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We study the quantum phase transition between a paramagnetic and ferromagnetic metal in the presence
of Rashba spin-orbit coupling in one dimension. Using bosonization, we analyze the transition by means of
renormalization group, controlled by an ¢ expansion around the upper critical dimension of two. We show that
the presence of Rashba spin-orbit coupling allows for a new nonlinear term in the bosonized action, which
generically leads to a fluctuation driven first-order transition. We further demonstrate that the Euclidean action of
this system maps onto a classical smectic-A—C phase transition in a magnetic field in two dimensions. We show
that the smectic transition is second order and is controlled by a new critical point.
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I. INTRODUCTION
A. Background and motivation

Quantum phase transitions continue to be one of the
central topics in condensed matter physics. The problem is
especially challenging in systems of itinerant electrons. The
first attempts to describe the critical behavior of interacting
itinerant electrons were made by Hertz [1] and Millis [2] in the
context of the ferromagnetic (FM) and antiferromagnetic phase
transitions. They constructed an effective Ginzburg-Landau
theory by integrating out fermionic degrees of freedom.
However, nonanalyticities generated by integrating out gapless
electrons call into question the validity of this uncontrolled
approach. To avoid these dangerous singularities, the gapless
fermions and the soft bosonic order parameter must be treated
on equal footing [3—6]. However, the theory still exhibits a
divergent perturbation theory associated with gapless Fermi
surface degrees of freedom, whose control remains an open
problem [7-14].

In contrast, in one dimension, bosonization of the electronic
quasiparticles significantly simplifies the problem, making it
tractable. This approach, combined with a renormalization
group (RG) analysis, was successfully applied by Yang [15] to
analyze the quantum transition from paramagnetic (PM) phase
to an Ising itinerant ferromagnet in a one-dimensional conduc-
tor. The resulting strongly-interacting critical point is distinct
from the Luttinger liquid and Ising critical points, and in one-
loop approximation is characterized by the dynamic critical
exponent z = 2. Later, similar results for a one-dimensional
Heisenberg ferromagnet were obtained in Ref. [16].

The possibility of a ferromagnetic ground state seemingly
contradicts the Lieb and Mattis theorem [17], which states that
an unmagnetized state always has lower energy for certain
classes of systems. This theorem, however, does not take into
account spin-orbit coupling, which will play an important role
in our study. Furthermore, it was shown that the inclusion
of further neighbor hopping terms in the lattice models [18],
as well as a spin-dependent interaction, can also stabilize a
ferromagnetic ground state. Finally, numerical results obtained
in Ref. [18] suggest an existence of a ferromagnetic transition
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in one-dimensional systems. Taken together, these arguments
demonstrate that Lieb-Mattis theorem is not applicable in the
most general system, studied in this work, implying that the
problem of a one-dimensional ferromagnetic transition is well-
defined and meaningful.

The model of a ferromagnetic transition studied in Ref. [15]
does not take into account generically present spin-orbit
coupling and relies on the presence of inversion symmetry. In
systems that lack inversion symmetry, however, the presence of
Rashba spin-orbit coupling leads to interesting physical conse-
quences. It naturally reduces the SU(2) spin rotation symmetry
to a U(1) symmetry associated with the total S, conservation,
and, as a result, the ferromagnetic transition becomes of the
Ising type. This situation is very common in realistic exper-
imental setups with spin-orbit-coupled wires, where Rashba
coupling appears, e.g., due to the internal crystal structure or
due to external sources, such as the substrate, gates, etc.

Motivated by this observation, in this paper we consider
the most general case of the ferromagnetic transition in
spin-orbit-coupled one-dimensional metals, without assuming
any other symmetry except time reversal. We study it viaan RG
analysis controlled by an ¢ expansion. We show that, in the
absence of inversion symmetry, nonlinear coupling between
spin current and magnetization enhances quantum fluctuations,
which generically drive the itinerant ferromagnetic transition
first order, akin to a compressible Ising model [19]. As a
special case, when inversion symmetry is present, we recover
the continuous transition found in Ref. [15].

We further show that the bosonic Euclidean (imaginary
time) D = 1 4 1 dimensional action of an itinerant magnetic
wire maps onto a field theory describing a classical two-
dimensional (D = 2) smectic-A to smectic-C phase transition
in a magnetic field, studied at upper critical dimension,
D = 3, by Grinstein and Pelcovits in their seminal work [20].
They showed that, at D = 3, the transition is controlled by
the Gaussian fixed point, and correlation functions exhibit
mean-field-like behavior with logarithmical corrections to
scaling. We reproduce their results in D = 3. In addition, we
analyze the system below the upper critical dimension, D < 3,
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where the Gaussian fixed point becomes unstable. We find a
new strongly-interacting stable fixed point which controls the
second-order transition.

For bare couplings satisfying a special relation, which
corresponds to a rotationally invariant smectic, the model
we consider reduces to that of anomalous elasticity [21] of
a two-dimensional smectic-A liquid crystal. This problem
was solved exactly by Golubovic and Wang [22,23] through
mapping onto the 1+ 1 dimensional Kardar-Parisi-Zhang
equation [24]. Thus, our theory reproduces results known in
literature as special limiting cases.

The remainder of the paper is organized as follows. We
conclude the Introduction with a summary of our results.
In Sec. II, we present a microscopic model for the Ising
transition in an itinerant ferromagnet, including the effect
of Rashba spin-orbit coupling. Utilizing bosonization we
derive an effective low-energy field theory for this transition.
In Sec. III, by generalizing the field theory to D =d + 1
dimensions, we analyze this transition using renormalization
group methods, controlled by an ¢ =3 — D expansion. In
Sec. IV, we apply these results to a mathematically related
classical problem of a smectic-A to smectic-C transition in
a magnetic field and obtain a nontrivial critical point in
two dimensions. We summarize our results and conclude in
Sec. V.

B. Results

Before presenting technical details we briefly summarize
our findings. We develop a field-theoretic model for a quantum
phase transition to an itinerant ferromagnet in the presence of
Rashba spin-orbit coupling. In contrast to a special case of
inversion-symmetric system [15], we show that generically
it exhibits an additional nonlinearity with a coupling g; > 0,
which is relevant for D = d + 1 < 3, and thus the transition is
governed by a qualitatively distinct behavior [see Sec. III and
Eq. (26) for the definition of g;].

Utilizing a one-loop RG method, controlled by ane = 3—D
expansion, we show that, akin to a compressible Ising model
[19], the inversion-symmetry breaking nonlinearity g; > 0,
together with strong quantum fluctuations, generically drive
the itinerant ferromagnetic transition first order. While our
analysis relies on an analytical continuation of a 1d bosonized
model to high dimensions, we conjecture that this fluctuations-
driven first-order transition is a qualitative feature that extends
to two- and three-dimensional ferromagnets without inversion
symmetry [14,25].

