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Magnetic phase diagram and quantum phase transitions in a two-species boson model
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We analyze the possible types of ordering in a boson-fermion model. The Hamiltonian is inherently related
to the Bose-Hubbard model for vector two-species bosons in optical lattices. We show that such a model can
be reduced to the Kugel-Khomskii type spin-pseudospin model, but in contrast to the usual version of the latter
model, we are dealing here with the case of spin S = 1 and pseudospin 1/2. We show that the interplay of spin and
pseudospin degrees of freedom leads to a rather nontrivial magnetic phase diagram including the spin-nematic
configurations. Tuning the spin-channel interaction parameter Us gives rise to quantum phase transitions. We
find that the ground state of the system always has the pseudospin domain structure. On the other hand, the sign
change of Us switches the spin arrangement of the ground state within domains from a ferro- to antiferromagnetic
one. Finally, we revisit the spin (pseudospin)-1/2 Kugel-Khomskii model and see the inverse picture of phase
transitions.
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I. INTRODUCTION

The coherent manipulation (quantum simulation) of quan-
tum systems such as atoms in optical lattices, trapped ions,
nuclear spins, superconducting circuits, or spins in semicon-
ductors is currently a rapidly progressing field of physics.
The experimental availability of quantum simulators is one
of the recent scientific achievements [1–6]. They allow one
to simulate and explore a variety of complex many-body
systems, in particular, the magnetic ones, and to verify the
corresponding theoretical models yet unstudied or which can
hardly (or even not at all) be directly investigated in solids
[7–12]. The most actively studied quantum simulators are
those implementing ultracold atoms in optical lattices [13–19].
The interaction parameters characterizing such systems can be
tuned in situ.

In particular, the quantum simulators give an additional
impetus to the problem of boson magnetism that has attracted
a growing interest in recent years [20,21] stimulated by novel
experimental realizations in optical lattices [6,22]. Here, we
consider a quantum simulator with the strongly interacting
Bose and Fermi degrees of freedom. A possible realization is
related to the Bose-Hubbard model for two species of vector
bosons in optical lattices.

It is well known that the strongly correlated fermion
Hubbard model, H ∼ t

∑
<i,j>,σ c+

i,σ cjσ + U0
∑

i ni,↑ni,↓,
where t and U0 > 0 stand for the hopping and onsite
Coulomb interaction, respectively, reduces at half filling to
the Heisenberg spin-1/2 model Heff = J

∑
<i,j> Si · Sj with

the antiferromagnetic exchange J ∼ t2/U0 > 0, |t | � U0

[23]. Treating similarly the strongly correlated Hubbard
model for vector bosons, H ∼ t

∑
<i,j>,σ c+

i,σ cjσ +
U0

∑
i,σ ni,σ (1 − ni,σ ), one arrives at the Heisenberg

spin model with ferromagnetic exchange J ∼ −t2/U0 > 0
[24].

In our case, we have two species of interacting vector
bosons on the lattice that effectively leads to the appearing
fermion degree of freedom, such as the 1/2-pseudospin. So,
we have both: Bose and Fermi strongly interacting degrees of
freedom. Naively, one can expect in the limit of strong corre-
lation that this model reduces to some mixture of ferro- and
antiferromagnetic interacting spins and pseudospins (p-spins).
Nevertheless, the situation is more complicated. We show that
the system can be described in terms of the strongly anisotropic
Kugel-Khomskii (KK) type spin-pseudospin model [25] with
spin S = 1 and pseudospin-1/2. Such type of the model has
not been considered earlier in the context of optical lattices.
Apart from the obvious case of optical lattices, the model in
hand might have the physical realization in solid state (3d

metal compounds) for the case of KK model with p-spin 1
(triplet) and spin-1/2: One only has to interchange spin and
p-spin to arrive to the model similar to that under consideration
[25].

We investigate below an interplay of spin and pseudospin
degrees of freedom. It is shown that tuning the spin channel
interaction parameter Us leads to quantum phase transitions.
We find that the ground state of the system always has the
p-spin domain structure. On the other hand, the sign change of
Us switches the spin arrangement of the ground state within
domains from the ferro- to aniferromagnetic one. Finally, we
revisit the (spin-1/2)-(p-spin-1/2) Kugel-Khomskii model and
point out the dramatic difference between two types of the
models: In particular we underline the inverse picture of phase
transitions.

