
PHYSICAL REVIEW B 96, 094418 (2017)

Dynamic simulation of structural phase transitions in magnetic iron
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The occurrence of bcc-fcc (α-γ ) and fcc-bcc (γ -δ) phase transitions in magnetic iron stems from the interplay
between magnetic excitations and lattice vibrations. However, this fact has never been confirmed by a direct
dynamic simulation, treating noncollinear magnetic fluctuations and dynamics of atoms, and their coupling at a
finite temperature. Starting from a large set of data generated by ab initio simulations, we derive noncollinear
magnetic many-body potentials for bcc and fcc iron, describing fluctuations of atomic coordinates in the vicinity
of near perfect lattice positions. We then use spin-lattice dynamic simulations to evaluate the difference between
the free energies of bcc and fcc phases, assessing their relative stability within a unified dynamic picture. We
find two intersections between the bcc and fcc free energy curves, which correspond to the α-γ bcc-fcc and γ -δ
fcc-bcc phase transitions. The maximum bcc-fcc free energy difference over the temperature interval between
the two phase transitions is 2 meV per atom, in agreement with other experimental and theoretical estimates.
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I. INTRODUCTION

Pure iron undergoes bcc-fcc (α-γ ) and fcc-bcc (γ -δ) phase
transitions at temperatures Tα-γ = 1185 K and Tγ -δ = 1667 K,
respectively. They occur in the interval between the Curie
temperature TC = 1043 K and the melting temperature TM =
1811 K. These transitions have exceptionally significant prac-
tical implications as they are responsible for the formation of
martensite in steels, and hence represent the most fundamental
phenomena underpinning steel manufacturing and modern
metallurgy. It has long been speculated that α-γ -δ phase
transitions in iron stem from the interplay between magnetic
excitations and lattice vibrations. Still, there is no evidence,
derived from a direct simulation, confirming this assertion.
The position is somewhat unsatisfactory as it leaves open
the question of whether, using the available modern materials
modeling concepts and algorithms, it is actually possible to
discover a magnetism-driven structural phase transition by
exploring the dynamics of a discrete atomistic model.

Hasegawa and Pettifor [1] investigated the relative stability
of bcc, fcc, and hcp phases of iron as a function of temperature
and pressure. They concluded that the relative stability of
phases was primarily determined by the magnetic free energy
contribution. Since they used a single-site spin-fluctuation
approximation, which is a mean-field approach where the
short-range magnetic order (SRMO) is neglected, the predicted
phase diagram was rather qualitative than quantitative.

Recent experiments [2], which explored phonon dispersion
in iron at high temperatures, showed that the stabilization of the
high-temperature bcc δ phase is due primarily to vibrational
entropy, whereas the fcc γ phase is stabilized by the fine
balance between electronic and vibrational entropy contribu-
tions. This agrees with calculations performed using Monte
Carlo magnetic cluster expansion (MCE) [3,4]. Although in
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the MCE the phonon contribution to the free energy is derived
from experimental data, the MCE analysis shows that magnetic
excitations change the sign of the free energy difference
between the bcc and fcc phases �F fcc-bcc, and stabilize the
γ phase. The bcc δ phase becomes more stable again at higher
temperatures, because the lattice vibrational part of the free
energy at high temperatures is greater than the part associated
with magnetic excitations.

Several recent studies of the phase stability of iron are
based on ab initio calculations [5–8] or the tight-binding
Stoner model [6,7,9]. Most of them explore the stability
of phases at 0 K, since this is a limitation associated with
conventional applications of density functional theory (DFT).
Treating magnetism in the framework of a tight-binding
model is also not trivial since the fully noncollinear version
of the tight-binding model Hamiltonian, including on-site
interactions between electrons that gives rise to spin and
orbital magnetism, has been derived only recently [10]. In
principle, the Coury Hamiltonian [10] should enable fully
self-consistent noncollinear magnetic dynamic simulations
of atoms and magnetic moments, treated at the electronic
scale.

Several approaches have been developed to describe finite-
temperature magnetic excitations using ab initio techniques,
see Ref. [11] for a review. The disordered local moments
(DLM) [12–15] approximation assumes randomly distributed
collinear up and down oriented magnetic moments, to imitate
a fully magnetically disordered paramagnetic (PM) state of a
material. It has been applied to modeling bcc-fcc [12] and
bcc-hcp [15] transitions. To treat temperatures lower than
TC , where iron is in a partially ordered ferromagnetic (FM)
state, partial or uncompensated DLM appromations [13–15]
were proposed, where the net magnetization is constrained
to a fixed value, matching experimental observations. This
approach reproduces the elastic anisotropy of iron and Fe-Cr
alloys [13]. However, the notion of SRMO remains undefined
as the DLM approximation neglects magnetic noncollinearity.
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Recently, Leonov et al. [16–18] investigated the stability
of phases in iron using a combination of DFT and dy-
namic mean field theory (DMFT). The treatment involved
an explicit consideration of temperature-dependent electron
correlations. In the DMFT formalism, excitations associated
with electron-electron interactions were treated using a single-
site mean-field approximation, and neither collective magnetic
excitations nor the SRMO were taken into account.

SRMO can be treated in the random phase approximation
(RPA) combined with rescaling [19]. This approach was
applied to evaluate magnetic, electronic and phonon contri-
butions to the free energy, and also to assess the pressure
dependence of TC [20] in iron. The treatment has also been
extended to quantum effects by rescaling the available classical
solutions [21]. However, the mean-field nature of the approach
gives rise to the predicted value of TC that is higher than the
observed value. An alternative approach to modeling SRMO
is the spin-wave method [22].

SRMO can be simulated using ab initio spin dynamics (SD)
[23–26] combined with constrained noncollinear calculations
[27–32]. However, this is a computationally highly demanding
approach, applicable only to relatively small systems. A more
practical way of treating SRMO is to derive parameters from
ab intio data and perform atomic scale SD [33,34] or Monte
Carlo [3,4,35,36] simulations.

In the treatment of structural phase transitions, magnetic
and phonon excitations, as well as coupling between them,
appear significant. Körmann et al. proposed a spin space
averaging procedure [37,38] to evaluate effective interatomic
forces at a finite temperature by interpolating wave functions
between the FM and PM states and performing statistical
averaging over many magnetic microstates. The procedure
was applied to modeling phonon spectra and changes in those
spectra due to magnon-phonon interactions.