The imaginary time (Euclidean) action of the model char-
acterizes the classical Sm-A to Sm-C liquid crystal transition
in a magnetic field, extending seminal work of Grinstein
and Pelcovits away from the marginal dimension of D = 3
down to D = 2. Specifically we find that for g; < 0, within
the one-loop ¢ =3 — D expansion (¢ = 1 for the physical
case), the new critical point that controls the transition is
characterized by
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where z, v, y, and § are dynamical, correlation length, suscep-
tibility, and order parameter critical exponents, respectively.
Within the global phase diagram of the Euclidean field theory
the continuous transition criticality for g; < 0 is separated
from the first-order fluctuation-driven transition for g; > 0 by
the g; = 0 inversion-symmetric tricritical point [15].

II. MICROSCOPIC MODEL FOR 1D ITINERANT
FERROMAGNETIC TRANSITION

We begin with a generic microscopic model of a one-
dimensional metal with Rashba spin-orbit coupling, charac-
terized by an electronic Hamiltonian (choosing units such that
h=kg=1)

H = Hy + Hy, + Hiy, (2)

where
Hy=7) / dx Y] (ole(=id/0x) —erls () (3)

is a single-particle band Hamiltonian, characterized by a
dispersion &(—id/dx), Fermi level ¢f, and s = 1,] labels
electron spin projection. Hj, accounts for forward- and
backscattering processes.

The second contribution,

Ho=agy / dx Yl (x)af, (=i0/0x)pe (x),  (4)

is the Rashba spin-orbit coupling, which is odd under inver-
sion. As mentioned above, we expect this term to apply to
many realistic experimental setups, including semiconducting
nanowires with strong spin-orbit coupling [26-28] and non-
centrosymmetric quasi-one-dimensional materials.

To study the ferromagnetic transition, we now derive
the corresponding low-energy Hamiltonian. Focusing on the
vicinity of the Fermi points at momenta +ky, we expand the
electron field operators

Vs () & Ysr(0)e™ ™+ (x)e T (5)

in terms of left (# = L) and right (r = R) moving fields
Y- (x) varying slowly on the scale of Fermi wavelength,
A~ 1/kp, and satisfying usual anticommutation relations
{Ver (X), ¥y (x")} = 858,48(x — x”). In terms of the ‘slow’
fields V¥, r(1), Rashba spin-orbit coupling reduces to

HSO:aRkFZ/dxrsn”(x)=aRkF/dx J, 6)
rs

where we defined spin density n,,(x) = wJ, (x)¥rgr(x) and spin
current density J. Both s = 1, and r = R, L correspond to
+1, —1, respectively.

In terms of the slow chiral fields the band Hamiltonian in
Eq. (2) reduces to Hy = ), H(,), with

3" e (k)
n!

Hpy =

> / dxyrd, () (=irde)" Yo (x). (7)

k=kr s

Terms with n > 2 originate from the curvature of the band
dispersion around Fermi points =k and are often neglected.
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However, they are crucial here to properly describe the itinerant
FM transition.

Equation (2) with short-range interaction, Hiy =
U f dx ny(x)n(x), and without spin-orbit coupling, ag = 0,
is precisely a starting point for Hertz-Millis analysis in
higher dimensions. It is studied by introducing a Hubbard-
Stratonovich magnetization order parameter to decouple the
interaction and by integrating out electrons to obtain the
nonlocal Landau action for the magnetization. Such an
analysis, however, has been shown to be oversimplified, since it
does not take into account massless fermionic modes carefully,
neglecting important nonanalyticities appearing after integrat-
ing out electrons, and thus unlikely to describe the true critical
behavior.

To avoid the aforementioned difficulties with the Hertz-
Millis approach, here we will utilize the power of one-
dimensional Abelian bosonization to derive an effective
bosonic theory that we will then study by conventional Wilso-
nian RG [29]. Following standard bosonization procedure [30],
we write electronic operators in terms of bosonic phase fields:

s girkex g 55605 9 0y=rs00). ®)
2ra

w‘vr =

where F; are Klein factors, a is a short-range cutoff, and fields
¢ and 6 obey commutation relations

[0 (x),00 (x")] = =i 7 8o S(x — X'). ©))

Here o,a’ = p,o label charge and spin degrees of freedom,

p(x) = —(v/2/7)3,6, and S,(x) = —(v/2/7)3,0, are charge

and spin densities, and J.(x) = (\/E/n)axqbp and J(x) =
(v2/7)d,p, are charge and spin currents, respectively.

At length scales much longer than the Fermi wavelength,

1/kF, and at low energy, the effective bosonized Hamiltonian
takes the standard form

H= ) ;‘—n / dx{Ko(Dea)” + Ky (8,64}
a=p,0

_r
2m2a?
The parameters u, , correspond to the velocity of spin and
charge excitations, respectively, while K , are the Luttinger
parameters that characterize the sign and strength of forward
scattering interaction [30].

The relevance of the cosine term is controlled by the spin
Luttinger parameter K,. When K, < 1, the cosine pins the
spin-density variable 6,, leading to the formation of a spin
gap [31]. On the other hand, when K, > 1, itis irrelevant and
flows to 0 under RG. In the latter case, its only effect is to
renormalize the Luttinger parameters at low energies and thus
can be neglected.

As in a conventional Landau theory [32,33], classically,
the transition to the ferromagnetic state takes place when the
coefficient in front of Sz2 ~ (3,0,)? is tuned to be zero. Close
to the transition the coefficient at SZ2 is small, corresponding
to K, — oo. Consequently, the cosine term in Eq. (10) is
irrelevant and thus neglected hereafter [34].

In contrast, there are higher-order terms that are typically
neglected near the LL fixed point, but, as we demonstrate
below, become important at the ferromagnetic transition.

+ / dx cos /86, + Hy + Hy. (10)
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These terms are taken into account in Hp; they describe
nonlinear couplings between spin density and spin current, as
well as between spin and charge sectors, that arise, for example,
due to the finite curvature of the electronic dispersion. Since the
coefficient of SZ2 term vanishes at the transition, it is necessary
to keep these higher order in S, terms in order to stabilize the
theory. Furthermore, as we will show, they are relevant in the
RG sense, and thus play a qualitatively important role at low
energies.

We further take advantage of spin-charge separation at
the quadratic order and completely neglect the charge sector,
focusing only on the spin sector controlling the transition to a
state with finite magnetization S, [35]. Then, the higher-order
terms that are necessary for the stability of the theory are given
by

Hp) = / dx{Ba[ S + 68277 + B2(8.5.)7)

= Bo / dx{[(3:05)* + 6(35 s 2(,:0,)°1 + 2(26,)°},

an

where By = 4;34/714 = ,32/7'[2 = (1/48n)(8,?£k)k:kf, and we
neglected terms that are less relevant. To derive Eq. (11), we
used a standard point-splitting technique for normally-ordered
operators, which allows, in principle, to calculate all higher-
order terms. The details of such derivation can be found, for
instance, in Ref. [36], and we thus do not present it here. The
terms in Eq. (11) describe the coupling between magnetization
and spin current, thus contributing to Hy in Eq. (10). We
note that the sign of By depends on the third derivative of
the dispersion near the Fermi energy. Here we focus on the
more interesting case when this coefficient is positive, since
the opposite case of By < 0 leads to a first-order transition,
already at the Landau mean-field theory level.

