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We report the effect of magnetic field induced quantum tunneling and relaxation transitions between orthogonal
configurations in polyatomic systems where no tunneling is expected. Typical situations of this kind occur in
molecular systems and local centers in crystals in ground and excited electronic T states, subject to the T ⊗e

problem of the Jahn-Teller effect, where the wave functions of the three tetragonally distorted configurations are
orthogonal. A detailed microscopic theory of this effect shows how the magnetic field violates the orthogonality
between the latter allowing for tunneling and relaxations, which decrease in strong fields due to the induced
decoherence. The novel effect is demonstrated experimentally as a big, sharp peak in ultrasound attenuation by
Cr2+ centers in ZnSe:Cr2+ in the magnetic field B = 0.15 T at the temperature below 8 K. It may influence a
variety of magnetic, electronic, and photonic properties of any system in an electronic T state.
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I. INTRODUCTION

There is well-known influence of magnetic fields on
tunneling effects, e.g., in magnetoresistance and in magnetic
tunnel junctions [1,2], resonance tunneling in high-spin
molecules [3], and tunneling induced by phonons in magnetic
molecules [4]. Distinguished from these works, we discovered
magnetic field induced tunneling between local configurations
in polyatomic systems with orthogonal electronic states, for
which no tunneling is expected, the tunneling levels being
produced by the magnetic field. The unlimited number of
such systems includes any high-symmetry polyatomic group
(impurity and vacancy centers in cubic crystals and similar
molecular systems with cubic and icosahedral symmetry in
different aggregate states, including thin films and quantum
dots) in a threefold degenerate ground or excited electronic
T state subject to the T ⊗e problem of the Jahn-Teller (JT)
effect (JTE) [5–7] (in slightly distorted cubic symmetry the
results below should be modified following the transformation
of the JTE into the pseudo-JTE [8]). With nonzero spin in
these states the spin-orbital interaction is usually much smaller
than the vibronic coupling that produces the JTE, at least
for 3d transition-metal centers, hence it can be considered
as a perturbation to the JTE, its influence being strongly
reduced by the so-called vibronic reduction factors [6]. In
these cases, the adiabatic potential energy surface (APES) has
three equivalent minima along the three tetragonal distortions
(distortions caused by e-type local displacements of atoms
[6] distinguishing C4 axes in octahedral and C2 axes in
tetrahedral atomic configurations, or distinguishing axes of a
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cubic crystal), but the three electronic functions of the distorted
configurations in the minima are orthogonal, so no tunneling or
direct relaxation transitions between them are allowed. This is
the only multiminimum JTE problem where tunneling between
the equivalent minima in the ground state is forbidden [6].

In this paper we show that an external magnetic field
removes this prohibition, producing a new channel of tun-
neling and direct relaxation transitions between the distorted
orthogonal configurations. We demonstrate both the theory
and ultrasonic experimental observations of the novel effect
using the Cr2+ impurities in the crystal ZnSe:Cr2+ as a
typical example. This choice is motivated by the fact that the
type of tunneling and relaxation under consideration involves
nuclear displacements that can be tested by means of ultrasonic
experiments (for which the crystal state is the best study
terrene), and the study of the JTE in impurity crystals by
means of ultrasound proved to be most efficient [9–12]. In
the impurity center Cr2+ in the ZnSe crystal the ground
electronic state is electronically threefold degenerate with
three orbital wave functions of a hole in the closed-shell 3d5

configuration [10,13,14], transforming as vectors. They can be
described by an orbital momentum operator with L = 1, hence
being subjects to magnetic field influence. Experimental data
[10,13,14] show that the JTE distortions in the impurity center
under consideration are tetragonal, thus evidencing to the T ⊗e

problem.
Tunneling effects in JT systems were predicted in 1962 [15]

and observed in optical, ESR, and ultrasonic experiments
in a variety of systems (see, e.g., in Refs. [6,9,16,17]).
In ultrasonic experiments tunneling manifests itself in the
temperature dependence of relaxation time τrel, where by
lowering the temperature the function τrel(1/T ) changes from
τrel ≈ ν−1

0 exp (V0/kBT ) in the activation mechanism (V0 is
the activation energy and kB is the Boltzmann constant)
to the tunneling mechanism with vanishing temperature
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dependence (see, e.g., Ref. [18]). The analysis of the tem-
perature dependence of the relaxation time in zero magnetic
field shows the absence of tunneling in the JT system of
Cr2+ centers in ZnSe crystal. When a weak magnetic field
is applied to the system at low temperatures, a sharp increase
in the attenuation of ultrasound is observed. A microscopic
theory is developed showing that the magnetic field produces
a new relaxation channel associated with tunneling between
the orthogonal distorted configurations, made possible due to
magnetic-induced coupling between their orbital states.

II. EXPERIMENT

A high-quality ZnSe single crystal doped with Cr atoms was
grown by a technology reported in Ref. [19]. The concentration
of the chromium impurities, nCr = 3.8×1018 cm−3, was deter-
mined from the absorption spectrum of the crystal. The sample
had the form of a parallelepiped with a distance between
the parallel faces of 4.7 mm. Experiments were carried out
at the Dresden High Magnetic Field Laboratory using a
phase-sensitive detection technique [20]. Ultrasonic waves
were generated and detected by LiNbO3 thin-film transducers,
which were attached to the polished faces of the sample. The
frequencies of the transverse ultrasonic modes were (in MHz)
33 (fundamental frequency), 119, 282, 360, and 449 (the
third, ninth, eleventh, and fifteenth harmonics, respectively).
The shear ultrasonic waves are induced to propagate along
the crystallographic axis [110] with the polarization along
[11̄0]. The attenuation coefficient of this slow shear wave is
determined by the imaginary parts of the elastic modulus Cs =
(C11 − C12)/2, α = (ω/2νs)(Im{Cs}/Re{Cs0}), where νs =√

Cs/�, � denotes the mass density of the crystal, Cs0 =
Cs(B = 0), and ω is the cyclic frequency of the ultrasound.
The measurements in static magnetic fields were carried out
by using a superconducting magnet.