Conventional many-body interatomic potentials for molec-
ular dynamics (MD) treat only the atomic degrees of freedom.
Most of the potentials [39–43] are fitted to ab initio data at
0 K. Although some were successful [39] in reproducing bcc,
fcc, and hcp phases at various temperatures and pressures,
they required adjusting the energies of fcc and hcp structures
to compensate for the absence of an explicit treatment of
magnetic effects. Improvements in the functional forms of
interatomic potentials were proposed [44–46], but they still
did not include magnetic degrees of freedom explicitly, and
did not treat thermal magnetic fluctuations.

There were partially successful attempts to incorporate
magnetic states explicitly in MD. For example, Lian et al.
[47] performed ab initio MD simulations to obtain phonon
dispersion curves of γ and δ phases of iron over a range
of temperatures. However, only the antiferromagnetic state
(AFM) was used to represent the PM configuration. Alling
et al. [48] performed DLM+MD to study the effect of atomic
vibrations on magnetic properties. No equations of motion
for magnetic moments were considered, and the dynamics
of magnetic excitations was modeled as stochastic spin flips.
This leads to conceptual difficulties in the treatment of
thermalization of atoms and spins.

In this study, we use spin-lattice dynamics (SLD) [49,50]
to study structural phase transitions in magnetic iron. SLD
treats the dynamics of lattice and magnetic subsystems within

a unified framework. Lattice and spin temperatures [51] can
be well controlled through Langevin thermostats [34,52,53].
SLD also treats anharmonicity and coupling between lattice
vibrations and magnetic excitations. SLD is an efficient and
versatile simulation approach, and it has been recently applied
to a variety of phenomena including anomalous self-diffusion
in iron [54,55], magnetic excitations in thin films [56], and
other magnetic phenomena [57–60].

To assess the relative stability of phases, it is necessary
to compute the magnetic free energy, where the treatment of
SRMO is critically important [22,38]. The SRMO is treated
by SLD through the use of dynamic spin equations of motion.
In this work, interatomic interaction parameters for SLD sim-
ulations are derived from ab initio calculations, and are given
in the form of a noncollinear magnetic many-body potential.
Using SLD simulations, we are able to evaluate contributions
to the total free energy from lattice and spin excitations as
functions of temperature. By a direct simulation, we find α-γ
and γ -δ phase transitions, which correspond to changes of
the sign of �F fcc-bcc. The maximum free energy difference
between bcc and fcc phases over the temperature interval
between the two phase transitions is close to 2 meV per atom.

II. FREE ENERGY CALCULATIONS

We calculate the Helmholtz free energy using the NVT
ensemble. We use two complementary techniques to carry out
free energy calculations, the umbrella sampling and adiabatic
switching thermodynamic integration. Both methods are well
established but they have not yet been applied to the treatment
of phase transitions in magnetic systems. Brief summaries
of the techniques are given below. We also evaluate the free
energy of a harmonic oscillator and a Landau oscillator in the
classical limit, and outline our sampling procedure.

Since we only treat the classical limit, our results are
valid at temperatures that are sufficiently high, close to, or
above, approximately one-third of a characteristic temperature
of a particular subsystem, the Debye temperature for lattice
vibrations and the Curie or the Néel temperature for magnetic
excitations. Low-temperature classical results are only given
for completeness, and they should not be treated as predictions.
A quantum treatment, not considered below, should be applied
if one is interested in the accurate low temperature values.

In the lattice case, the average number of phonons in mode
k, 〈nk〉, is given by the Planck distribution, where at sufficiently
high temperatures

〈nk〉 + 1

2
= 1

exp
(

h̄ωk

kBT

) − 1
+ 1

2

≈ kBT

h̄ωk

+ 1

12

(
h̄ωk

kBT

)
+ · · · .

Taking as an estimate h̄ωk ∼ kBTD , we see that the classical
treatment applies at T � TD/

√
12 ≈ TD/3.5. The Debye

temperature of iron is close to 470 K. Therefore we see that the
temperature range of validity of classical molecular dynamics
is defined by the condition T > 135 K [61]. A broadly similar
argument can also be applied to magnetic excitations, which
we treat classically at temperatures above approximately one
third of TC or TN .
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A. Umbrella sampling

Umbrella sampling [62] is a biased sampling technique. It is
a re-weighting technique for evaluating the difference between
free energies of a reference and a target state. It is particularly
useful for sampling metastable states.

We start by considering two classical Hamiltonians H0 and
H1, and their difference:

δHum = H1 − H0. (1)

The ensemble average or, equivalently, the expectation value
of an observable O in a configuration defined by Hamiltonian
H0 at a particular temperature T is

〈O〉0 =
∫
O exp(−βH0)d�∫
exp(−βH0)d�

, (2)

where β = (kBT )−1 and d� is an element of volume in clas-
sical phase space, which in this instance has 9N dimensions,
and includes position vectors of all the atoms, their kinematic
momenta, and vectors of all the atomic magnetic moments.
Substituting (1) into (2), we arrive at

〈O〉0 = 〈O exp(βδHum)〉1

〈exp(βδHum)〉1
. (3)

This formula recasts the calculation of an ensemble average
of a classic observable O over an equilibrium state defined
by Hamiltonian H0 into calculations of ensemble averages of
O exp(βδHum) and exp(βδHum) over thermodynamic equilib-
rium defined by another Hamiltonian H1.

This shows a way of evaluating the difference between
free energies associated with two classical Hamiltonians H0

and H1. For example, the free energy corresponding to
Hamiltonian H0 can be written as

F 0 = −kBT ln
∫

exp(−βH0)d�

= −kBT ln
∫

exp(−β(H0 − H1 + H1)d�

= −kBT ln
∫

exp(βδHum − βH1)d�

= −kBT ln

{[∫
exp(βδHum − βH1)d�∫

exp(−βH1)d�

]

×
∫

exp(−βH1)d�

}

= −kBT ln〈exp(βδHum)〉1 + F 1. (4)

Hence the difference between the free energies of two
equilibrium configurations defined by Hamiltonians H0 and
H1 equals

δFum = F 1 − F 0

= kBT ln〈exp(βδHum)〉1. (5)

If one of the free energies F 1 is known, the other free
energy F 0 can be computed by sampling the phase space with
thermodynamic weights defined by H1, and no independent
averaging over thermodynamic equilibrium defined by H0 is
required.

B. Adiabatic switching thermodynamic integration

Another technique for evaluating free energy differences
is the adiabatic switching thermodynamic integration method
[63–65]. It is a nonequilibrium technique that has superior
efficiency as well as controlled systematic error in comparison
with standard thermodynamic integration [66,67].