We now examine the inversion-breaking contribution (6),
that is linear in spin current J = (+v/2/7)d, ., and as expected
induces a finite spin current in the ground state. It can thus
be absorbed into (10) by shifting the spin current according to
J =T+ 20pkr /UKy, with J describing fluctuations about
the nonzero ground state spin current.

Focusing on the spin sector [35], and putting above
contributions together, we obtain alow-energy Hamiltonian for
the one-dimensional itinerant Ising ferromagnetic transition,

H= /dx{a,ﬂ + asS2 + B3, S.)” — A3 T S2 + BuStY,

12)

where A3 = 6w Brarkp/usKy, ay =uKom/4, and ag =
(UsT/4Ks) + (6akk:7? Ju, Ky ), and operators obey a com-
mutation relation

[J(x),8.(x)] = —i%iw(x —x'). 13)

The coefficient A3 is proportional to the spin current in the
system and thus is a direct manifestation of inversion breaking.
This term is absent in Ref. [15], where the inversion-symmetric
case has been considered.

We note that the above quantum Hamiltonian takes the form
of a standard Landau theory but supplemented with a canonical
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commutation relation (13), with the spin current J ~ 3.,
playing the role of the canonically conjugate momentum
density for the spin phase field 6,. The model (12) has been
derived for a one-dimensional metal with Rashba spin-orbit
coupling. Note, however, that this model also applies to
magnetic spin chains with Dzyaloshinskii-Moriya interaction.

III. BREAKDOWN OF QUANTUM CRITICALITY
AT THE FM TRANSITION

A. Effective field theory

To study the critical properties of the resulting model,
we focus on the partition function, Z = Tr[exp(—BH)], and
express it through the imaginary time functional integral over
commuting conjugate fields ¢, ,6, in a standard way

B
Z:fDOUDHexp |:—/ dr/dx(H—iHB,@a)], (14)
0

where 8 = 1/T is the inverse temperature, and Hamiltonian H
depends on the canonically conjugate fields 6, (x) and I1(x) =
8,0, (x)/m. Integrating over the momentum field d,¢,, we
obtain Z = [ De™5, where the imaginary-time action for a
quantum itinerant PM-FM transition is given by

_ d r 2, K o0 B 2
S—/d xdT{Z(VQ) + 2(V 0) + 2(8T0)
| B B.
—%%mmwm?+§Kwﬁf} (15)

Above we dropped the index o for brevity, and generalized
the field theory to d spatial dimensions, as it will be necessary
for the e-expansion analysis. Hereafter, we use D = d + 1 for
the total number of space-time dimensions, while d stands for
a number of spatial dimensions. We stress that the physically
meaningful case corresponds to d = 1 (quantum wire), while
the extension of action (15) to dimensions outside of 1d is used
here as a mathematical tool only, in the spirit of & expansion,
to treat and control strong critical quantum fluctuations.

In principle, all coefficients in the action (15) can be
expressed through the parameters entering the microscopic
Hamiltonian, Eq. (12). However, we prefer not to specify them
explicitly, treating them as phenomenological parameters,
thereby emphasizing that there is a number of microscopic
contributions to this action, beyond what we considered in
the previous section. The action (15) captures all universal
properties of the itinerant PM-FM transition in 1d, and,
although in principle is derivable from the microscopic model,
can be written based purely on symmetry arguments. We only
require that K, B, B4 > 0; otherwise, higher-order terms will
be needed to stabilize the theory, and the transition will be first
order even at the mean-field level.

As mentioned in the previous section, the first term in the
action (15), 7(V8)? /2, tunes the model to the FM transition, at
mean-field level r < 0 (r > 0) corresponding to the ordered
FM phase (disordered PM phase). The third term in Eq. (15)
describes fluctuations along imaginary time, capturing the
quantum nature of the transition. Clearly, at the critical point
(r =0 in mean-field theory), higher-order terms in spatial
gradient (K') and in the magnetization (Bj 4) are required to
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ensure the stability of the system to large and nonuniform
magnetization. As we showed above, the term proportional to
Bj arises from the coupling between magnetization and spin
current, i.e., proportional to A3 in the Hamiltonian (12). Bj
breaks inversion symmetry and will be of special significance
in our analysis.

We note that there is a certain similarity between our
model (15) and (12) and the compressible Ising model [19].
In the latter case, the system can gain energy by adjusting
compressible lattice to the local spin configuration. As a result,
sufficiently close to the putative critical point it is generically
unstable to a discontinuous development of a spontaneous
magnetization (accompanied by a lattice distortion), thereby
undergoing a first-order transition. We anticipate and indeed
find a similar mechanism in our model. Namely, we expect
that an inversion-symmetry breaking that couples spin current
and spin density, i B3(3:0)(3,6), will generically drive the
FM transition first order associated with a discontinuous jump
in the spin current and magnetization. There are, however,
two important differences between these two models. First,
unlike the compression modes of charge, the spin current is
not a conserved quantity. Second, the spin current, which is
represented by the term 9.6, and the spin density, 9,6, are
not independent fields. Thus, a detailed analysis is required to
which we now turn.

B. Harmonic fluctuations

Away from the critical point, deep in the PM, r > O state,
higher-order gradients and nonlinearities are unimportant. In
this limit, the action (15) reverts to that of a conventional
Luttinger liquid, described by a 1 4 1 dimensional XY model,
with well studied logarithmic phase correlations [30].

At the critical point, r = 0, within a harmonic approxi-
mation (neglecting nonlinearities) the action maps onto that
of a well-studied d + 1-dimensional smectic liquid crystal
[37-39], with the imaginary time axis and spin phase 6(x,7)
corresponding to the smectic wave vector (layer normal) axis
7 and the phonon u(x, 1), respectively. At the critical point the
fluctuations are qualitatively enhanced, characterized by z = 2
(rather than z = 1) dynamical exponent, with mean-squared
fluctuations in the ground state (7" = 0) given by

<02> /al ddkda) 1 (16 )
= a
7 ) @r)it Bw? + Kk*
e
#ﬁ In(L/a), d=2,

where we defined a constant C; = S;/(2m)¢ = 2m9/?/
[27)T(d /2)], with S; a surface area of a d-dimensional
sphere (S =2, S =2m, S3 =4m, etc.), and introduced a
spatial infrared (IR) cutoff by considering a system of finite
spatial extent L and an ultraviolet (UV) cutoff a, set by the un-
derlying lattice constant or a Fermi wavelength ~k;1 . We note
that for d < 2 and in particular for the case of physical interest,
d = 1, harmonic quantum fluctuations diverge (stronger than
a conventional Luttinger liquid) with system size, suggesting
a qualitative importance of nonlinearities.
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The corresponding connected harmonic correlation func-
tion

C(x,7) = ([6(x,7) — 6(0,0)])o a7

is also straightforwardly worked out. At the critical point in
2 4+ 1 space-time dimensions, in the ground state (7 = 0) it is
given by the logarithmic Caillé form [39]

C3D(x,t)

f dzkd(,() 1— eik~xfiw7:
(2n) Kk*+ Bo?