Our paper is organized as follows: In Sec. II, we formulate
the model and write down the Hamiltonian. In the next section,
we derive the effective strongly anisotropic Kugel-Khomskii
model with spin-1 and p-spin-1/2. In Sec. IV, we discuss the
ground state of the Kugel-Khomskii model. Finally, Results
and Discussions are presented in Sec. V.
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FIG. 1. Sketch of two types of vector bosons corresponding to
cold atoms at the optical lattice.

II. INITIAL MODEL

For two types of boson atoms with S = 1, we introduce
the creation operators c

†
iαs for the states localized at site i

and having spin components s = {−1,0,1}. Index α = 1,2
accounts for two types of bosons. [In Fig. 1, we show the
example of atomic distribution over the lattice sites: The arrows
correspond to spin and color denotes atom type.]

The total Hamiltonian is the sum of three terms:

H = H (U0) + H (Us ) + Ht. (1)

The interaction between bosons is given by two terms. The first
one accounts for the Coulomb repulsion between two boson
atoms occupying the same site [22]:

H (U0) =
∑

i

U12ni,1ni,2 +
∑

i,α=1,2

Uααni,α(ni,α − 1). (2)

Here, U11, U22, and U12 are three interaction parameters play-
ing the role of “U0” discussed above and ni,α = ∑

s c
†
iαsciαs .

We assume below that bosons do not strongly differ from each
other: U12 � U11 � U22 = U0.

The spin-dependent interaction term, originating from the
difference in scattering lengths for S = 0 and S = 2 total spin
channels, is taken in the form (see, e.g., Refs. [24,26])

H
(Us )

i = Us

(
S2

i − 2ni

)/
2. (3)

Here ni = ni,1 + ni,2 is the total number of bosons at site i.
The hopping term has the form:

Ht =
∑
〈i,j〉

tα(c†iασ cjασ + c
†
jασ ciασ ), (4)

where the summation is performed over all nearest-neighbor
sites 〈i,j 〉 and α = 1,2. The summation over the repeated
indices is implied.

We show that two species of S = 1 lattice bosons in the
localized Mott insulating state belong to the well-known
class of magnetic strongly anisotropic Kugel-Khomskii spin-
p-spin models. This physical system is interesting due to the
competition of several degrees of freedom: particle density,
spin and/or another degree of freedom (p-spin) distinguishing
the boson species [27–31].

It is known for cold atoms that tuning interactions in the
Mott insulators might generate new magnetic phases on top of
spin or p-spin degrees of freedom [13–17]. Single species of
spin S = 1 lattice bosons have been already investigated [24].
Here, we consider the two-species case, where the additional
degree of freedom makes the problem more interesting.

We show that tuning of the spin-channel interaction param-
eter Us leads to quantum phase transitions (QPT). We find that
the ground state of the system always has the p-spin domain
structure. On the other hand, the sign change of Us switches
the spin arrangement of the ground state within domains from
ferro- to antiferromagnetic one.

III. STRONGLY ANISOTROPIC KUGEL-KHOMSKII
MODEL

Hereinafter, we are focusing on the case where all the
hopping terms are much smaller than all the interaction
energies and the average site filling is unity. In the second-order
perturbation theory in terms of tα , the effective Hamiltonian
has the form Heff = Ht (EG − H0)−1Ht . Here, EG = 0 is the
ground state energy of the Hamiltonian H0 = H (U0) + H (Us ) for
the average site filling 〈ni〉 = 1.

We can define spin Si and p-spin T i operators [32]:

Sa
i = c

†
iασ sa

σσ ′ciασ ′ , T a
i = c

†
iασ τ a

αβciβσ . (5)

Below, we write down the resulting effective Hamiltonian in
terms of these spin and p-spin operators.

In what follows, when we consider the link 〈i,j 〉 between
the nearest-neighbor sites, we focus on the basis of possible
states for two bosons with spins S1 = 1 and S2 = 1 at
neighboring sites i = 1 and j = 2. We are interested in the
case with single occupation, i.e., when one boson of either
type is located at each lattice site, ni1 + ni2 = 1. For such a
case, there are four groups of states

�1
ss ′ = |iaσ jaσ ′〉 = a

†
iσ a

†
jσ ′ |0〉, (6)

�2
ss ′ = |iaσ jbσ ′〉 = a

†
iσ b

†
jσ ′ |0〉, (7)

�3
ss ′ = |ibσ jaσ ′〉 = b

†
iσ a

†
jσ ′ |0〉, (8)

�4
ss ′ = |ibσ jbσ ′〉 = b

†
iσ b

†
jσ ′ |0〉, (9)

where for simplicity we explicitly distinguish operators for
different types of bosons: aiσ ≡ ci,1,σ and biσ ≡ ci,2,σ .