In a standard thermodynamic integration approach, for any
two Hamiltonians H0 and H1, we can define a Hamiltonian
that is a linear combination of the two, namely,

Ht i(λ) = (1 − λ)H0 + λH1, (6)

where λ is a switching parameter varying from 0 to 1.
The difference between Hamiltonians H1 and H0 equals the
derivative of Ht i with respect to λ:

δHt i = H1 − H0 = ∂Ht i

∂λ
. (7)

The free energy difference between the initial (λ = 0) and
final (λ = 1) states can be calculated as an integral over the
switching parameter, namely,

δFti = F 1 − F 0 =
∫ 1

0
〈δHt i〉λdλ. (8)

Brackets 〈· · · 〉λ correspond to taking an ensemble average
with respect to Ht i(λ). The free energy difference equals the
reversible work done by the thermodynamic driving force
∂Ht i/∂λ along the transformation pathway.

In the adiabatic switching approach, this average is eval-
uated using a dynamic simulation, imposing the chain rule
dλ = (∂λ/∂t)dt and adopting a time-dependent switching
function [68],

λ(τ ) = τ 5(70τ 4 − 315τ 3 + 540τ 2 − 420τ + 126), (9)

where τ = t/ttot, t is the elapsed time and ttot is the total
switching time. If t = 0 then λ = 0, and if t = ttot then λ = 1.

The free energy difference is estimated using a dynamic
sequence of nonequilibrium states. One needs to be careful
about the systematic error due to the irreversible nature of the
nonequilibrium process, where heat dissipation is responsible
for a part of the irreversible work done along the transformation
pathway [67]. The above functional form gives rise to less
dissipation during switching [66,68]. This point is explored in
more detail in Appendix C.

C. Harmonic oscillator and Landau oscillator

We use two reference states in the free energy calculations.
A harmonic oscillator is used as a reference state for the
treatment of lattice vibrations. A Landau oscillator is used
as a reference state for the treatment of magnetic excitations.

The Hamiltonian of a three-dimensional harmonic oscilla-
tor is

HHO = p2

2m
+ 1

2
mω2x2 + C, (10)

where p is the kinematic momentum, x is the displacement,
ω is the frequency, m is the mass, and C is a constant. In the
classical limit, the free energy can be evaluated analytically as

FHO = −3kBT ln

(
kBT

h̄ω

)
+ C, (11)
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where the Planck constant is introduced for dimensional
convenience. In what follows, we assume that ω equals the
Debye frequency of iron, h̄ω = kBTD , where TD = 470 K.

The Landau spin Hamiltonian has the form

HLO = ALOS2 + BLOS4, (12)

where ALO and BLO are constants, and S is a dimensionless
spin vector. The free energy of magnetic excitations in the
Landau approximation can be written as

FLO = −kBT ln

(
4π

∫ ∞

0
exp(−βHLO)S2dS

)
, (13)

where S is the magnitude of S. In this work, we choose ALO =
−1.184 eV and BLO = 0.578 eV to match the spectrum of
longitudinal magnetic excitations [34]. The value of FLO is
computed numerically at various temperatures.

Hamiltonians HHO and HLO defined above refer to an
individual atom and an individual spin. In the calculations
below, we use HHO and HLO to represent all the atoms and
spins, assuming that in the reference state they are independent
of each other.

D. Sampling procedure: MD

In an MD simulation, the free energy is evaluated using the
umbrella sampling. The full lattice Hamiltonian has the form

Hl =
∑

i

p2
i

2m
+ U (R), (14)

where U (R) is the interatomic potential, R = {Ri} are the
coordinates of all the atoms, and p = {pi} are the kinematic
momenta.

The free energy of the lattice system can be computed using
Eq. (4) and sampling over the thermodynamic equilibrium of
harmonic oscillators, namely,

Fl = FHO − δFl, (15)

where

δFl = kBT ln〈exp(βδHl)〉HO, (16)

and δHl is defined as

δHl = HHO − Hl

=
∑

i

(
1

2
mω2x2

i + C

)
− U (R). (17)

Here, xi is the displacement of atom i from its position in
the lattice R0

i , i.e., xi = Ri − R0
i . The value of constant C is

chosen to minimize the variation of δHl . A suitable choice of
C helps ensure the numerical stability of umbrella sampling
by eliminating large numerical values in the argument of
exponential function in Eq. (16). Technically, we find a suitable
value of C by increasing or decreasing it, depending on the
magnitude of δHl , during the thermalization process. Once
thermalization is accomplished, we fix the value of C for the
subsequent sampling. It is necessary to evaluate C in different
situations because of the anharmonicity of interaction between
the atoms at different temperatures and configurations.

Sampling is performed using dynamic Langevin thermostat
simulations [52,53] that generate the correct equilibrium

energy distribution, assuming ergodicity. Langevin equations
of motion have the form

dRi

dt
= pi

m
,

dpi

dt
= Fi − γl

pi

m
+ fi , (18)

where the regular component of the force acting on atom i is

Fi = −∂HHO

∂Ri

. (19)

The damping constant γl and the fluctuating force fi are
related via the fluctuation-dissipation theorem [52,53], namely,
〈fαi(t)fβj (t ′)〉 = 2kBT γlδαβδij δ(t − t ′), where indexes α and
β refer to Cartesian coordinates x, y, and z. By following
the above procedure, we sample over the thermodynamic
equilibrium defined by the Einstein model for a solid, where
lattice sites are ordered as a bcc or fcc lattice.

A major advantage of umbrella sampling is that it over-
comes the difficulty associated with sampling the spectrum of
excitations of an unstable or metastable structure. For example,
the recently developed interatomic potentials for iron [40,41]
predict a stable bcc phase. The fcc phase is unstable, but
since sampling is performed over an equilibrium defined by
suitably spatially ordered harmonic oscillators, the fact that
the crystal structure is unstable has no effect on the stability
of the numerical procedure.

Furthermore, umbrella sampling is a biased sampling
method. It is efficient when the phase spaces of the reference
and target states are similar, which is the case of harmonic
oscillators and atomic motion driven by forces derived from
a many-body potential. On the other hand, if one applies
adiabatic switching from harmonic oscillators to many-body
potential, a metastable crystal structure may experience struc-
tural instability at the end of the switching process, and cause
failure in a calculation.

E. Sampling procedure: SLD

In a spin-lattice dynamic (SLD) simulation, we adopted a
two-step approach to free energy calculations. We use umbrella
sampling, followed by adiabatic switching. We write the spin-
lattice Hamiltonian as a sum of the lattice and spin parts,

Hsl = Hl + Hs , (20)

where the spin part Hs = Hs(R,S) depends on atomic co-
ordinates R and atomic spin vectors S = {Si}. Since we use
different functional forms to represent the Hamiltonians, in
what follows we discuss the choice of the specific functional
forms adopted in simulations.