_ ;[ln (f) _ lEl(—_xz>} (18a)
- 27JVKB a) 2 \4|) ]

- 1 {ln(xz/az), x> JA|T], (18b)
47'[\/ KB 1n(4)\,|f|/6l2), X << V)"|‘C|7

where Ei(x) is the exponential-integral function and A =
JK/B. As indicated in the last form, in the asymptotic
limits of x 3> +/A7 and x < +/At this 3D correlation function
reduces to logarithmic growth with x and t, respectively.

In the case D = 1 + 1 of physical interest we instead have
[40]

dkdw 1 — eikx—ia)r
2r)? Kk* + Bw?

_l ﬂ l/zefxﬁ/(4x|r\)_|_merf il
Al N 4rT|

C*P(x,7) =

(19a)
B | Ix]/24, x> ATl

where erf(x) is the error function. Given these divergent
critical ground state fluctuations, it is important to examine
the effect of nonlinearities in the action (15). We turn to this
next.

C. Perturbation theory and Ginzburg criterion

To this end, it is helpful to first assess the role of
nonlinearities

1 1
A%Wer=‘/cﬂxdr[—Einmexvef+-gBAvef}
(20)

using a conventional perturbation theory. This can be done
by computing perturbative corrections in Sponjinear (20) to any
physical observable, e.g., the effective action itself. Following
a standard field-theoretic analysis, at low energies this can
be encoded as corrections to the couplings B and K, with
the leading contribution to §B, summarized graphically in
Eq. (A2) and given by (T = 0)

1
B = -332/ Gk, w)?
2 k,w
_lp dk foo dw k*
273 ) @n) | o 27 (Kk* + rk? + Bo?)?
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_[Grl@—ad)/2arid+ /21 B ],
- 8 l/2 (BK)S/zg ’
(LB s fordet @1
Y (BK)3/25 CreE

In above, we used 6(k,w) two-point correlation function,
G(k,w) [see Eq. (Al)], and focused on zero temperature
ground state quantum fluctuations in d < 2, which allowed
us to take the UV cutoff, A — o0. The dominant contribution
from the long-wavelength, low-energy modes is cutoff by the
(Gaussian) correlation length £ = /K /r.

Since this nonlinear contribution grows with &, sufficiently
close to the critical point the correction § B becomes compara-
ble to its bare microscopic value B. This signals a breakdown
of the harmonic theory near the critical point on length scales
longer than the Ginzburg scale

8r!/? (BK)¥?271/(2—=d)
B [Cﬂ‘[(Z—d)/2]F[(d+1)/2] B ] , d<2, -
§c = 87(BK)? | (22)
3—323 — 1

defined by the value of & at which [6B(&s)| = B. Equiv-
alently, this also gives the Ginzburg criterion rg = K&,
corresponding to a “distance” to the critical point at which
critical fluctuations qualitatively modify the predictions of the
harmonic analysis at the Gaussian fixed point.

D. RG analysis and & expansion

To describe the critical properties beyond the Ginzburg
scale, &5, near the critical point with |r| < rg—i.e., to
make sense of the IR divergent perturbation theory found in
Eq. (21)—requires a renormalization group analysis. As we
discuss in Sec. IV this was first done at the critical dimension
of d =2 in the context of a smectic-A to smectic-C liquid
crystal phase transition in a seminal work by Grinstein and
Pelcovits (GP) [20,21].

To this end, we employ the standard momentum-shell RG
transformation [29] by separating the field into long and short
scale contributions according to 0(x,7) = 0_(x,7) + 0. (X,T)
and perturbatively in nonlinearities, Sponlinear, iNtegrate out the
short-scale (high momenta) fields 6. (x,7) that take support
inside an infinitesimal cylindrical momentum-frequency shell
Ae™% <k, < A=1/a, —00 < w < oo. Purely for conve-
nience, we follow this with a rescaling of lengths, times, and
the long wavelength part of the field in real space:

oy

x = %Y/, 280 1

=%, 0.(x,7) = 0K, 7)), (23)

so as to restore the UV cutoff e3¢ A back to A = 1/a. Above,
z is a dynamical exponent, x is a field dimension, and £ is “RG
time.”

The above rescaling leads to zeroth-order RG flows of the
effective couplings after coarse-graining by a factor e’

r(z) — e(d+272+2x)ﬁr’
K(f) = Ttk
B(E) — €(d71+2X)ZB,
B3(£) — e(d_2+3X)£B3,

B4(£) — e(d+274+4X)ZB4.

(24)
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To assess the importance of nonlinearities relative to
harmonic terms, it is convenient (but not necessary) to keep
the quadratic terms fixed under the RG flow, i.e., to choose
K () = K and B(¢) = B, corresponding to a choice of z =
2, x = (2 —d)/2. With this, we find B3(0) = e>®D¢B;,
By(£) = >~ By, reflecting their importance at the critical
point r = 0, below the upper-critical dimension d. = 2. This
is consistent with our finding in Eq. (21) of a divergent
perturbation theory for d < 2. Since the nonlinearites are
irrelevant for d > d., and thus are only weakly relevant
just below d = 2, we expect to control our perturbative RG
analysis for d <2 by an & expansion in ¢ =2 —d. As
discovered by Wilson and Fisher in the context of classical
ferromagnet [41], this gives us a controlled method to analyze
the critical properties of a physical d = 1 ferromagnetic wire,
by extrapolating via ¢ = 1.

The leading one-loop order RG comes from integrating
out the high-momentum modes, 0. (x,7), perturbatively in
Shonlinear- The contributions are of the same form as in a direct
perturbation theory [e.g., §B in (Sec. III A)], but with the
correction kept small by the infinitesimal momentum shell §¢.
Relegating the technical details to Appendix A, the result of
this coarse-graining RG procedure is encoded in ¢ dependent
couplings, that we find to satisfy the flow equations (we focus
on the T = 0 case):

dB B?
=(d—z+20)B+ 3V

de BVA(K + 7y
dB3 BSV(I
B @ —243y)By — =
ae =@ 2E308 = kg

x [(d +2)BBs + 2B3],
dB4 Yd
—— =(d—-4+7+4x)Bs—
g @A 0B e e @ 1 2d)
x [(d* + 6d +20)B*B; +4(d + 8)BB4B; + 12B3],
dK B3ya
— =d-4 2)K — 3
g = @At 20K = S K R+ )
x [2K + F)(K + F)(d +2) — 37%],
df 2)/,1
— =(d-2 2y ——
77 = +z+ X)r+B3/2(K+7)1/2

x (BBs+ B3)(1+2/d), (25)

where we defined y; = C4A972/8 and 7 = r/A°.