In our preliminary study the attenuation peak was observed
for only the slow shear wave in relatively weak magnetic fields
(at about 0.1 T) at the temperature 2 K and for only one
frequency of the ultrasound ω/2π = 24 MHz [21] (the vector
of magnetic induction B was parallel to the [110] axis). Based
on this restricted information it was preliminarily assumed
that the peak is of resonance origin. To understand better
the nature of the attenuation peak we carried out a more
detailed investigation using a wider interval of ultrasound
frequencies (33–449 MHz), the magnetic field dependence
of the attenuation was measured at several fixed temperatures
below 20 K, and the temperature dependence of attenuation
was measured at fixed magnetic fields, starting at 1.3 K. In
addition, the experiments have been carried out with other
direction of the magnetic field with respect to the direction
of the wave propagation, namely, for B parallel to [001] and
[11̄0] crystallographic axes, respectively. The results of the
experiments are shown in Figs. 1–3.

Following Fig. 1, we see that weak magnetic fields increase
significantly the attenuation of the slow shear wave of the
ultrasound, reaching a maximum at B ≈ 0.15 T. Further
increase of the field induction decreases the attenuation.
The peak degrades with temperature and disappears at T >

9 K. For B ‖ [11̄0] the peak of attenuation is quite similar
to the peak for B ‖ [110], while for B ‖ [001] the attenuation

FIG. 1. Magnetic field dependence of ultrasound attenuation
�α = α(B) − α(0) at different temperatures, at the frequency
ω/2π = 33 MHz and magnetic induction B ‖ [110]. Inset: the peak of
attenuation in magnetic fields at T = 1.3 K at the same frequency but
different directions of B: curve 1 — B ‖ [11̄0], curve 2 — B ‖ [001].

is different (see the inset in Fig. 1). However, in all these
cases there is a peak of ultrasonic attenuation below 1 T.
The data obtained at various frequencies (Fig. 2) show that
the position of the attenuation peak along the B scale does
not depend significantly on the ultrasound frequency. This
contradicts the previous assumption about the resonant nature
of the attenuation peak. Moreover, the temperature dependence
of attenuation measured at various magnetic fields (Fig. 3)
revealed a sharp increase of attenuation below 4 K when the
magnetic field is applied, and the growth of attenuation is
slowing and decreasing with increasing magnetic fields B.
Obviously, anomalies of ultrasound attenuation detected at low
temperatures and weak magnetic fields have a common origin.

FIG. 2. Magnetic field dependence of ultrasound attenuation
�α = α(B) − α(0) at T = 1.3 K, B ‖ [110], and different frequen-
cies (in MHz): 119, 282, 360, and 449 for curves 1, 2, 3, and 4,
respectively.
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FIG. 3. Temperature dependence of ultrasound attenuation �α =
α(T ) − α(T0) for T0 = 30 K, frequency ω/2π = 33 MHz, and several
indicated magnetic fields B ‖ [110].

The relaxation origin of ultrasonic attenuation in the
ZnSe:Cr2+ crystal was revealed in the investigation of the
temperature dependence of attenuation α(T ) in zero magnetic
field [10]. The peak of attenuation at about 11 K was inter-
preted as due to the relaxation between the three equivalent
minima of the APES distorted by the propagating ultrasonic
wave [10]. Further investigation of the function α(T ) in fixed
magnetic fields (up to 14 T) revealed significant influence of
the latter on the position and shape of the temperature peak of
the relaxation attenuation [22]. This means that the magnetic
field dependence of ultrasound attenuation shown in Figs. 1
and 2 is of relaxation origin, at least at relatively weak fields.

To analyze the experimental results we extracted the
temperature dependence of the relaxation time τrel from the
data of α(T ) in zero magnetic field. The procedure to do
this is described in Ref. [9] based on the assumption that
the peak in α(T ) is caused mainly by the relaxation in
the system of noninteracting JT centers. The contribution
to the ultrasound attenuation by other mechanisms, the
background attenuation αb(T ) at low temperatures, is approxi-
mated by a smooth function [αb(T ) = −0.712 + 0.048T 0.4 +
0.67/(3.2T − 0.17)0.4 − 0.0015T while the attenuation α(T )
is measured from the level of α(T = 30 K)]. Then the relax-
ation attenuation by the JT centers αrel(T ) = α(T ) − αb(T ),
and [9]

τrel = 1

ω

⎡
⎣αrel(T1)T1

αrel(T )T
±

√(
αrel(T1)T1

αrel(T )T

)2

− 1

⎤
⎦, (1)

where T1 is the temperature at ωτrel = 1, which can be
determined from the position of the maximum of the func-
tion f (T ) = αrel(T )T . The physically correct solutions are
provided by the sign “+” before the square root for T < T1,
and sign “−” for T > T1. Figure 4 shows τrel versus 1/T

in a semilogarithmic scale for the system of Cr2+ centers in
ZnSe in zero magnetic field. Note that the relaxation time here
equals ≈10−6 s at 4.2 K, which is much higher than the typical
values for the JT centers in other crystals, 10−9–10−7 s at

FIG. 4. Relaxation time versus 1/T obtained at the ultrasound
frequency ω/2π = 33 MHz (circles) in zero magnetic field. The
white square corresponds to ωτrel = 1 indicating the separation
of the regime ωτrel > 1 (low temperatures) from ωτrel < 1 (high
temperatures). Red solid and blue dashed lines can be attributed
to one-phonon activation processes with activation energies V

(1)
0 =

0.9 meV and V
(2)

0 = 6.7 meV, respectively. The activation process
with V

(1)
0 = 0.9 meV with no saturation means there is no tunneling

in zero magnetic fields.