Each group contains (2S1 + 1)(2S2 + 1) = 9 states ac-
counting for various possible spin components s and s ′ of a
boson located at site i and another boson at site j . Combining
the states with different s,s ′ within one group, we can pass
to the basis of the eigenstates of the total spin squared S2 =
(S1 + S2)2 and its z-projection Sz = Sz

1 + Sz
2. We designate

these states as |SM〉, S = 0,1,2, and M = −S, . . . ,S. This
basis can be written as follows

�
(1)
SM = ∣∣φ(1)

S

〉|SM〉, (10)

�
(2)
SM = |φ(2)〉|SM〉, (11)

�
(3)
SM = |φ(3)〉|SM〉, (12)

�
(4)
SM = ∣∣φ(4)

S

〉|SM〉. (13)

The orbital part of wave functions for two identical “a”
bosons, |φ(1)

S 〉, or “b” bosons, |φ(4)
S 〉, depends on the value

of the total spin S. In particular, for two a bosons, we have
(remember that the total boson wave function, incorporating
spin and p-spin degrees of freedom, has the proper bosonic
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symmetry):

∣∣φ(1)
S

〉 = 1√
2

(|ia ja〉 + |ja ia〉), S = 0,2, (14)

∣∣φ(1)
S

〉 = 1√
2

(|ia ja〉 − |ja ia〉), S = 1, (15)

and for two b-bosons

∣∣φ(4)
S

〉 = 1√
2

(|ib jb〉 + |jb ib〉), S = 0,2, (16)

∣∣φ(4)
S

〉 = 1√
2

(|ib jb〉 − |jb ib〉), S = 1. (17)

The orbital functions for two bosons of different types do not
depend on the total spin S and have the form

|φ(2)〉 = |ia jb〉 = φi(r1)ψj (r2), (18)

|φ(3)〉 = |ib ja〉 = ψi(r1)φj (r2). (19)

The p-spin operator in Eq. (5) is responsible for transitions
between different types of bosons. We express Heff in terms of
Si and T i . Since we assume that bosons do not strongly differ
from each other, then t1 � t2 = t . Note that this condition
does not mean the absence of any difference between two
types of bosons.

This difference manifests itself in the absence of the cross
terms ∼c

†
i1σ cj2σ in the hopping Hamiltonian (4) that allows

tunneling with the interchange of boson type (with initial state
with one sort of boson and the final state with another sort
of boson). Formally, it means the conservation of the p-spin
projection in the course of tunneling.

Finally, we arrive at the magnetic model of the Kugel-
Khomskii type [33–35]

Heff =
∑
〈i,j〉

{
(ε + JSi · Sj + K(Si · Sj )2)

[
1

2
+ 2T z

i T z
j

]

+ (ε′ + J ′Si · Sj + K ′(Si · Sj )2)

×
[

1

4
− 2T z

i T z
j + T i · T j

]}
. (20)

Effective exchange integrals are

J = − 1

(1 + λ)
, K = − 1

(1 − 2λ)(1 + λ)
, (21)

J ′ = 2λ

1 − λ2
, K ′ = − 2λ2

(1 − λ2)(1 − 2λ)
, (22)

and

ε = 2λ

(1 + λ)(1 − 2λ)
, (23)

ε′ = − 2(1 − λ2 − 2λ)

(1 − λ2)(1 − 2λ)
, (24)

where λ = Us/U0 and the unit of energy is Eu = 2t2/U0.
Note that Heff involves the projection operators in the p-spin
subspace:

P = 1
2 + 2T z

i T z
j (25)

P ′ = 1
4 − 2T z

i T z
j + T i · T j , (26)

where the first one projects onto the state |T = 1,MT = ±1〉
and the second one onto the state |T = 1,MT = 0〉. Here, T is
the total p-spin of the link and MT is its projection. Note also
that parameter λ plays here the role similar to that of the ratio
of the Hund’s rule coupling constant and the on-site Coulomb
repulsion in usual compounds with the orbital degeneracy
[33–35].

IV. PROJECTED HAMILTONIAN

The usual way to understand the main features of the com-
plicated phase diagram of the Kugel-Khomskii type model is
the mean-field approach [34]. Apart from the low-dimensional
systems it usually captures the main physical features of
the phase diagram. Indeed, even an evident overestimation
of the role of quantum fluctuations in the two-site solution
of the model Hamiltonian reported in Ref. [34] does not
affect qualitatively the form of the phase diagram shown in
Fig. 2. Below we follow the mean-field approach dealing with
Hamiltonian (20).