First, we apply the umbrella sampling. We define an
auxiliary Hamiltonian,

HHO,s = HHO + Hs , (21)

which is a sum of the harmonic oscillators Hamiltonian and
the spin Hamiltonian. The difference between this Hamiltonian
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and the exact Hamiltonian is

δHl = HHO,s − Hsl (22)

=
∑

i

(
1

2
mω2xi + C

)
− U (R). (23)

Notably, this expression is exactly the same as that investigated
in connection with the pure MD analysis. Sampling can again
be performed using Langevin thermostat simulations. Since
we now also need to take into account magnetic fluctuations,
the full set of equations now includes equations of motion for
the spins [34]:

dSi

dt
= 1

h̄
[Si × Hi] + γsHi + ξ i , (24)

where the damping constant γs and the stochastic spin
force ξ i are related via the fluctuation-dissipation theo-
rem 〈ξαi(t)ξβj (t ′)〉 = 2kBT γsδαβδij δ(t − t ′). The effective ex-
change field acting on spin i is

Hi = −∂HHO,s

∂Si

. (25)

Forces acting on atoms in (18) now depend on the orientation
of atomic spins,

Fi = −∂HHO,s

∂Ri

. (26)

Similarly to the MD case, we evaluate the difference
between the free energies of an equilibrium configuration
defined by the spin-lattice Hamiltonian, and a configuration
defined by the auxiliary Hamiltonian

δFl = FHO,s − Fsl (27)

= kBT ln〈exp(βδHl)〉HO,s . (28)

At the second step, we perform adiabatic switching. We
define a reference Hamiltonian

HHO,LO = HHO + HLO, (29)

which is a sum of the harmonic oscillators Hamiltonian and
the Landau Hamiltonian. The difference between the reference
and the auxiliary Hamiltonians is

δHs = HHO,LO − HHO,s (30)

= HLO − Hs . (31)

The Hamiltonian required for carrying out adiabatic switching
can be written as

Ht i(λ) = HHO + (1 − λ)Hs + λHLO. (32)

Langevin equations of motion remain unchanged, but the
effective field and the force now depend on the integration
parameter λ, namely,

Hi = −∂Ht i(λ)

∂Si

, (33)

Fi = −∂Ht i(λ)

∂Ri

. (34)

The free energy difference between the equilibrium states
defined by the auxiliary and reference Hamiltonians is

δFs = FHO,LO − FHO,s (35)

=
∫ 1

0
〈δHs〉λdλ. (36)

Combining the results derived using the umbrella sampling
and adiabatic switching, we find the free energy of the equi-
librium configuration defined by the spin-lattice Hamiltonian

Fsl = FHO,LO − δFl − δFs. (37)

We note that this free energy Fsl can be represented as a sum:

Fsl = Fl + Fs, (38)

where

Fl = FHO − δFl,

Fs = FLO − δFs. (39)

The above expression has a clear meaning, since Fl represents
a part of the free energy associated primarily with lattice
excitations, whereas Fs is a part of the free energy derived
primarily from spin fluctuations. Since the spin and lattice
degrees of freedom are coupled, and we sample through an
auxiliary step, it would be inaccurate to interpret Fl and
Fs as independent contributions from the lattice and spin
subsystems. However, the two quantities still provide some
qualitative insight into the relative magnitude of contributions
by the two coupled subsystems to the total free energy.

The use of a two-step approach is essential for performing
an accurate evaluation of the free energy of a spin-lattice
system. As noted above, umbrella sampling overcomes the
difficulty associated with sampling a metastable crystal struc-
ture. However, since the reference Hamiltonian of the spin
subsystem is a set of Landau oscillators corresponding to
noninteracting magnetic moments, its phase space does not
resemble a system of interacting magnetic moments, especially
in the limit of low temperatures where magnetic moment-
moment correlations are strong. Even at temperatures higher
than the Curie temperature, the moment-moment correlations
do not vanish [50]. In principle, the umbrella sampling method
can tackle this issue through extensive sampling, but it is more
computationally expedient to use adiabatic switching when
calculating the free energy difference between the spin states.

The choice of an auxiliary Hamiltonian is nontrivial. If
we choose Hl,LO = Hl + HLO as the auxiliary Hamiltonian,
when we perform adiabatic switching to calculate the free
energy difference betweenHsl andHl,LO, the lattice subsystem
may experience instability during the calculation. The current
choice of the auxiliary Hamiltonian HHO,s allows us to apply
umbrella sampling to the lattice subsystem and adiabatic
switching to the spin subsystem. It ensures the stability of
crystal lattice and computational efficiency of the free energy
calculations.
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III. SIMULATIONS PERFORMED USING PUBLISHED
SETS OF PARAMETERS

Using the methods described above, we performed MD
and SLD simulations, using parameters taken from literature.
All the simulations were performed using our MD and SLD
program SPILADY [69]. We used cubic simulation cells
containing 16000 atoms in the bcc case and 16384 atoms in
the fcc case. We explored temperatures in the range from 1 K
to 1400 K. For each temperature, we simulated samples at nine
different volumes, close to an assumed equilibrium volume.
A third-order polynomial was then fitted to the calculated
free energies. The equilibrium volume was determined from
the minimum of the polynomial. All the values given below
are the interpolations corresponding to the equilibrium vol-
ume. The initial, guessed, equilibrium volume was estimated
using the same approach, starting from a larger interval of trial
volumes.

In Fig. 1, the free energy, computed using SLD simulations,
is plotted as a function of volume for bcc crystal structure at

FIG. 1. Free energies of bcc iron computed using spin-lattice
dynamics for T = 300 and 1000 K as functions of volume. The fitted
curve shown in red is a third-order polynomial. The dotted curves
shown in blue illustrate the standard deviation of the fitted curve,
shown in red.

T = 300 and 1000 K. The polynomial fit interpolates between
the data points fairly well, although fluctuations are larger at
higher temperatures, affecting the accuracy of evaluation of the
equilibrium lattice constant. The dotted blue curves show the
standard deviation computed for the fitted curve, shown in red.
Standard deviation is evaluated using the covariance matrix of
coefficients of the polynomial. The position of the free energy
minimum remains accurate at the sub-meV accuracy level, as
illustrated by the scale of the y axis.