4.2 K [11,12,17,23–26]. In our case, such a slow relaxation
at low temperatures may serve as indirect evidence of the
absence of tunneling transitions. The red solid line and blue
dashed line in Fig. 4 indicate two activation regimes for
τrel ∝ exp(V (k)

0 /kBT ) with k = 1 (low-temperature regime)
and k = 2 (high-temperature regime), respectively. In Fig. 4
the activation mechanism dominates at high temperatures
changing the regime below ≈6 K, but no saturation occurs
in this temperature range. Hence, there is no tunneling in
ZnSe:Cr2+ in zero magnetic field. The slope of τrel(1/T ) at low
temperatures yields the activation energy of 0.9 meV, which is
in a good agreement with the theoretical model derived from
EPR studies [14] (see below).

III. THEORY

A. Jahn-Teller center

As mentioned above, the impurity center of the Zn-
substitutional ion Cr2+ in the ZnSe crystal forms the impurity
complex CrZn4Se subject to JTE with the T ⊗e problem
[10,13,14]. In this case, the APES in the space of the two
normal e-type atomic displacements of the JT complex, Q2

and Q3, consists of three independent parabolic surfaces
intersecting in the point of the threefold degeneracy [6] as it is
shown in Fig. 5. The minima of these paraboloids correspond
to three equivalent tetragonal distortions of the tetrahedral
impurity surroundings along, respectively, the x, y, and z axes
of the crystal. The vibronic states in the minima are described
by three wave functions φx |x〉, φy |y〉, φz|z〉, where |x〉, |y〉, |z〉
are the three orbital electronic T2 states, and φj = φj (Q2 −
Q

(j )
2 ,Q3 − Q

(j )
3 ), j = x,y,z, are the vibrational wave func-

tions of linear oscillators localized near the minima points
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FIG. 5. Three independent potential energy paraboloids for the
atomic oscillations in the case of the T ⊗e problem of the JTE
[6]. Each electronic orbital wave function |x〉, |y〉, |z〉 describes an
independent configuration of the Cr2+ environment, tetragonally
distorted along the x, y, and z axes, respectively, with corresponding
three oscillator functions φx, φy, φz in the minima of the paraboloids.

(Q(j )
2 ,Q

(j )
3 ), respectively. EPR study [14] shows that the

ground state has a fivefold spin degeneracy, subject to the
S = 2 total spin. The T ⊗e problem still holds as the vibronic
interaction is much stronger than the spin-orbit coupling.
However, the spin-orbit interaction is important in determining
the ground state of the system in weak magnetic fields.

The complete set of eigenstates of the center corresponds to
a fifteenfold degeneracy and is described by the direct product
of a threefold degenerate vibronic state by a fivefold degenerate
spin state corresponding to a total spin S = 2. The spin degen-
eracy is removed by a weak spin-orbit interaction [13,14].
The spin-orbit Hamiltonian consists of linear (L̂ · Ŝ) terms

and corresponding quadratic terms of (L̂ · Ŝ)2 (stemming, for
instance, from the spin-spin interaction [13,14,27]), which also
couple spin and orbital states of the center. There are no (L̂ · Ŝ)
terms of higher orders because for L = 1 operators L3

j are
determined by linear combinations of L2

j and Lj . The total
Hamiltonian of the spin-orbit coupling takes the form:

ĤSO = λ0(L̂ · Ŝ) − λ1(L̂θ Ŝθ + L̂εŜε)

− λ2(L̂ξ Ŝξ + L̂ηŜη + L̂ζ Ŝζ ). (2)

Here λ0 is the main spin-orbit coupling constant, while λ1 and
λ2 are the constants of quadratic spin-orbit coupling terms,
which are independent due to the cubic symmetry of the
crystal. Similarly to the notation in Ref. [14], L̂θ and L̂ε

and L̂ξ , L̂η, and L̂ζ are quadratic combinations of L̂x, L̂y, L̂z

components of the operator of the orbital momentum L̂ (with
the quantum number L = 1) that transform, respectively, as
the E and T2 irreducible representations of the Td symmetry
group. The same transformations are assumed for the spin
operators Ŝθ , Ŝε and Ŝξ , Ŝη, Ŝζ quadratic in components of
spin Ŝ with S = 2.