As discussed in detail in Appendix A, we note that coarse
graining also generates a term idagd. 0, that is a correction
to the average ground state spin current, that thus flows under
RG (much like an order parameter in an ordered state). This
operator can be shifted away by redefining the average spin
current, corresponding to a shift in 6 by «dagt. From the
B3 operator this then generates a correction to (VO)?, ie., a
dag correction to the critical coupling r, which (along with
two other contributions, B32 and B4 tadpole) has been included
in the last equation in Eq. (25). Anticipating the connection
of the quantum FM transition with the classical smectic liquid
crystal, we note that this procedure is analogous to the RG flow
of the smectic ordering wave vector, as discussed in Ref. [21].
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To bring out the physical content of the above flow
equations and to simplify the mathematical analysis, it is
convenient to use (25) to construct a flow of two dimensionless
couplings

81 = (BK)WV"’ 8 = (BK3)1/2W’

where for consistency of the ¢ expansion d must be evaluated
at the upper critical dimension, i.e., y; — y» = 1/16m. These
couplings can be shown to satisfy dimensionless RG flow
equations

dg l1g

—_— — _— 4 N 27

L gl( 1 +4g (27a)
dg, 191 9¢ 3¢t

282 _ gy — Z82) 28 (o7p
20 & gz( 1 + > > (27b)

which we note are independent of the arbitrary rescaling
exponent z and x (that only acquire physical content if B and
K are chosen to be kept fixed under coarse graining). In the
above, for consistency of the ¢ expansion we also evaluated
d at d., i.e., set d =2 in the quadratic terms on the right
hand side, and, focusing on the vicinity of a critical point,
setr = 0.

In terms of g; and g, the flow of the harmonic couplings is
then given by

dB—[d +2x + g1]B
T Z+2x + g1
=[d—z+2x —nglB,
dK 1
o lad-4 2x — g |K 28
T, [ +z+2x% 2g1] (28)
=[d—4+4+z+2x +nklK,
dr
%=[d—2+2+2x—2(g1+gz)]7+4(g1+gz)K,

where we implicitly defined the anomalous exponents 71p g,
that flow to universal values at a critical point gj,g5. The
last term in the 7 equation corresponds to the fluctuation-
driven downward shift of the critical point 7.. The dynamical
exponent z, defined by the relation 7z ~ & [see (23)] between
the correlation time 7 and correlation length & ~ 77", and
the correlation length exponent v = 1/y, (inverse of the
eigenvalue y, of 7) are then determined by

z=2-3(mp+nx)=2+3g},

2¢3)7". (29)

v=(2-3g -

The flow diagrams corresponding to (27) are shown in
Figs. 1, 2, and 4. As anticipated based on the perturbative
analysis and power counting, for d < 2, in the presence of
quantum fluctuations the Gaussian (G) critical point is unstable
to interactions. Simple analysis shows that there are three
non-Gaussian critical points: (i) inversion-symmetric (IS)
with gy = 0,2, > 0, (ii) smectic (Sm) with g; < 0,g, = |g1],
(iii) smectic-A to C transition (SmAC) with g; < 0,g, # |g11,
summarized in Table I. We next study the physical significance
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FIG. 1. RG flow of the parameters g, and g, defined in Eq. (26)
describing the FM transition. The flow is given by Eq. (27). Two
unstable fixed points are located at the line g, = 0, see Table I. We
see that, at large enough RG time ¢, g, flows to negative values, thus
necessarily resulting in a first-order transition.

of these critical points and their critical properties, noting
that g; > 0 and g; < O, respectively, are realizable in a FM
wire (studied next) and the SmA-C liquid crystal (studied in
Sec. IV). We emphasize that all (non-Gaussian) fixed points
find realization in certain physical systems, see Secs. IIIE 1

N
92/5:§ \\\\ Jw/ / ///7

0.

Z/}

FIG. 2. Global phase diagram of the RG flow described by
Eq. (27) for both the FM and SmA-C transitions. The region g; > 0
describes a runaway flow signaling a first-order phase transition. The
line g, = 0 governs the FM transition in the inversion-symmetric
system, which is controlled by the IS fixed point. The region
0 < —g; < g is controlled by an interacting fixed point (black) and
describes the second-order SmA-C transition in a magnetic field. The
line —g; = g, describes the SmA ‘critical phase,” with the parameters
g1, 82 flowing to the Sm fixed point (not shown in this figure, see also
Fig. 4).
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E. Ferromagnetic transition

It is clear from our derivation of the ferromagnetic model,
Eq. (15), and the definition of g;, Eq. (26), that for a FM wire
the case of physical interest is g; > 0; the other half plane,
g1 < 0, does not appear to be accessible to the FM system.
However, as we discuss in Sec. IV, it does find a physical
realization in smectic liquid crystals.

1. Inversion-symmetric FM

The inversion-symmetric FM is constrained by B;=g; = 0.
In this subspace, the flow for g, reduces to [see Egs. (27)
and (28)]

dgz 9

2
— = - =8, 30
a0 €82 282 (30)
giving the nontrivial IS critical point,
2¢ 4eA?
* — 0’ * — , * — , 31
81 &2 9 r 9 (31

previously studied by Kun Yang [15]. This fixed point controls
an inversion-symmetric, itinerant PM-to-FM quantum phase
transition, and to one-loop order is characterized by

ng =ng =0, z=2,

1 1 2¢ 11
V= -~ |1+ —]r —,
2—4¢/9 2 9 18
where the last expression for the correlation length exponent
v was evaluated for the physical case of one-dimensional FM
wire, d = 1 (¢ = 1). The other critical exponents, up to linear
order in ¢, are given by

2 11
y=<2—n)w<1+—8>~—

(32)

9 9’ (33)

PPN YOS A DN €
B A 2 18) " 36

where n is an anomalous dimension, y is susceptibility
exponent, and B is magnetization exponent [42].

2. Inversion-asymmetric FM

We now turn to the main focus of the paper, namely
the FM phase transition in an inversion-asymmetric itinerant
ferromagnet, with Bz # 0. Our key observation is that the
inversion-symmetric g; = 0 fixed point discussed in the
previous subsection is unstable to g; # 0, with the symmetry-
breaking growth characterized by

g _ e&1

P
Itis clear from the RG flows (see Fig. 1), that there is no stable
critical point for g; > 0. Similar fluctuation-driven runaway
flows have been discussed in the literature, most prominently
in the context of a normal-to-superconductor and (math-
ematically related) nematic-to-smectic-A phase transitions
[43,44]. For small ¢, the absence of a stable fixed point was
demonstrated via a detailed RG analysis to be a signature of
a fluctuation-driven first-order transition [45]. Other examples
include crystal-symmetry breaking fields in O(N) magnets
[46] and isotropic-to-tetrahedratic phase transition [47].