All the simulation cells were thermalized to equilibrium
before sampling. In MD, 100 000 data points are used for
umbrella sampling. In SLD, 200 000 data points are used in
umbrella sampling, and the total switching time in adiabatic
switching is 0.2 ns. The Marinica iron potential [40,41] is used
in MD and SLD simulations. SLD simulations are based on
the spin Hamiltonian of the form [34,50]:

Hs = −1

2

∑
i,j

Jij (Rij )(Si · Sj − |Si ||Sj |)

+
∑

i

(
AiS2

i + BiS4
i

)
, (40)

FIG. 2. Equilibrium lattice constants of bcc and fcc phases as
functions of temperature, computed using MD and SLD simulations.
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FIG. 3. Magnetization as a function of temperature, computed
using SLD simulations.

where Jij is the exchange coupling function, and Ai and Bi are
the Landau coefficients for atom i. The form of Hs guarantees
that the energy difference between bcc and fcc structures at 0 K
is the same as in a calculation performed using a nonmagnetic
MD potential.

We assume that Jij is a pairwise function depending
only on the distance between atoms i and j . It has the
form Jij (r) = J0(1 − r/rc)3�(rc − r), where J0 = 0.92 eV
and rc = 3.75 Å. The value of J0 is slightly larger than the
one derived in Ref. [50] to match the experimental value of the
Curie temperature TC . Parameters Ai = −0.744824 eV and
Bi = 0.345295 eV are the same as in Ref. [34]. We note that the
ground state of this Hamiltonian is ferromagnetic regardless
of whether the underlying crystal structure is bcc or fcc.

Figure 2 shows equilibrium lattice constants as functions of
temperature, predicted by MD and SLD simulations. Magnetic
excitations enhance thermal expansion of both bcc and fcc
structures. The curves derived from SLD simulations flatten
in the vicinity of TC (Fig. 3). Fluctuation of the curves result
primarily from polynomial fitting.

Since the same spin Hamiltonian is used in bcc and
fcc cases, they both adopt ferromagnetic ground states at
temperatures below TC . However, experimental data for fcc
iron indicate that it has a relatively low Néel temperature
TN of 67 K [70,71]. Although the precise nature of mag-
netic configuration at temperatures below TN is debatable,
the net magnetization is zero. This differs from our sim-
ulations, and we will address the issue in the following
sections.

In Fig. 4, we plotted the free energy difference between
fcc and bcc phases as a function of temperature. We define
the free energy difference as �F fcc-bcc = F fcc − F bcc. If this
value is positive, bcc phase is stable and vice versa. In MD,
�F fcc-bcc is always positive and does not approach zero even
if temperature increases. If we include magnetic excitations,
�F fcc-bcc decreases significantly. We show �F fcc-bcc

l = F fcc
l −

F bcc
l on the same graph, and �F fcc-bcc

s = F fcc
s − F bcc

s in the
inset. The free energy difference predicted by SLD simulations

(a)

(b)

FIG. 4. (a) Difference between the free energies of fcc and bcc
phases plotted as a function of temperature. Data derived from
MD and SLD are shown, with lattice and spin contributions shown
separately. (b) Standard deviation of the free energy, computed
assuming the equilibrium value of the lattice constant.

largely originates from the spin subsystem, though it is not
sufficient to stabilize the fcc phase at high temperature. We also
note that the derivative of �F fcc-bcc

s with respect to temperature
is small near the Curie temperature TC of the bcc phase.
Standard deviations of the calculated free energies are also
shown, they are all in the sub-meV range.

Although we find that the magnetic part of the free energy is
fairly large, we see that simulations that use parameters taken
from literature have no chance of success in predicting the
bcc-fcc phase transition. The main deficiency of the existing
parametrizations is that all the interatomic potentials were
fitted without considering magnetic excitations. Even if we
add a spin part to the Hamiltonian in an ad hoc manner,
this still does not fully account for the free energy contri-
bution from the spin system. A better approach to deriving
parameters for spin-lattice dynamics simulations needs to be
developed and applied, to model magnetic iron on the atomic
scale.
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IV. PARAMETRIZATION

In what follows, we present a new derivation of parameters
for spin-lattice dynamics simulations of bcc and fcc iron. We
start by fitting a nonmagnetic iron potential, and augment it by
the Heisenberg-Landau Hamiltonian.

A. Nonmagnetic iron potential

We fit a nonmagnetic iron potential using an interatomic
potential fitting program potfit [72–74]. It fits a many-body
potential to a user-defined functional form. Parameters of the
potential are fitted using the force matching method [75],
using the total energy and forces taken from ab initio data.
All of our ab initio calculations were performed using Vienna
Ab initio simulation package (VASP) [76–79] with projector
augmented wave (PAW) potentials. We use GGA-PBE [80,81]
pseudopotential with 14 valence electrons. The plane-wave
energy cutoff is 450 eV.

We first generate ab initio data for nonmagnetic iron. The
structures include perfect bcc and fcc lattices, and simulation

FIG. 5. Energy per atom computed for nonmagnetic bcc and
fcc structures using VASP and the fitted nonmagnetic interatomic
potential.

cells with rhombohedral and tetragonal distortions, at various
volumes. We also produce ab initio data for amorphous
structures, and structures containing defects. The size of
simulation cells and number of atoms in each cell depend on
the fitting requirements. The functional form and parameters
of the fitted potential are given in Appendix. Since we are
only interested in energy and free energy differences between
bcc and fcc structures, we do not discuss other features of our
nonmagnetic iron potential here.

Figure 5 shows ab initio energies of nonmagnetic bcc and
fcc phases at various lattice constants. The minimum energy of
the fcc phase is 0.312 eV lower than the minimum energy of the
bcc phase, in agreement with data from Ref. [5]. Fcc structure
is more stable when magnetism is not taken into account. The
curves computed using nonmagnetic potential appear similar,
and the energy difference is 0.317 eV. The difference between
the absolute values of ab initio data and nonmagnetic potential
data is due to different reference points. Since we take the
cutoff distance of the potential as 5.3 Å, energies of all the ab
initio data points are reduced by the energy of a perfect bcc
structure with lattice constant a = 5.3×2/

√
3 = 6.1199 Å,

where the nearest-neighbor distance is 5.3 Å. Interatomic
forces remain unaffected by this procedure.