Besides the spin-orbit interaction, the degeneracy of eigen-
states can be reduced by magnetic fields. The interaction with
magnetic fields reads as

ĤB = gSμB(B · Ŝ) + gμB(B · L̂), (3)

where g = 1 is the orbital g factor (the Cr2+ ion has four elec-
trons with parallel spins in the 3d shell and its orbital behavior
is described by a hole), gS = 2 is the spin g factor, and μB is
the Bohr magneton. Assuming that the Hamiltonians (2) and
(3) are perturbations to the basic fifteenfold degenerate ground
state of the JT complex, we obtain for the total Hamiltonian
of the system the following block-matrix expression of the
second order of perturbation theory (see, e.g. Ref. [28]):

Ĥ =

⎛
⎜⎜⎝

gSμB(B · Ŝ) + DŜ2
x −igμBBzε igμBByε

igμBBzε gSμB(B · Ŝ) + DŜ2
y −igμBBxε

−igμBByε igμBBxε gSμB(B · Ŝ) + DŜ2
z

⎞
⎟⎟⎠, (4)

where

D = λ2
0

3EJT
− λ1

2
− 20λ2

2

27EJT
,

ε = 〈φj |φk 	=j 〉 = exp(−3EJT/2h̄ωe). (5)

Here ε is the vibronic reduction factor emerging from
the overlap of vibrational φ functions of different
distorted configurations [6,28]. EJT is the Jahn-Teller
stabilization energy, ωe is the ground-state frequency of e

vibrations in the minima configurations; the value of the
parameter D = −0.31 meV is known directly from the EPR
measurements for Cr2+ in ZnSe [14].

In Eq. (4) we neglected the spin-orbit terms in the off-
diagonal positions. Such terms, if significant, would lead
to peculiarities that are more visible in the temperature
dependence of ultrasound attenuation at very low temperatures
in zero magnetic field. The small increase of attenuation below

1.5 K in zero magnetic field (see Fig. 3), which could stem
from these spin-orbit terms, as well as from other random local
deformations in the crystal, can be neglected compared with
the strong increase of attenuation in the whole temperature
interval at B = 0.04 T, discussed below. In addition, we
neglect the contribution of higher than second-order terms
in spin operators, which were shown to be weak in the case
of Cr2+ in ZnSe [14]. The matrix elements in Eq. (4) are
themselves matrices of dimension 5×5 corresponding to the
spin degrees of freedom of the center. Still, the rows and
columns of the 3×3 matrix in Eq. (4) number the three orbital
states of the center from left to right and from top to bottom,
respectively.

B. Interaction with ultrasound

The interaction V̂ of the slow shear ultrasonic wave
propagating along the [110] direction in the crystal with
the chromium center, in the basis of the wave functions
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φx |x〉, φy |y〉, φz|z〉, is:

V̂ =
⎛
⎝b sin ωt 0 0

0 −b sin ωt 0
0 0 0

⎞
⎠, (6)

where ω is a frequency of ultrasound wave, b = ku0bT/
√

2, k

is the amplitude of the wave vector, u0/
√

2 is the amplitude of
the elastic deformation of the crystal caused by the sound, and
bT is the deformation constant in the Bir-Pikus Hamiltonian of
electron-deformation interactions [29].

The coefficient of ultrasonic wave attenuation (by ampli-
tude) in the approximation of small attenuation, the sound
wave remaining monochromatic, is defined as

α = 1

2

nCrP

ε · v
, (7)

where ε · v is the sound-wave energy flux density, ε = �ω2u2
0

is the energy density of the ultrasonic wave that propagates
along [110] with the polarization along [11̄0] at frequency ω, v

is the phase velocity of the wave, nCr is the concentration of
Cr2+ centers, and P is the average power of the wave absorbed
by the center,

P = −Tr(ρ̂ ˙̂V ). (8)

Here ˙̂V is the time derivative of the operator V̂ of Eq. (6), ρ̂ is
the operator of the density matrix of the center, and Tr denotes
the operation of taking the trace of the matrix.

C. Zero magnetic field

The ground state of the Cr2+ center in the ZnSe crystal
in zero magnetic field is sixfold degenerate and consists of
three orbital wave functions multiplied by the proper doubly
degenerate spin state |S2

j = 4〉, corresponding to a given well
of the adiabatic potential j = x,y,z. We introduce the nota-
tion |Sz = 2〉 = |α〉, |Sz = 1〉 = |β〉, |Sz = 0〉 = |γ 〉, |Sz =
−1〉 = |β̄〉, |Sz = −2〉 = |ᾱ〉. When the magnetic field is
applied along the [110] direction, the sixfold degeneracy is
removed and the wave functions of the eigenstates corre-
sponding to the energy E = −√

2gSμBB (read off from the
energy of the ground state in the zero field) have the form
|1〉 = φx |x〉(−|α〉 + 2|β〉 − √

6|γ 〉 + 2|β̄〉 − |ᾱ〉)/4, |2〉 =
φy |y〉(−|α〉 − 2i|β〉 + √

6|γ 〉 + 2i|β̄〉 − |ᾱ〉)/4; wave func-
tions corresponding to the energy E = 0 have the
form |3〉 = φz|z〉|α〉 and |4〉 = φz|z〉|ᾱ〉; finally, excited
states corresponding to E = √

2gSμBB are read as |5〉 =
φy |y〉(−|α〉 + 2i|β〉 + √

6|γ 〉 − 2i|β̄〉 − |ᾱ〉)/4 and |6〉 =
φx |x〉(|α〉 + 2|β〉 + √

6|γ 〉 + 2|β̄〉 + |ᾱ〉)/4. If we assume
that B = 0, the ground eigenstates are: |1〉,|2〉,|3〉,|4〉,|5〉,|6〉.