Within the mean-field approach, the ground state of the
Kugel-Khomskii type Hamiltonian usually reduces to AFM
(FM) spin and p-spin arrangements like it is sketched in
the phase diagram for the simplest S = 1/2 and T = 1/2
symmetrical Kugel-Khomskii model Fig. 2. (We remind that
in our case the Kugel-Khomskii type model is strongly
asymmetrical and S = 1.) For Heff , this is also true as we have
found. So, there are two basic types of p-spin arrangements.

The first one arises when the lattice is filled with one type
of bosons or when atoms of one sort bunch into domains on
the lattice. Then, we have ferromagnetic p-spin wave function

|⇑〉 =
∏

i

|+〉i , (27)

(or |⇓〉 = ∏
i |−〉i). Here “+ (+)” stand for p-spin up (down).

The second type of p-spin arrangement takes place when
two types of bosons are alternating at the neighboring sites.
The p-spin wave function is of the antiferromagnetic type

| ��〉 = | + − + − . . . 〉. (28)

Then we use the mean-field approach following Ref. [36]:
We “average” the effective Hamiltonian over these two p-spin
states, (27) and (28).

For FM pseudospin wave function: 〈⇑ |P | ⇑〉 = 1, and 〈⇑
|P ′| ⇑〉 = 0 [see, Eqs. (25) and (26) for P and P ′ definitions].

FIG. 2. A sketch of the phase diagram corresponding to the
simplest S = 1/2 and T = 1/2 symmetrical Kugel-Khomskii
Hamiltonian Hsym = ∑

〈ij 〉{J1 Si · Sj + J2 T i · T j + 4J3(Si ·
Sj ) (T i · T j )}, in the mean-field approximation [34].
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While for the second (p-AFM) case we have: 〈�� |P | ��〉 = 0,
and 〈�� |P ′| ��〉 = 1/2.

Then, for both cases Heff takes the universal purely spin
form:

Heff → Hspin =
∑
〈i,j〉

(J0 + J1Si · Sj + J2(Si · Sj )2). (29)

The shadow of p-spin T space manifests itself in the exchange
parameters in (29). The corresponding parameters for the FM
p-spin arrangements are

J
(p−spinFM)
0 = 2λ

(1 + λ)(1 − 2λ)
= ε,

J
(p−spinFM)
1 = − 1

1 + λ
= J, (30)

J
(p−spinFM)
2 = − 1

(1 + λ)(1 − 2λ)
= K,

and for AFM p-spin arrangements,

J
(p−spinAFM)
0 = − 1 − λ2 − 2λ

(1 − λ2)(1 − 2λ)
= ε′

2
,

J
(p−spinAFM)
1 = λ

1 − λ2
= J ′

2
, (31)

J
(p−spinAFM)
2 = − λ2

(1 − λ2)(1 − 2λ)
= K ′

2
,

where the unit of energy is Eu = 2t2/U0.
In the optical lattices, spinor bosons in the Mott insulator

regime can form several distinct phases, which differ in their

spin correlations: ferromagnetic, antiferromagnetic, nematic
(NEM), and dimer (DIM) (here, we pass by the structure of
NEM and DIM phases since they are described in detail in
Ref. [24]). Their energies in the mean-field approximation for
the square lattice (one atom per site) are:

EFM = ν

2
(J0 + J1 + J2), EAFM = ν

2
(J0 − J1 + 2J2),

ENEM = ν

2
(J0 + 2J2), EDIM = ν

2
J0 − J1 + 2

3
J2(ν + 2),

(32)

where ν = 2D is the number of nearest neighbors for the
D-dimensional cubic lattice. Mean-field energies as functions
of λ are shown in Figs. 3 and 4 for both FM and AFM p-spin
arrangements.

