetic
fields (due to, for example, the Earth) are not precisely known,
then we do not know which of the crossing points discussed
above (see section Symmetry 2) correspond to zero field,
and which correspond to integer or half-integer flux quanta.
Additionally, while we know from the discussion of shifts
in the maxima that the peaks in the positive and negative
critical currents are shifted from zero in equal and opposite
directions, this does not exactly determine which pair of
extrema correspond to the nv = 0 state. Thus an algorithm
to characterize which UVDs correspond to the same vorticity
state may be desirable. This algorithm can be the same
algorithm by which hidden phase slips are detected, using a
starting point in some UVD at positive currents, and a testing
point in a UVD at negative currents. If the trajectory of the
system in the B-I plane does not cross any boundaries of the
LP diamond of the initialized vorticity state, no switching
events will be detected. Therefore if the system can be brought
back and forth between a pair of positive and negative UVDs
many times without any switching events, then this pair can
be assumed to correspond to the same vorticity state. If a
switching event does occur, this pair must not correspond to
the same vorticity state.

V. CONCLUSIONS

In conclusion, nanowire SQUIDs are qualitatively different
from conventional SIS junction SQUIDs because the critical
phase of the nanowires involved is much larger than π/2.

The critical current is multivalued. At integer flux quanta
and half-integer flux quanta, the magnitudes of the positive
and negative critical currents are equal but are not necessarily
maxima or minima. The stability regions of vorticity states are
described by Little-Parks diamonds, and the critical current
function is composed of linear segments. We find that a linear
segment in the critical current vs magnetic field function
corresponds to a plateau in the standard deviation in the
switching current distribution. A single line segment/plateau
corresponds to the situation where the current in one wire
reaches its critical current for some vorticity state and the
switching always happens in the same wire. We propose a
new model to describe the multivalued function of the critical
current on the magnetic field. The model is applicable at
temperatures much lower than the critical temperatures of the
nanowires. We use the model to predict hidden phase slips at
relatively low bias current values, where phase slips do not
cause switching events. We propose an algorithm allowing
the detection of the occurrence of hidden phase slips, which
follow the Little-Parks diamonds corresponding to the vorticity
stability limits. We test our model by detecting hidden phase
slips which do not produce switching events along predicted
boundaries of vorticity states. Future work will be focused on
the macroscopic quantum tunneling effects, especially for the
acase of the hidden phase slips.
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