B. Magnetic contributions

Figure 6 shows VASP data for the energies of magnetic bcc
and fcc phases at various lattice constants. In the bcc case,
we only show the data for the FM collinear ground state. In
the fcc case, there are a number of magnetic configurations
that all have comparable energies. We show ab initio data for
the FM, AFM, and double layer AFM (DLAFM) magnetic
configurations. We used one atom in the calculation of bcc-
FM case, one atom in fcc-FM case, four atoms in fcc-AFM
case, and eight atoms in fcc-DLAFM case. If we impose a
constraint and consider only collinear magnetic configurations,

FIG. 6. Energies of ferromagnetic bcc, ferromagnetic (high spin
and low spin) fcc, single layer antiferromagnetic fcc, and double layer
antiferromagnetic fcc structures calculated using VASP.
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the DLAFM state has the lowest energy. This also agrees with
ab initio results given in Ref. [5].

The energy of the FM bcc phase is now 0.11 eV lower than
that of the DLAFM fcc phase. We now need to find a way of
describing magnetic excitations using a magnetic Hamiltonian
added to the nonmagnetic Hamiltonian. This magnetic Hamil-
tonian should also describe interactions between magnetic
moments that are not explicitly evident in the VASP data.

There are various ways of describing interactions between
magnetic moments. One can use the spin spiral method [82]
or spin-cluster expansion method [83]. We choose the spin
Hamiltonian in the Heisenberg-Landau form [3,4,34],

Hs = −1

2

∑
i,j

Jij (Rij )Mi · Mj

+
∑

i

(
A(ρi)M2

i + B(ρi)M4
i

)
, (41)

where M = −gμBSi is the magnetic moment of atom i, g =
2.0023 is the electron g factor, μB is the Bohr magneton,
A(ρi) and B(ρi) are the Landau coefficients that depend on the
effective electron density ρi . This is the same ρi that enters the
nonmagnetic interatomic potential.

The first step is to calculate values of Jij from the lowest
energy state of bcc and fcc phases. The exchange coupling
functions are calculated using ab initio electronic structure
multiple-scattering formalism. We use the method and the
program developed by van Schilfgaarde et al. [84,85]. It is
based on the linear muffin-tin orbital approximation combined
with Green’s function technique (LMTO-GF). We calculated
values of parameters Jij involving various neighbours over a
range of variation of the lattice constant. Figure 7 shows the
calculated values and the fitted curves. Ab initio data for the bcc
case are smoother, whereas the data for the fcc cases are more
scattered. A possible reason is that magnetic configuration of
the collinear FM state in bcc phase is fundamentally simpler
than the DLAFM state of the fcc phase. To match the data,
we used different functional forms for the bcc and fcc cases.
The functional forms and values of parameters are given in
Appendix.

We now can extract the Landau coefficients from the VASP

data. We define a temporary Hamiltonian with no magnetic
moment interactions, assuming that on-site magnetic moments
can be treated as order parameters, i.e.,

H′
s =

∑
i

(
A′M2

i + B ′M4
i

)
. (42)

Since we know the difference between energies of magnetic
and nonmagnetic configurations (Fig. 8), and also the magni-
tude of magnetic moments on each atoms (Fig. 9) as functions
of the lattice constant, we can identify the energy difference
between magnetic and nonmagnetic states per atom as

�E = A′M2
0 + B ′M4

0 . (43)

M0 is found by solving equation ∂�E/∂M0 = 0, i.e.,

M0 =
√

−A′/2B ′ 	= 0, (44)

or M0 = 0 if the nonmagnetic state is more stable. We find
values of A′ and B ′ at various lattice constants by solving the
above equations.

FIG. 7. Exchange coupling Jij for the ferromagnetic bcc and
double layers antiferromagnetic fcc structures calculated using the
LMTO-GF method, and the fitting functions.

We now relate the values of Landau parameters to the
values of parameters of the Hamiltonian describing interacting
magnetic moments. We equate Eqs. (41) and (42) and find

AM2
i = A′M2

i + 1

2

∑
j

Jij Mi · Mj , (45)

B = B ′. (46)

Using the fitted function Jij and considering magnetic config-
urations of perfect crystals in bcc-FM case and fcc-DLAFM
case, we find the values of Landau coefficients A and B

for bcc and fcc at various volumes. Since fluctuations of
atomic magnetic moments reflect fluctuations of local electron
density, it is natural to assume that Landau coefficients are
functions of the effective electron density ρi , which is a local
quantity, defining also the local many-body potential.

These coefficients are plotted as functions of the effective
electron density ρi for perfect crystals (Figs. 10 and 11). Again,
we use different functional forms for fitting data for bcc and
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FIG. 8. Difference between energies of magnetic and nonmag-
netic states of ferromagnetic bcc and double layers antiferromangetic
fcc structures. Data are extracted from simulations illustrated in Fig. 6.

fcc cases, to match various features of the curves. Functional
forms and numerical parameters are given in Appendix. Strong
scatter of values for B(ρi) is due to the small value of M0

corresponding to small simulation cell size. We see that there
is a sharp drop of magnetic moment in the fcc-DLAFM case
in Fig. 9 if the lattice constant is less than 3.5 Å. This is
responsible for the variation of B shown in Fig. 11 in the
range ρi > 7 eV2.

Using the above procedure, we generated several sets of
parameters, which were all derived using different methods
and have different functional forms. The set of parameters
that has been selected for final simulations is the one that
matches experimental results particularly well. Although
all the parameters generate qualitatively similar predictions,
Landau coefficients may need to be adjusted through the choice

FIG. 9. Magnitude of magnetic moments computed for ferromag-
netic bcc and double layers antiferromangetic fcc structures. Data are
extracted from the simulations illustrated in Fig. 6.

FIG. 10. Landau coefficients A and B as functions of the effective
electron density ρ for bcc structures. They are computed using
LMTO-GF and VASP data and the procedure described in the text. Red
lines are fitted curves parameterized using values given in Appendix.
They are also used in spin-lattice dynamic simulations.

of fitting intervals to achieve sub-meV accuracy of free energy
calculations. In all the cases, ab initio data provide input for
the fitting procedure.

In effect, in our approach, we follow the same strategy as
the one used in fitting many-body potentials. The functional
form and numerical parameters of a many-body potential are
usually chosen to represent actual physical properties of a
material, the data derived from experimental observations and
ab initio calculations. There is no universal potential suitable
for treating all the situations and all the physical properties.
There is no universal scheme for many-body potential fitting
either. Authors of many-body potentials often add their own
features to potentials, depending on their understanding of
physical properties and the physical problems that they intend
to address. Our potentials are generated bearing in mind their
application to modeling α-γ -δ phase transitions of magnetic
iron.
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FIG. 11. Landau coefficients A and B as functions of the effective
electron density ρ for fcc structures. They are computed using LMTO-
GF and VASP data and the procedure described in the text. Red lines
are fitted curves parameterized using values given in Appendix. They
are also used in spin-lattice dynamic simulations.