V. RESULTS AND DISCUSSIONS

A. Phase diagram for vector bosons on lattice with p-spin 1/2

As can be seen from Figs. 3 and 4, the AFM p-spin state
has higher energy than FM p-spin state. So, the ground
state always corresponds to FM p-spin state (thus, the
state shown in Fig. 1 is the excited one). Concentrating on
the spin subsystem, we find the quantum phase transition
between spin FM and spin NEM orderings at λ = 0 induced
by Us sign change. The transition is sketched in Fig. 5. We
do not show spins in the spin-NEM state since it has zero
expectation value of any component of the spin [24]. Note

FIG. 3. Mean-field energies of Heff corresponding to two kinds of S = 1 bosons on the 2D square optical lattice for the average site filling
〈ni〉 = 1 (the total number of bosons at site i). The energy is normalized by Eu = 2t2/U0. Left panel is for FM p-spin arrangement, right panel
for AFM p-spin arrangement.
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FIG. 4. Mean-field energies of Heff corresponding to two sorts of S = 1 bosons on the 3D square optical lattice for the average site filling
〈ni〉 = 1 (the total number of bosons at site i). Energy is normalized by Eu = 2t2/U0. Left panel is for FM p-spin arrangement, right panel for
AFM p-spin arrangement.

that the p-spin FM order implies the formation of a domain
structure. There arises an interesting question regarding the
size of domains that we leave for further investigation.

The above mentioned quantum phase transition can also
be seen on the general phase diagram of Hamiltonian (29).
For arbitrary (J1,J2) the phase diagram in 2D (or 3D) case
for the average lattice site filling n = 1 is shown in Fig. 6.
Three different spin phases (divided by thick solid lines) are
shown: ferromagnetic (FM), antiferromagnetic (AFM), and
nematic (NEM) [24]. We remind that the nematic state has zero
expectation value of any component of the on-site spin, but spin
symmetry is broken since 〈(Sx,y

i )2〉 = 1 and 〈(Sz
i )2〉 = 0 [24].

For Hamiltonian (29), the dependence of parameters J1 and
J2 on parameter λ (−1 < λ < 1/2) is presented by curves a

FIG. 5. Sketch of the phase diagram for S = 1 bosons. We do
not show spins in the spin-NEM state since its structure is rather
complicated [24]. For illustrative purposes, we schematically show
spin-NEM state in Fig. 7 for the simple case of two sites.

and b. Curve a corresponds to the FM p-spin and determines
in the parametric form the curve [J (p−spinFM)

1 (λ),J (p−spinFM)
2 (λ)]

FIG. 6. Mean-field phase diagram of Hamiltonian (29) for
arbitrary (J1,J2) in 2D (or 3D) case. Three different spin phases are
separated by thick solid lines: ferromagnetic (FM), antiferromagnetic
(AFM), and nematic (NEM). For Hamiltonian (29), the dependence of
parameters J1 and J2 on parameter λ (−1 < λ < 1/2) is presented by
curves a and b. Curve a corresponds to the FM p-spin state and deter-
mines in the parametric form the curve [J (p−spinFM)

1 (λ),J (p−spinFM)
2 (λ)]

[Eq. (30)], curve b corresponds to the AFM p-spin state and
determines in parametric form the curve [J (p−spinAFM)

1 (λ),J (p−spinAFM)
2 (λ)]

[Eq. (31)]. All energies are expressed in the units of Eu.
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FIG. 7. The sketch illustrating the difference between the spin-
NEM and spin-FM states for the trap consisting of two sites with
vector bosons.

[Eq. (30)], curve b corresponds to the AFM p-spin and
defines in parametric form the curve [J (p−spinAFM)

1 ,J
(p−spinAFM)
2 (λ)]

[Eq. (31)]. With increasing λ, there is one phase transition from
NEM state to FM state for the curve a and one phase transition
from AFM to FM state for the curve b. Since the curve b

corresponds to higher energies than the curve a, so b describes
transitions between metastable phases. The transition in the a

line corresponds to ground states shown in Figs. 3 and 4. All
energies are expressed in the units of Eu.

B. Phase diagram for lattice fermions with p-spin 1/2

We investigated the vector boson lattice model with p-spin
1/2. Below, we revisit the similar family of fermion models
and highlight that these models give in some sense the opposite
picture of quantum phase transitions.

We bring back the well-known Mott insulating state of
fermions with spin-1/2 on the lattice, where fermion at each
site has in addition to spin another degree of freedom, the
“orbital” one, described by the quantum numbers α = 1,2, see
Fig. 8. We rewrite standard results for the ground states in
the notations of the present paper and compare QPTs with the
boson case considered above.