The nearest excited state is split off by spin-orbit interaction
in energy upwards by |3D| ≈ 0.9 meV [14], and it is also
sixfold degenerate, but its spin states already meet the
condition S2

j = 1: |7〉 = φx |x〉(|α〉 − |β〉 + |β̄〉 − |ᾱ〉)/2,

|8〉 = φy |y〉(−|α〉 − i|β〉 − i|β̄〉 + |ᾱ〉)/2, |9〉 = φz|z〉|β〉,
|10〉 = φz|z〉|β̄〉, |11〉 = φy |y〉(−|α〉 + i|β〉 + i|β̄〉 + |ᾱ〉)/2,

|12〉 = φx |x〉(−|α〉 − |β〉 + |β̄〉 + |ᾱ〉)/2. The last excited
state, split off by |4D|, is threefold degenerate, as each orbital
state is accompanied by the corresponding spin state |S2

j = 0〉:

X Y Z

FIG. 6. The scheme of the energy levels of the CrZn4Se complex
in zero magnetic field with X,Y,Z unfolding toward the three potential
wells corresponding to the orbital states |x〉, |y〉, |z〉 of the Cr2+ center.
The levels are split by the spin-orbit interaction. Thick gray arrows
show the direction of the energy level shift due to the slow shear
ultrasonic wave propagating along the [110] direction. Thin gray
arrows show two main admissible one-phonon transitions.

|13〉 = φx |x〉(√3|α〉 − √
2|γ 〉 + √

3|ᾱ〉)/√8, |14〉 = φy |y〉
(
√

3|α〉 + √
2|γ 〉 + √

3|ᾱ〉)/√8, |15〉 = φz|z〉|γ 〉.
As mentioned above, an important feature of the T ⊗e

problem in zero magnetic field is the absence of tunneling
between the ground states of the three configurations of the
three minima of the APES (Fig. 5) because of the orthogonality
of their orbital wave functions. Accordingly, relaxation due to
tunneling transitions between them is also forbidden, hence
the observed relaxation at low temperatures is caused by
other processes. Let us evaluate the intensity W of direct
one-photon transitions in the system shown schematically in
Fig. 6. Calculated according to the golden rule of quantum
mechanics, and by averaging over the phonon density of states,
we get [27]:

W = 2π

h̄2 G(�E)|M(�E)|2
(

Nph(�E) + 1 ± 1

2

)
, (9)

where “+” is related to phonon emission process and “−” to
phonon absorption process, Nph(�E) is the number of phonons
in equilibrium at the given energy and temperature, G(�E) is
the density of states of acoustic phonons with the energy �E,

G(�E) = 3�

2π2h̄2v3
(�E)2, (10)

and M(�E) is the matrix element of the interaction of the
center with a phonon with the energy �E

|M(�E)|2 = δ
3d2

T

2��v2
�E. (11)

Here the parameter δ emerges as a result of averaging over
all directions of the phonons taking into account the selection
rules and the overlapping wave functions of the center (the
estimate is δ ≈ ε2/24), � is the volume of the sample crystal,
and dT is the constant of the deformation potential responsible
for the overlap of the orbital states |x〉, |y〉, |z〉 by the phonon
displacements.

Since the temperature range of interest follows the condi-
tion kBT 
 |3D|, the relaxation is determined only by the
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processes of transitions from the ground state to the nearest
excited state, and only the most inertial excitation pro-
cesses (related to absorption of phonons) with τ−1

rel ∝ Nph ∝
exp(−|3D|/kBT ) contribute significantly to the relaxation
time in Eq. (9), the spontaneous emission being very fast.
Consequently, the slope of the temperature dependence of
the relaxation time is strictly determined by the quantity
|3D|. The following parameters of the ZnSe crystal were
used in the calculation: � = 5.27 g/cm3, v = 1.8×105 cm/s.
In accordance with further calculations below for nonzero
magnetic fields we take EJT/h̄ωe = 1.2, which corresponds
to the overlap of the vibrational wave functions [Eq. (5)]
ε ≈ 0.17. This reflects a relatively weak to moderate JTE in
the CrZn4Se impurity complex (there are no well-established
evaluations for EJT and ωe in the literature, but many estimates
for impurity centers yield for their ratio approximate values
within 1 and 5 [13,30–32]). Then from Eq. (9), in comparison
with the experimental values of relaxation times [33] we
get for the value of the lattice deformation constant dT ≈ 10
meV, which seems to be reasonable, albeit relatively small for
semiconductors [34,35]. The smaller the ε values the greater
the estimated dT magnitude. Note, however, that the value of
dT has no effect on the slope of the temperature dependence
τrel(1/T ).

D. Nonzero magnetic fields

When a magnetic field is applied to the sample in the
direction [110] the orbital splitting is not very significant in
forming the energy spectrum of the center mostly due to the
vibronic reduction factor in Eq. (4). Because of the vibronic
reduction, the shifts of the vibronic energy levels in low
magnetic fields are very small. If they are less than the natural
broadening of the energy levels (meaning small decoherence
time τ2, see below), the break of the orthogonality due to orbital
coupling in magnetic fields produces an additional channel of
relaxation transitions between the APES minima, increasing
the relaxation rate, and hence the ultrasound attenuation. In
stronger fields the off-diagonal contribution to the energy
levels in different wells makes them nonequivalent, degrading

the relaxation attenuation of the sound, and this explains the
decrease of attenuation (see the next section).

Neglecting the off-diagonal terms in Eq. (4) originated
from the orbital part of the interaction with the magnetic field,
we obtain a block-diagonal form of the Hamiltonian. In this
approximation, the splittings of the energy levels of the spin
states in each potential well X,Y,Z, by the magnetic field are
independent from each other. When B ‖ [110] the X and Y

states in Fig. 6 are split, while the degeneracy of Z states is
conserved in weak fields.