V. STRUCTURAL PHASE TRANSITIONS

We calculated the free energies of bcc and fcc phases using
the above new sets of parameters. We performed both MD and
SLD simulations. In MD, we used the nonmagnetic potential,
and performed umbrella sampling calculations using 100 000
data points. In SLD, we used the nonmagnetic potential in
combination with the Heisenberg-Landau Hamiltonian, and
used the two step approach in free energy calculations. We
used 300 000 data points when performing the umbrella
sampling, and 0.2 ns as the total switching time in the adiabatic
switching procedure. Magnetic configurations of bcc and fcc
lattices were initialized to FM and DLAFM states, respectively.
We explored a large temperature interval from 1×10−5 to
2000 K. All that samples were thermalized to equilibrium
before sampling.

The most significant results of this paper are illustrated in
Figs. 12 and 13. Figure 12 shows the calculated free energies

FIG. 12. Free energy of bcc and fcc phases as functions of
temperature. Both MD and SLD results are shown.

of bcc and fcc phases at the equilibrium volume. In the MD
case, the free energy of the fcc phase is always lower than the
free energy of the bcc phase. In SLD, the bcc phase has lower
free energy at low temperature, but the curves corresponding to
bcc and fcc phases approach each other at higher temperature.
There are two intersections between the curves, which can be
seen if one follows the difference �F fcc-bcc plotted in Fig. 13.
The curve cross the zero line at around 1130 and 1600 K. These
temperatures are close to the experimentally observed values
of α-γ and γ -δ phase transitions, which occur in experiment
at Tα-γ = 1185 K and Tγ -δ = 1667 K, respectively. The free
energy difference at the minimum is close to 2 meV. This
value agrees with the MCE [3,4] and RPA [11] results, and
shows that α-γ -δ transitions are associated with fairly small

FIG. 13. Difference between free energies of bcc and fcc phases
plotted as a function of temperature, with magnetic excitations
and lattice vibrations contributions included. Calculations were
performed using a nonmagnetic potential augmented with the
Heisenberg-Landau Hamiltonian. The inset shows a magnified part
of the same figure.
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(a)

(b)

FIG. 14. (a) Lattice and spin contributions to the free energy
difference between bcc and fcc phases. (b) Standard deviation of the
free energy at the equilibrium lattice constant.

free energy differences between the competing phases, of the
order of 1 meV.

The reason for the difference between MD and SLD
simulations may be understood by considering free energy
contributions from magnetic excitations and lattice vibrations.
Figure 14 shows plots of �F fcc-bcc

l and �F fcc-bcc
s as functions

of temperature. For comparison, we also plotted �F fcc-bcc
MD

calculated using the nonmagnetic potential. The value of
�F fcc-bcc

l is similar to �F fcc-bcc
MD . Both of them increase nearly

linear as functions of temperature. On the other hand, �F fcc-bcc
s

decreases initially, but then flattens out near the Curie temper-
ature TC of the bcc phase. Hence the change of �F fcc-bcc

s is
mainly due to the degree of disorder associated with magnetic
configurations involved. At temperatures above TC , bcc phase
is in a paramagnetic state, where long range magnetic order
vanishes. Magnetic configurations of fcc and bcc phases are
similar, making the entropy difference smaller. This interpre-
tation is consistent with recent experimental observations [2]
of phonon dispersion of iron. Experimental data suggest that

FIG. 15. Magnetization as a function of temperature computed
using SLD simulations and the nonmagnetic potential augmented
with the Heisenberg-Landau Hamiltonian.

the γ phase forms as a result of interplay between electronic
(magnetic) and vibrational contributions to entropy, whereas
the δ phase is stabilized primarily by vibrational entropy.
The two crossing points result from the interplay between
free energy contributions derived from the lattice and spin
excitations. The standard deviation of the free energy remains
in the sub-meV range.

The magnetization curve of iron is plotted in Fig. 15. For the
bcc phase, the existing model predicts a relatively high Curie
temperature at around 1300 K. For the fcc case, the predicted
magnetization is zero. We investigated the Néel temperature
TN of the fcc phase by changing the value of energy per
atom as a function of temperature (Fig. 16). We thermalized
two simulation cells to 165 and 205 K. Then, we gradually
increased the temperature of the simulation cell, equilibrated
at 165 K, to 205 K. This was performed by increasing the
thermostat temperature linearly over the time interval of 4 ns.
Then, we decreased the temperature of the simulation cell,
equilibrated at 205 K, back to 165 K. We filtered the output
data by averaging over every thousand data points. We see that
the magnetic subsystem undergoes a first-order transition at
around 185 K. A jump of about 0.01 eV in the magnetic energy
is observed. The change of the total energy is fully accounted
for by the magnetic energy. The calculated TN is higher than the
experimental value of 67 K. However, such value is obtained
from experiments on small particles [70,71] where the role
of local stresses is uncertain. Besides, the temperatures of
the α-γ and γ -δ phase transitions are significantly higher
than TN .

We also show the values of equilibrium lattice constants of
bcc and fcc phases predicted by MD and SLD simulations in
Fig. 17. The addition of the spin Hamiltonian changes the value
of the equilibrium lattice constant even at 0 K. Fundamentally,
this agrees with ab initio data shown in Figs. 5 and 6. The spin
subsystem of the material affects mechanic properties through
its contribution to the total free energy.
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FIG. 16. The total energy and magnetic energy per atom as
functions of temperature calculated by gradually increasing and
decreasing the temperature of the thermostat.

VI. CONCLUSIONS

Starting from a large amount of ab initio data, we fitted
nonmagnetic many-body potentials and Heisenberg-Landau
Hamiltonians for bcc and fcc iron. We performed free energy
calculations using umbrella sampling and adiabatic switch-
ing thermodynamics integration. The free energy has been
sampled by molecular dynamics and spin-lattice dynamics
simulations. Our method provides a reasonably consistent
way of assessing the phase stability of magnetic iron within
a unified dynamic picture. It treats magnetic excitations and
lattice vibrations and their coupling in a self-consistent way.
The bcc-fcc (α-γ ) and fcc-bcc (γ -δ) phase transitions in
magnetic iron are reproduced using a newly fitted interatomic
potential. The structural phase stability of magnetic iron is
shown to be determined by a combined effect of noncollinear
magnetic excitations and lattice vibrations, in agreement with
several experimental and theoretical studies. The maximum
free energy difference between bcc and fcc phases in the range
of stability of fcc γ phase is approximately 2 meV per atom.