(34)
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Generically, to demonstrate a fluctuation-driven first-order
transition requires a detailed RG computation of the free
energy [46]. Here, instead we argue that the inversion-
asymmetric itinerant PM-FM phase transition is driven
first-order based on qualitative arguments, leaving a detailed
computation of the free energy to future studies.

To this end we first observe (see Fig. 1) that for a given bare
B4 > 0 and nonzero Bj, sufficiently close to the g; = O critical
point, quantum fluctuations with g; > 0 always drive B4 neg-
ative. RG analysis allows us to map a nearly critical strongly
fluctuating system at small r to a coarse-grained noncritical
system at large r(€,) ~ AZ. Then, to find a transition, we can
simply minimize the coarse-grained Hamiltonian density that
approximates the ground-state energy density Sgs(f ,S,7)

2
o= ﬁﬂ - f—;JSz n %SZ + (—% n f-é)s“ + BeSS,
(35

over J and S, where J is proportional to the fluctuations of
the spin current about its average value and S is proportional
to magnetization. Minimizing over J gives a standard quartic
form with the renormalized B, driven negative and Bg included
for the overall stability

r(ﬁ*)Sz _[Ba(€s)l
2 8

We emphasize that all couplings r(£,), B3(£y), Ba({y), Be(€y)
in Egs. (35) and (36) are solutions to the RG flow equations
(25) evaluated at ¢, defined by r(¢£,) ~ A2, or, equivalently,
L(ry) = In[§(ry)/al.

Because the mapped system lies outside the Ginzburg
region, where fluctuations are small, its ground state state
energy and the associated transition can be computed within
mean-field approximation. We thus find that a weakly first-
order transition takes place at r,, with a magnetization jump
S, implicitly determined by

Ees = S* 4+ Bg(£,)S°. (36)

B(C.)
o N e, 37
128 Bg(£)e2t- (372)
8r, 1\
S, ~ . . (37b)
(|B4(5*)|>

To summarize, we find a strong, general result, that
the itinerant PM-FM transition in the absence of inversion
symmetry must be first order. This contrasts qualitatively from
the inversion-symmetric case and the Hertz-Millis expectation
of a continuous transition.

IV. SMECTIC-A-C TRANSITION IN A MAGNETIC FIELD

As we discuss in detail below, quite remarkably the model
of the itinerant PM-FM quantum phase transition studied
above is mathematically equivalent to that of a classical D-
dimensional smectic-A to smectic-C liquid crystal transition
in a magnetic field [37,38]. We recall that a smectic-A liquid
crystal is a one-dimension density wave (a one-dimensional
periodic array of 2D liquid sheets) of rodlike constituents
(calamitic molecules) defined by director 7 aligned along the
smectic layer normal, &, spontaneously breaking rotational

PHYSICAL REVIEW B 96, 094419 (2017)

and one-dimensional translational symmetries. To match the
notation of the FM action (15), we denote the latter spatial
axis (conventionally denoted by z) to be 7, with the smectic
classical Hamiltonian given by

K B 1 2
Hynp = /d2xdr|:?(Viu)2 + 3<afu — E(vmf) }

(38)

where u is the smectic scalar phonon field that describes
distortions of smectic layers along the layer normal. We note
that the underlying rotational invariance of the smectic phase
is encoded through the nonlinearities appearing only via a
fully rotationally invariant strain, u,, = d;u — %(V Lu)?, that
at harmonic level reduces to the absence of the quadratic
(V.u)?termin Eq. (38). The latter would otherwise incorrectly
penalize a rotation of the smectic layers by an infinitesimal
angle 6 ~ V, u [21,38].

As illustrated in Fig. 3, a smectic-C liquid crystal is
distinguished by a spontaneous molecular tilt of 7 into the
smectic planes, i.e., 71-& < 1. The associated XY order
parameter is the ¢ director, a projection of 7 into the smectic
planes, characterized by an effective Hamiltonian (within a
single elastic constant K approximation)

_ / 2 [K ~2 T A 4:|
H. = | d°xdt|=(V,.¢c)"+ =c"+ —c" |, (39)
2 2 4
with the reduced temperature r ~ T — Tac driving the AC
transition.

A model for smectic A-C transition was proposed by
Chen and Lubensky [48], and then extensively studied by
Grinstein and Pelcovits [20], who demonstrated that, despite
the nontrivial coupling of the ¢-director XY model (39) to
the smectic phonon u elasticity (38), the criticality remains
of a conventional XY-model (superfluid Helium-4 transition)
universality class, as originally conjectured by de Gennes [37].

In a magnetic field h, the liquid crystal molecules with
positive diamagnetic anisotropy align along the field, with the
energetics governed by

1 -
Hiea = =3 %4 / Prdr(n - WY (40a)
h2
~ —?Xafdzxdr[l —(¢—=V,iu)?] (40b)
it
decrease
HEEEENE temperature
T D]

1R
Sm A

Sm C

FIG. 3. Schematic representation of the smectic-A to smectic-C
transition in a magnetic field, h. The transition occurs via tilting
of the layers, and is characterized by a nonzero angle between the
molecules’ director /i and the smectic layer normal, £ (see Ref. [20]).
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TABLE 1. The fixed points of the one-loop RG flow (27) describing the FM and SmA-C transitions. In the corresponding regions of
stability, critical points are characterized by an anomalous dimension 7, correlation length critical exponent v, susceptibility exponent y, and

order parameter exponent f.

Fixed point g1 2 N Nk r z X v y B stability
G 0 0 0 0 0 2 e/2 1/2 1 1/2 unstable
IS 0 26/9 0 0 —4¢/9 2 €/2  (9+2¢)/18 1+(2¢/9) (18 —5¢)/36 unstable
Sm —4¢e/5 4e/5 4e/5  2e/5 0 2 —(3e/5) 3¢/5 - - - unstable
SmAC —4e/37 12¢/37 4e/37 2¢/37 —168/37 2—(3e/37) 19¢/37 (37 +9¢)/74 1+ (e/74) (37 —10¢)/74  stable
with x, the associated susceptibility. As was discussed by GP  magnetic field. It is given by
andillustrated in Fig. 3, because the molecules are locked along
> o . . . 12¢ 16¢
the field &, the AC transition in a magnetic field is associated G=-3g=—, r"=—0, (42)
with the spontaneous tilt of smectic layers toward the magnetic 37 37
field axis. and is characterized by the anomalous universal exponents
Furthermore, because the underlying rotational symmetry
. > e o 4e 4
is broken by the £ field, the nature of transition is qualitatively ng =2k = — ~ —,
modified. Indeed, neither Sm-A nor Sm-C is any longer 313
rotationally invariant. It is clear that the magnetic field locks T2 — 3¢ 71
the ¢ director to layer tilt, ¢ & V, u, allowing one to reexpress ' 37 37
H.[¢ — V_u]in terms of u, formally done by integrating out 17¢ 17
the ¢ director. Not surprisingly, this leads to a smecticlike n 37 T 37
Hamiltonian, but with the rotational symmetry broken by the ) 9e 23
magnetic field £, and the smectic A—C transition described by VAR — (1 —) —
a classical Hamiltonian [20] 2 37 37
€ 75

Hsmacfield = /dD_lxdr[g(Viuf + g(vﬂlf + g(azu)z vy~ I+ 74 " 74°

5 1 ( 108) 27 43)

D e (Va’ + %(vm“}, (a1) 27w T

generalized to D = d + 1 dimensions. Clearly, at the Sm
critical point, which is characterized by r = 0 and by a special
relation of the nonlinearities, B; = B4 = B, this reduces to the
fully rotationally invariant smectic elasticity, Eq. (38).