In nonzero magnetic fields the changes in the probabilities
of one-phonon transitions, shown in Fig. 6 and described
by Eq. (9), as well as the changes in the population of the
energy levels [36], do not explain the observed sharp peak of
ultrasound attenuation in weak magnetic fields (Figs. 1 and 2).
Indeed, in the temperature range from 1–4 K, the rate of
one-phonon processes and the population of the energy levels
in fields below 1 T do not change significantly. At B ≈ 1
T the splitting of the energy levels becomes comparable
with kBT , but the sharp increase in ultrasonic absorption is
observed at B ≈ 0.1 T. As mentioned above, we explain the
observed sharp peak of relaxation attenuation in weak fields
as due to the magnetic field induced tunneling transitions
between the orthogonal X,Y, and Z configurations of the
center. The additional relaxation channel between the distorted
configurations is opened due to the coupling between their
orbital wave functions by the magnetic field, while the overlap
between their vibrational wave functions is a priori nonzero
[see Eq. (5)].

We are interested in relatively low temperatures (T 

|3D|/kB) and relatively weak fields (B 
 |3D|/gSμB), hence
only six ground states from the full set of 15 states will make a
contribution in formation of the new states in magnetic fields
in this region of parameters. The Hamiltonian in the basis of
the ground state |6〉,|1〉,|5〉,|2〉,|3〉,|4〉 (this sequence of wave
functions reflects the numbering of spin-state pairs associated
with the orbital functions |x〉, |y〉, |z〉, successively) taking
into account the orbital coupling in the magnetic field and
interaction of orbital states of the center with the slow shear
ultrasonic wave [Eq. (6)] is as follows:

Ĥ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

h̄�U + b(t) 0 0 0 −ih̄�/4 −ih̄�/4

0 −h̄�U + b(t) 0 0 ih̄�/4 ih̄�/4

0 0 h̄�U − b(t) 0 −ih̄�/4 −ih̄�/4

0 0 0 −h̄�U − b(t) −ih̄�/4 −ih̄�/4

ih̄�/4 −ih̄�/4 ih̄�/4 ih̄�/4 0 0

ih̄�/4 −ih̄�/4 ih̄�/4 ih̄�/4 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (12)

Here �U = √
2gSμBB/h̄ denotes the spin level splitting,

� = gμBBε/h̄ denotes the effective tunneling parameter
originated from the orbital coupling and vibrational functions
overlap, and b(t) = b sin ωt denotes the shift of the energy
levels by the time-dependent action of the sound wave.
Equation (12) shows that in the magnetic field B ‖ [110], two
levels (associated with X and Y configurations) are shifted

down in energy by h̄�U , two states (associated with the
Z configuration) remain unaffected, and the remaining two
states from X and Y configurations are shifted up by the same
energy value h̄�U . Since �U is always much larger than �

(because of the reduction factor ε) the magnetic field couples
orbitally the states in X and Y configurations via the states
in the Z configuration. In this situation the main results for
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Γ Γ ΔU

FIG. 7. The scheme of energy levels and tunneling transitions �

(thin arrows) in the CrZn4Se complex for the direction of the magnetic
field [110]. The thick arrows indicate a time-periodic splitting of the
levels by the slow shear ultrasound wave propagating along the [110]
direction. �U is the spin level splitting.

the relaxation attenuation of ultrasound by the Cr2+ center in
ZnSe in a magnetic field B ‖ [110] can be obtained analytically
from the generalization of the three-level scheme shown
in Fig. 7.

Then we get for the Hamiltonian of the system in the three-
level model illustrated in Fig. 7 the following expression:

Ĥ =
⎛
⎝ 0 0 h̄�/

√
2

0 0 h̄�/
√

2
h̄�/

√
2 h̄�/

√
2 h̄�U

⎞
⎠. (13)

In this model, the interaction with a slow shear ultrasound wave
is, as above, described by Eq. (6). Provided b,h̄� 
 h̄�U 

kBT , where T is the temperature, the quasiequilibrium
components of the density matrix are:

ρ
(0)
11 = 1

3
+ b sin ωt

3kBT
; ρ

(0)
22 = 1

3
− b sin ωt

3kBT
;

ρ
(0)
33 = 1

3
− h̄�U

3kBT
; ρ

(0)
12 = ρ

(0)
21 = 0;

ρ
(0)
13 = ρ

(0)
31 = ρ

(0)
23 = ρ

(0)
32 = h̄�

3
√

2kBT
. (14)

With these density matrix elements the kinetic equations for
the linear combinations of the nonequilibrium additives to the
quasiequilibrium density matrix z1 = ρ

(1)
22 − ρ

(1)
11 , x1 = ρ

(1)
13 −

ρ
(1)
31 − ρ

(1)
23 + ρ

(1)
32 , x3 = ρ

(1)
13 + ρ

(1)
31 − ρ

(1)
23 − ρ

(1)
32 , and y1 =

ρ
(1)
12 − ρ

(1)
21 , in the linear in b approximation (i.e., b 
 h̄/τ2)

can be written as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ż1 = −i
�√

2
x1 − τ−1

T z1 − 2bω cos ωt

3kBT

ẋ1 = i�Ux3 − i
√

2�z1 − x1

τ2

ẋ3 = i�Ux1 + i
√

2�y1 − x3

τ2

ẏ1 = i
�√

2
x3 − y1

τ2

.