FIG. 17. Equilibrium lattice constants of bcc and fcc phases as
functions of temperature, computed using MD and SLD simulations
using the new interatomic potentials.
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APPENDIX A: NONMAGNETIC IRON POTENTIAL

The functional form of the interatomic potential broadly
follows the conventional embedded atom method (EAM)
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representation

U (R1,R2, . . .) =
∑

i

F (ρi) + 1

2

∑
i,j

Vij (Rij ), (A1)

where Ri is the position of atom i, ρi is the effective electron
density and Vij is a pairwise function that depends only on the
distance between atoms i and j . The many-body part of the
potential takes the same form as that proposed by Mendelev
et al. [86] and Ackland et al. [87],

F (ρi) = −√
ρi + φρ2

i , (A2)

where φ is a parameter. The effective electron density ρi is
defined in a way slightly different from the conventional EAM
potential. We write

ρi =
∑

j

t2
ij , (A3)

where tij = tij (Rij ) is a pairwise hopping integral, which we
take as a function of the distance between the atoms Rij . We
note that the derivative of ρi with respect to Rij is

∂ρi

∂Rij

= 2tij
∂tij

∂Rij

. (A4)

tij and Vij are given by the third-order splines

tij (x) =
∑

n

tn
(
rt
n − x

)3
�

(
rt
n − x

)
, (A5)

Vij (x) =
∑

n

Vn

(
rV
n − x

)3
�

(
rV
n − x

)
, (A6)

where n are the knots, tn, Vn are the parameters with dimen-

sionality eV Å
−3

, and rt
n and rV

n are given in angstroms. Their
values are given in Table I.

APPENDIX B: EXCHANGE COUPLING
AND LANDAU COEFFICIENTS

The exchange coupling function and Landau coefficients,
expressed as functions of electron density, have different
functional forms in bcc and fcc cases. In the bcc case, we
use the following form:

Jij (rij ) = J0(1 − rij /rcut)
5, (B1)

A(ρi) = a0 + a1ρi + a2ρ
2
i , (B2)

B(ρi) = b0 + b1ρi + b2ρ
2
i . (B3)

In the fcc case, we take

Jij (rij ) = J0 sin(brij + c)(1 − rij /rcut)
3, (B4)

A(ρi) = a0(1 − ρi/ρa)3 + a1, (B5)

B(ρi) = b0(1 − ρi/ρb)3 + b1. (B6)

Jij , A, and B are given in eVμ−2
B , eVμ−2

B , and eVμ−4
B units,

respectively. The cutoff distance rcut is given in angstroms. All
the parameters are listed in Table II.

TABLE I. Parameters of the nonmagnetic iron potential.

φ −4.483075702293698016×10−4

rt
0 2.0000000000000000×100

rt
1 2.2000000000000000×100

rt
2 2.6000000000000000×100

rt
3 3.2000000000000000×100

rt
4 3.8000000000000000×100

rt
5 4.6000000000000000×100

rt
6 5.3000000000000000×100

t0 2.5999782982854347×100

t1 2.9319480072508499×100

t2 −2.8388905185188360×100

t3 −1.0267419494754382×10−1

t4 1.5484736035888333×10−2

t5 −7.2805743511785065×10−2

t6 −3.6343523861565924×10−3

rV
0 2.3254531341916498×100

rV
1 2.3889005055990276×100

rV
2 2.5614990650026459×100

rV
3 2.5615004425308658×100

rV
4 2.8344513929093051×100

rV
5 2.8321879787700808×100

rV
6 2.6382534884695783×100

rV
7 3.4262631740080707×100

rV
8 3.8479639767860356×100

rV
9 3.8515517885908994×100

rV
10 4.3740210397021579×100

rV
11 4.4054035197078845×100

rV
12 4.5503412747697087×100

rV
13 4.7731075757035732×100

rV
14 5.3000000000000000×100

V0 2.2831054190426084×101

V1 −2.1062362139531867×101

V2 5.6190823955741749×100

V3 8.0795758060570382×100

V4 −8.5213153270399573×101

V5 9.0355710040623180×101

V6 −8.3613137262443793×100

V7 −3.4250845501053456×10−1

V8 5.2035042290453923×101

V9 −5.1583785613198948×101

V10 4.0569674844835752×100

V11 −5.0779874829818361×100

V12 1.7323802861372730×100

V13 −3.5971267571846299×10−1

V14 −1.1478647839739256×10−1

APPENDIX C: SYSTEMIC ERROR IN FORWARD
AND BACKWARD ADIABATIC SWITCHING

Adiabatic switching samples through a sequence of
nonequilibrium states. It estimates the free energy difference
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TABLE II. Parameters for exchange coupling and Landau
coefficients.

bcc

J0 1.7613094778950000×10−1

rcut 5.3000000000000000×100

a0 −2.3827723674043900×10−1

a1 1.2945703172205700×10−2

a2 −1.1518969922985000×10−4

b0 1.0600315078586900×10−2

b1 1.6104913287021000×10−3

b2 −4.3178188078544200×10−5

fcc

J0 1.1095507874951400×10−1

rcut 5.3000000000000000×100

b 1.6502332463388100×100

c −4.1373722623161200×100

a0 3.1803486683085200×10−1

a1 6.0141682907976200×10−2

ρa 2.2852502987397700×101

b0 1.4290243674270400×10−2

b1 0.0000000000000000×100

ρb 3.2563330708156800×101

δF by calculating the irreversible work Wirr done during the
switching process [66,67]:

Wirr =
∫ ttot

0

∂Ht i

∂λ

∂λ

∂t
dt. (C1)

It is a biased estimate of the reversible work done Wrev = δF ,
which is the free energy difference between the initial and final
states. Due to the irreversible nature of the nonequilibrium
process involved, a systematic error is introduced, which is

Wirr = Wrev + �Ediss, (C2)

where �Ediss is the amount of dissipated heat caused by
dissipative entropy production. It has been proven that �Ediss

is positive definite, and equals to the dissipative heat generated
if the switching is in the opposite (or backward) direction
provided that the energy distribution during the nonequili-
birum process is close enough to the energy distribution at
equilibrium, where the linear-response theorem applies [67].
One can write

Wi→f
irr = Wrev + �Ediss, (C3)

Wf →i
irr = −Wrev + �Ediss, (C4)

such that the reversible work done is

Wrev = 1
2

(
Wi→f

irr − Wf →i
irr

)
. (C5)

This eliminates the systematic error by means of forward
and backward switching. If the switching process is only
performed in a single direction, one should provide an estimate
for �