This orbital degree of freedom in strongly correlated elec-
tron systems (d-electron compounds) corresponds to different
choice of electron orbitals at each site [25,32]. For cold atoms
on the optical lattice [37] with two species, this case also
applies, but there are other realizations, e.g., when an atom
has a dipole moment (then α is its projection), or when
the lattice site consists of two subwells (then α labels the
atomic positions in the subwells) [13–17,31,38,39]. In most
of these realizations, the interaction part of the Hubbard-like
Hamiltonian describing this fermion system can be divided
into two parts like for bosons above. The first term has a
trivial structure in the α-space (in our terms, p-spin space), and
describes the Coulomb repulsion of fermions at one node of the
lattice: 1

2U0
∑

i,σ,σ ′,α,α′ niασ ni,α′,σ ′(1 − δαα′δσσ ′). The second
term usually can be expressed like the Hund’s rule correlation
energy [25], −Us

∑
i,σ,σ ′ c

†
i,1,σ ci,1,σ ′c

†
i,2,σ ′ci,2,σ .

The standard perturbative procedure with respect to the
hopping amplitudes reduces again the initial model to the
Kugel-Khomskii effective Hamiltonian [25,32,40]:

HKK = J0

∑
〈ij〉

{(
1

4
+ Si · Sj

)[
J1 + J2T i · T j + J3T z

i T z
j

]

+ J4T i · T j + J5T z
i T z

j

}
, (33)

where Si is the fermion spin at the lattice site i and T i is the
p-spin-1/2 operator describing “orbital” degree of freedom

FIG. 8. Contrary to two-species vector bosons on the lattice, spin-
1/2 fermions with the p-spin degree of freedom show the change of
p-spin state with λ crossing zero. (a) Standard realization of the
orbital-spin model for spin-1/2 fermions with the orbital degree
represented by “real” atomic orbitals [25]. (b) Two-species realization
of the spin-1/2 fermion Kugel-Khomskii model.

[32] like in Eq. (5). Exchange integrals Ja , a = 0, . . . ,5 of the
Kugel-Khomskii Hamiltonian have been found in Ref. [40].
Looking at the explicit expressions for exchange integrals Ja

written in Eq. 6 of Ref. [40] and in Ref. [32], we see that

J0 = 2, J1 = (1 − λ2 − λ)

2(1 − λ2)
, (34)

J2 = 2J4

λ
= 2

1 − λ2
, J3 = −2J5 = 2λ

1 + λ
, (35)

where, like above, λ = Us/U0 and the unit of energy is
Eu = 2t2/U0. So, the spin-spin and p-spin-p-spin exchange
interactions change sign with λ. This behavior is the signature
of a (quantum) phase transition where spin and p-spin
structures of the Mott insulating phase switch between “ferro”
to “antiferromagnetic” phases, see Fig. 8. We prove it below.

Here, we revisit the mean-field ground state energy of the
Kugel-Khomskii Hamiltonian HKK [25,32,40]. Let us consider
first the FM p-spin arrangement. Then T i · T j = T z

i T z
j =

1/4 and HKK reduces to H = J0
∑

〈ij〉{Si · Sj − 1/4}. The
energies of p-spin FM and p-spin AFM states are

Ep−spin FM
FM = 0, (36)

Ep−spin FM
AFM = −ν/2, (37)

where, like above, ν = 2D.
Let us consider now the AFM p-spin arrangement.

Then T i · T j = T z
i T z

j = −1/4 and HKK reduces to H =
−J0

∑
〈ij〉{J4Si · Sj + J2+J4

4 }. The energies of spin FM and
spin AFM states are

Ep−spin AFM
FM = −ν

2

1

1 − λ
, (38)

Ep−spin AFM
AFM = −ν

2

1

1 − λ2
. (39)

The ground state energy corresponds to the minimum
of these four energy states (36)–(39). We illustrate this
in Fig. 9 and sketch the phase diagram in Fig. 8. The
ground state strongly differs from that in the cold-boson
system, see Figs. 5 and 7: Quantum phase transition at
λ = 0 now changes p-spin state, see Fig. 8. That is, we
see the “inverse picture” of quantum phase transitions com-
pared to the boson case (where at λ = 0, the spin state
changes).
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FIG. 9. Mean-field energies of the Kugel-Khomskii Hamiltonian
HKK. The energy unit is Eu = 2t2/U0.

VI. CONCLUSIONS

To conclude, a generalization of the Kugel-Khomskii type
model is considered, where, in contrast to the usual model, we

investigate the case with spin S = 1 and p-spin 1/2. We show
that this model can be realized in solid state systems and also
for vector two-species bosons on optical lattices. We find the
mean-field solution and discuss possible quantum phase tran-
sitions. Finally, we revisit spin (p-spin)-1/2 Kugel-Khomskii
model and see the inverse picture of phase transitions.
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