(15)

Here τT is the temperature-dependent relaxation time in zero
magnetic field, and τ2 is the decoherence time. τT is described
by one-phonon transitions via excited states [Eq. (9)]; changes
in the rate of such one-phonon transitions in weak magnetic
fields can be neglected, since we are exploring the region where
|gSμBB| 
 kBT . The decoherence time τ2 is determined
mainly by elastic processes, and therefore it does not contribute
to the absorption of the sound power in zero field, but it plays a
major role in relaxation due to the orbital coupling � that leads

to the magnetic field induced tunneling. We assume that τ2 is
an additional parameter of the system, which remains almost
unchanged in the range of magnetic fields and temperatures
under consideration. Note that the difference between the
relaxation time and the decoherence time, discussed here, is
analogous to the difference between the times T1 and T2 in the
theory of paramagnetic resonance [37].

The average power absorbed is P = z1bω cos ωt [see
Eq. (8)]. We are looking for the steady solution for z1 from the
linear Eqs. (15). Then we get P = bωRe{z}, where

z =
bωτ2

3kBT

τ2

τT

+ iωτ2 + �2τ 2
2

1 + iωτ2

1

1 + �U 2τ 2
2

(1 + iωτ2)2 + �2τ 2
2

. (16)

At � 
 1/τ2 this solution can be simplified by assuming that
ωτ2 
 1, ω � τ−1

T , and �2τ2:

z ≈ b

3kBT ω

(
τ−1
T + �2τ2

1 + �U 2τ 2
2

)
. (17)

Then the coefficient of ultrasonic relaxation attenuation from
Eq. (7) equals

α = nCrb
2
T

8�v3kBT

(
ρ0

11 + ρ0
22

) 1

τ
, (18)

where ρ0
11 + ρ0

22 = 2/3 is the equilibrium population of the
X and Y levels split by ultrasound (for h̄�U 
 kBT ), and
we introduced an effective relaxation time that includes the
tunneling in magnetic fields,

1

τ
= τ−1

T +
∑
n,m

|γnm|2 2�2τ2

1 + �U 2
nmτ 2

2

. (19)

Here �Unm = (En − Em)/h̄ is the difference between the
energy levels in different distorted configurations of CrZn4Se
in the magnetic field (n and m run through all spin-orbital
states in the different configurations), γnm = 〈n|o · L̂|m〉 is
the off-diagonal matrix element of the Hamiltonian, which
becomes nonzero in the magnetic field, o = B/B. In the
simplified model of Fig. 7 γnm = 1/

√
2, but in reality this

matrix element may be different. Equation (19) is valid
for transitions from one configuration of CrZn4Se complex
to another taking into account the overlap of all their 15
eigenstates induced by the magnetic field.

The second term in Eq. (19) stands for the rate of relaxation
via the new channel opened by the magnetic field induced
tunneling transitions. By magnitude, it can be comparable or
larger than the rate of relaxation in zero field. This additional
channel of relaxation leads to the increase in ultrasound
attenuation, as demonstrated above, but it may affect also
other optical, magnetic, and spin properties of crystals
containing JT impurity or vacancy centers, subject to the T ⊗e

vibronic coupling problem.

IV. DISCUSSION

The results of calculations [33] using Eqs. (18) and (19)
as well as experimental points are demonstrated in Fig. 8.
The following parameter values are employed in these
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FIG. 8. Magnetic field dependence of attenuation of ultrasound
of frequency ω/2π = 33 MHz by Cr2+ centers in cubic ZnSe crystal
at T = 1.3 K (blue circles), T = 2.5 K (black squares), and T =
4 K (red triangles) at k ‖ B ‖ [110], u0 ‖ [11̄0], k is the wave vector
and u0 is the polarization vector of the ultrasound wave. The solid
line at T = 1.3 K, dash line at T = 2.5 K, and dash dot line at
T = 4 K are the results of theoretical calculations carried out using
Eqs. (18) and (19) with τ2 = 6×10−10 s and EJT/h̄ωe = 1.2. The field
B = 0.05 T (the right edge of the figure) corresponds to the boundary
of applicability of Eqs. (18) and (19), �τ2 ≈ 1/3.

calculations: nCr = 3.8×1018 cm−3, bT ≈ 2 eV (this estimate
is obtained from ultrasound attenuation in zero magnetic field
[10]), τ2 = 6×10−10 s and EJT/h̄ωe = 1.2. There are only
two fitting parameters in calculations: the decoherence time τ2
and the vibronic reduction factor that depends exponentially
on the ratio EJT/h̄ωe. For τ2, we assume that it is independent
of the temperature and the magnetic field. The parameter
EJT/h̄ωe, discussed at the end of Sec. III C, is not well known
numerically. Our choice of EJT/h̄ωe = 1.2 is the result of
fitting: with only these two parameters we fit all the three
experimental curves in Fig. 8, thus showing that the theory
explains the effect in the limits of its applicability. A closer
fitting could be reached by simulating some dependence of
τ2 on temperature and magnetic field; this would increase the
number of fitting parameters without significantly shedding
light on the origin of the magnetic field induced tunneling.

Equation (19) is analogous to the expression for the
relaxation time obtained by Vikhnin [38] for a somewhat
similar statically deformed system of two potential wells with
the static deformation modeled by the �Unm term. We have
generalized this result for relaxation time that contributes to
the attenuation of a sound wave in a much more complicated
system. In some aspects Eq. (19) is also analogous to the result
for spin relaxation rates in the Dyakonov-Perel mechanism
[39] if we set �Unm = 0. Note also that Eq. (19) allows for
describing resonance tunneling between states with energy
difference �Unm if the tunneling element � is independent
of �Unm. However, in the case of magnetic field induced
tunneling both � and �Unm depend on the magnetic field,
and the change in only �Unm does not explain the decrease
of attenuation in magnetic fields above 0.2 T, as well as the
saturation at � ∝ �Unm ∝ B (see Fig. 8). The decrease of

attenuation in higher fields is caused by the transition to
the quasiresonance mechanism of absorption instead of just
relaxation (see below).