We next note that this classical Hamiltonian for the smectic
A-C transition is identical in form to that of the itinerant
quantum PM-FM transition (15), studied in the previous
section. However, a key difference is the absence of i in the B
term of the classical problem. Thus, the smectic A—C transition
maps directly onto our FM transition analysis in Sec. III, but
with the dimensionless coupling g; ~ —B3 < 0. It thus allows
us to access the g; < 0 half of the flow diagram in Fig. 2, and
in particular the two additional critical points, that with some
foresight we earlier denoted by Sm and SmAC (see also Table I
and Fig. 4).

The most ubiquitous case of a three-dimensional smectic
lies right at the upper critical dimension, D = D, =3
(d = 2), and has been extensively analyzed in Refs. [20,21].
Our results, summarized by equations (27) and (28) are a
generalization of GP’s work to arbitrary dimension and in par-
ticular to D < 3, where the nonlinearities are relevant (rather
than marginally irrelevant [20,21]) and lead to nontrivial fixed
points, illustrated in Fig. 4.

As is clear from the RG flows, the Gaussian and IS critical
points, discussed in the context of the FM transition, are
unstable to the Sm and SmAC fixed points. The SmAC critical
point is the one with global stability (to order &) and thus
controls the smectics-A to smectic-C phase transition in a

evaluated for the only case of physical interest, the two-
dimensional smectic D =2 (¢ = 1).

—

1.

o

0.

[e)
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g2/€
0.

s BN \\d\'\
0.2//;,—\2\ I

&)

1

0.0
-1.2 -1.0 -08 -0.6

91/5

FIG. 4. The RG flow for the SmA-C transition in a magnetic field
described by Eq. (27) in the region g; < 0 (g; < O part of Fig. 2). A
stable fixed point (black) controls the second-order transition. The
region g, < |gi| corresponds to the mechanical instability of the
system, and, thus, describes a first-order transition. The separatrix
|g1| = g2, which separates two regions (red line), corresponds to the
SmA line, and is controlled by the Sm fixed point.
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From the global phase diagram perspective (see Fig. 2), we
thus find that the phase transition is continuous for g; < 0
(controlled by the SmAC critical point in the region of
mechanical stability, g» > |g1|; in the region g, < |g/[, higher-
order terms are needed to stabilize a theory, and a transition
is automatically first order) and is driven by fluctuations to be
first order for g; > 0. The two regimes are then separated by
the inversion-symmetric tricritical IS point at g; = 0.

The other critical point is the unstable Sm fixed point,
characterized by —g; = g, > 0 or, equivalently, B32 = By B4.
We note that in this coupling subspace, the nonlinearities
assemble into a complete square of a nonlinear strain tensor

B B B
5 (@)’ — f(afuxvlu)z + ;“(vm“

_ B 1,/B4v 3k 44
_E rM—E E( Lu) , (44)

that after an inconsequential rescaling of the phonon u reduces
to a fully rotationally invariant nonlinear smectic elasticity,
Eq. (38). We note that from Eq. (27) we find that § = g + g
flows according to

dg g

— =g — —(17 18g2), 45

70 = 68— 7 (1781 + 18g2) (45)
ensuring that the smectic line g = 0 (defined by full nonlinear
rotational invariance, g, = —g») is preserved. Examining

Egs. (27) and (28) we further note that this Sm fixed point
is stable inside the —g; = g, = g, r = 0 subspace (the flow of
r reduces to a homogeneous equation), with the flow reducing
to that of a single coupling g

dg 5,

— =¢eg— g%, 46

70 8718 (46)
and harmonic couplings

dB(¢)

g = (D= 1-2+2x — g()BQ). (472)
% = <D — 54742+ %g(é))K(ﬁ). (47b)

The Sm fixed point, previously studied in Refs. [23,49],
is given by g* =4¢/5, x = 3¢/5, ng = 4¢/5, nx = 2¢/5,
and z = 2 — 3¢/5. As its name implies, it actually describes
strongly-fluctuating finite 7" properties of a D-dimensional
smectic-A, which is thus an example of a “critical phase” [49].

This Sm fixed point is an e-expansion approximation for
a two-dimensional smectic. As was shown by Golubovic
and Wang [22,23], remarkably, the universal exponents of a
D = 2 smectic can be obtained exactly through its mapping
onto nonequilibrium dynamics of a 1+1-dimensional Kardar-
Parisi-Zhang (KPZ) equation [24]. The exponents for the latter
were deducedtobe x = 1/2,z = 3/2, exactly [50]. Curiously,
an uncontrolled one-loop approximation done directly in
D = 2 smectic also gives these exponents exactly [23].

We utilize RG flows (46) and (47) to compute the long-scale
smectic phonon correlation function, finding

T

Cky k)~ )
(kioke) B(KK2 + K (K)k*

(48)
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with moduli B(k) and K (k) that are singularly wave-vector-
dependent. These moduli are determined by the solutions B(£)
and K (¢) of the RG flow equations (47a) and (47b), with the
initial conditions set by the microscopic values of B and K.
In D = 2 (implying ¢ = 1), the scale at which the nonlin-
earities become important is given by V- = %(%3)1/2 [49].
At scales longer than V%, the nonlinear coupling g(¢) flows

to the Sm fixed point g* = 4/5, and the RG matching analysis
predicts anisotropic wave-vector-dependent moduli

Kk) = Kk &)™ fo (ke ENF [k EVFY),

~ k", (49a)
B(k) = Bk £Y5)" fu (k&N [k EV)),
~ kM (49b)

with universal scaling functions, fp(x), fx(x) that we will not
compute here. The anomalous exponentsin D = 2 (¢ = 1) are
given by

np=g" =%, (50a)
Nk = 18" =2, (50b)
z=2—1p+nx) =1 (50c)

The underlying rotational invariance of the Sm fixed point
gives an exact relation between the two anomalous 7p g
exponents

ng 3
-D=—+= 1
3 > + K (Sla)
3
12”7%5,7,{, for D =2, (51b)

which is obviously satisfied by the anomalous exponents,
Egs. (50a) and (50b), computed here to first order in & =
3 — D.In D = 3, this analysis reduces to the exact logarith-
mically renormalized B(k) and K (k) found by Grinstein and
Pelcovits [20].

V. SUMMARY AND CONCLUSIONS

To summarize, we studied the quantum Ising ferromagnetic
transition in a one-dimensional system of itinerant electrons.
Starting with a microscopic model of a quantum wire with
Rashba spin-orbit coupling, we derived a bosonized effective
low-energy theory that governs the transition. To analyze the
theory, we used a renormalization group approach, controlled
by an € expansion. We showed that in the general case, when in-
version symmetry is absent, strong spin fluctuations necessar-
ily drive the transition first order, in contrast to the inversion-
symmetric case and the predictions of Hertz-Millis theory.

While in the present paper we consider a 1d bosonized
model, we conjecture that the first-order transition is a
qualitative property that extends to two- and three-dimensional
itinerant ferromagnets without inversion symmetry. This con-
jecture serves as a motivation for future study of the nature of
quantum ferromagnetic transition in higher dimensions.

As a byproduct of our analysis, we demonstrated that the
imaginary time D = 1 4 1| action of the ferromagnetic wire

094419-10



FERROMAGNETIC TRANSITION IN A ONE-DIMENSIONAL ...

can be mapped onto the problem of a two-dimensional smectic-
A to smectic-C transition in a magnetic field. The range of
parameters in the latter problem, however, is inaccessible for
the problem of a ferromagnetic transition, and thus leads to
qualitatively different physics. In particular, we showed that
the Sm-A to Sm-C transition in two dimensions is second
order, controlled by a newly found stable critical point.

Finally, we constructed the global phase diagram for a
bosonic field theory that describes both ferromagnetic and
Sm-A to Sm-C phase transitions. We demonstrated that a
region of the first-order transition, g; > 0, is separated from
the continuous transition, 0 < —g; < g», by a tricritical point
at g; = 0, which describes the FM transition in the presence
of inversion symmetry.
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APPENDIX: DERIVATION OF RG EQUATIONS

In this Appendix we demonstrate the derivation of RG
equations (25). We focus on the FM transition which is
described by the effective action (15). To obtain the description
of Sm phases, it is sufficient to substitute B3 — i B3.

To calculate the one-loop corrections to the RG equations,
we start with a bare Green’s function Gy(w,Kk),

1
Bw? 4+ rk? + Kk*’
and treat the nonlinear terms, B3 and By, as a small perturba-
tion. Next, integrating out high momenta modes in the shell
Ae ¥ < k. < A, —00 < w < 00, wWe obtain corrections to
the parameters of the effective action (15), see Sec. III for
details. The one-loop calculation is somewhat tedious but

straightforward.
The correction to B is given by a single diagram:

Go(w.k) =

(AD)

_Bi/m dw/A ddk‘ ]{34
2 oo 21 Jae—se (2m) (Bw? + rk? + Kk*)2

(A2)
et B2

B Bg/ dwd®k B
2 L (2m)d 1 (Bw? + k2 4+ KkY)2  BY2(K 4 7)3/2

~adl,

where we defined 7 = r/A?, y; = S;A972/8(2m), and Sy is the area of the sphere of unit radius in d dimensions. For integer
dimensions, it is given by S} = 2, S, = 27, 3 = 47 etc. We also use a short notation |_ dodk...= ffooo dw f/i\e,af d?k . .. for

a momentum shell integration hereafter.
The correction to Bj is given by two diagrams:

BB 2 dwdk et 2 B3By
6B = S i / = (14+2) 3220 60,
3 2 3 > (2m)4+ (Bw? + rk? + Kk*)2 3 BY/2(K +7)3/2 7% (A3)
4 dwd?k; wk* 2 B3
sB? — :_7]3,3/ -z 3 o0,
3 A8 ). @r)#T (Bw? + k2 + Kk)?  d B2(K +7)3/2 (Ad)
Summing them up, we find
Bsyas¢

5B; = 6B\ + 5B = 3vd [(d +2)B, B, + 2B2]. (AS)

"~ B2(K + )2
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The correction to By is given by three diagrams:

2 9 d 4 2 9 32
5B = — e B [ S : L . A
2d(d + 2) o (2m)#T (Bw? + rk? + Kk*)? d(d+2) BYV2(K +7)3/2
@ _ P o I / dwd’k w?k* ., d+8 B3B,
0B = B 8d(d+2) 374 [ (2m)d+T (Bw? + rk? + KkY)? 4d(d+2) B3/2(K + 7 )S/ﬂ"(% (A7)
, 48 dwdk wik? 12 B}
5B = = B / = 3 50. (A8
4 d(d+2)7? ). (2m)d+! (Bw? 4 rk2 + Kk4)4 d(d +2) BY2(K + )32 ¢ (A8)

After summation, we find

Yadl
B32(K +F)32d(d +2)
The correction to K is obtained from the same diagram as the correction to B. However, now the external legs of the diagram
correspond to spatial derivatives of the field 6, 850, rather then time derivatives, as in the case of B. Furthermore, since K couples

to the square of the second derivative, one needs to expand the exact expression for this diagram to the next-to-leading order in
slow external momentum. The result reads as

5By =8B + 8B + 5B = — [(@* + 6d 4 20)B>B? + 4(d + 8)BB4B} + 12B5]. (A9)

B2~460 (2K +7)(K +7) 372
K = =— 3 - .
g 2B (K + 7)) d dd+2) (A10)

Finally, there are three contributions to the correction to 7. Two of them can be calculated directly from the one-loop
diagrams:

1 dwd?k k2 2 B
571 = —(1 ByA~ / =2(1+4 2 ) w75 7adt,
' "2 +s d) 2m)4+ Bw? + rk? + Kk* 3) BiRK £z

(Al1)

dwd®k w2k? 4 B2
= ’B A / y 8L
7 3 2m)d+1 (Bw? + rk2 + Kk4)2 dB5/2(K T )1/2%1 (A12)

To obtain the third contribution, we consider the diagram that generates a new term in the effective action, i (6r;/2)0d.0:

5 - dwd?k K L, BN o
ry = = —B;s - @M@ T B +rk2 + Kk*  BUV2(K +7 )1/2%1 (A13)

This term describes the correction to the average spin current and can be absorbed by shifting 9.0 — 9.6 — iér,; /2B (or,
equivalently, 6 — 0 — itdr;/2B), such that 9.6 always describes deviation from the average spin current, i.e., (3;6) = 0. This
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extra step of RG, however, generates an additional correction to 7, which reads as

§F® = —

335}”11\72 .

2B

After summation, we find

87 = 87D 4 57 + 67 = 2<1 +=

2
3
BRK TP vast. (Al14)
2\ BBs+B;
d) FAK 7P Yadl. (A15)

Collecting together Egs. (A2), (A5), (A9), (A10), and (A15) we exactly obtain the one-loop part of the RG set of equations (25).
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