Equations (18) and (19) were derived under the condition
of weak magnetic fields and b,h̄� 
 h̄/τ2, but the predecessor
Eqs. (15) are valid also for b values for which the splitting of
the |x〉 and |y〉 states by the ultrasound wave is much larger
than that induced by the magnetic field, and the latter can
be ignored as compared with the former. As no equilibrium
population of the split levels is reached in the time of the
wave period, the attenuation is relaxational, and the role of
the magnetic field is to accelerate the relaxation via the newly
opened tunneling channel. This takes place under the condition
b > h̄�2/�U for B ‖ [110] or B ‖ [11̄0], and b > h̄� for B ‖
[001]. Using the estimates b = 1×108 eV (from the power
pumped in the ultrasonic wave) and the one above, EJT/h̄ωe =
1.2, we conclude that this situation continues until the B ≈ 0.1
T for B ‖ [110] or B ‖ [11̄0], and B ≈ 3 mT for B ‖ [001]. The
experimental data in Fig. 1 confirms these estimates.

The system of Eqs. (15) becomes inappropriate for the
description of ultrasound attenuation when b < h̄�2/�U .
Moreover, in the transition region b ≈ h̄�2/�U , there is no
linear theory for ultrasound attenuation. In strong magnetic
fields the energy splitting of |x〉 and |y〉 orbital states produce a
new basis set of eigenstates. At B > 0.1 T the ultrasound wave
is a small perturbation to the orbital energy levels split by the
magnetic field, and the Hamiltonian of the centers interaction
with the sound wave becomes nondiagonal, distinguished from
that in near-zero fields in Eq. (6). This results in a resonance
mechanism of attenuation caused by weak time-dependent
coupling of orbital states split by the magnetic fields. Actually,
it is a quasiresonance absorption, since b ≈ h̄ω and ωτ2 
 1
are other conditions related to the limitations of the experiment
reported in this paper for ω/2π = 33 MHz and in Ref. [21]; it
leads to very broadened resonance transitions.

Hence the increase of magnetic field induction increases
the orbital splitting resulting in tail-resonance attenuation and a
decrease of the attenuation curve in stronger fields. The change
of regimes from relaxation to quasiresonance is supported
by the experimental data in Fig. 2, where the left-hand side
of the peak of attenuation remains approximately unchanged
for different frequencies of the ultrasound, whereas the right-
hand side of the attenuation curve (above 0.1 T) is strongly
frequency dependent. Theoretical calculations of the magnetic
field dependence of the attenuation in these strong magnetic
fields require a more detailed analysis of the decoherence time
τ2 and its possible dependence on the magnetic field.

The total scheme of ultrasound attenuation in magnetic
fields in ZnSe:Cr2+ is thus as follows. In zero magnetic field
there is a relaxation attenuation of ultrasound driven by the
relaxation time, which is determined by one-phonon processes
in the absence of tunneling between equivalent Jahn-Teller
configurations. In weak magnetic fields up to 0.1 T (up to 3 mT
for B ‖ [001]) the ultrasonic attenuation is still determined by
the relaxation mechanism, but due to magnetic field induced
tunneling there is a sharp increase in relaxation rate, which
leads to a sharp increase of attenuation. Finally in magnetic
fields above 0.1 T there is a transition to a quasiresonance
mechanism of attenuation resulting in a smooth decrease of
attenuation up to the fields of 2 T.
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V. CONCLUSION

In conclusion, we revealed magnetic field induced tunnel-
ing and relaxation transitions between orthogonal distorted
configurations of polyatomic systems produced by the Jahn-
Teller effect of the T ⊗e type in any polyatomic system. The
theoretical analysis shows how the magnetic field opens a
channel of relaxation via tunneling from one configuration of
the system to another by coupling their otherwise orthogonal
orbital states. The best conditions for experimental observation
of this effect require a moderate Jahn-Teller effect with
at least one vibrational state in the minima of the APES
below the intersection point, but not very strong vibronic
coupling that makes the tunneling too small to be significant.
If the system includes spin states, the spin-orbital coupling
should be much smaller than the vibronic coupling (leading
to the Jahn-Teller effect). Another limitation is obvious: the
magnetic field induced tunneling relaxation rate should be
comparable or larger than the zero-field one. The new channel
of tunneling relaxation is observed as a sharp increase in the
attenuation of the ultrasound wave propagating along the [110]
direction of the cubic ZnSe:Cr2+ crystal in relatively weak
magnetic fields (<0.1 T) at low temperatures (<8 K). The
effect is demonstrated for different directions of the applied
magnetic field, such as [110] and [11̄0], and for different
temperatures and frequencies. In strong magnetic fields (above

0.1 T) the relaxation attenuation mechanism is replaced by a
quasiresonance mechanism, but the energy levels are greatly
broadened, so only decaying tail-resonance dependence in
these magnetic fields is seen. The novel effect of magnetic
field induced tunneling is valid for any molecular or solid-state
systems with T ⊗e-type vibronic coupling influencing their
spectroscopic, optical, and magnetic properties, with possible
applications in electronics, spintronics, and photonics.
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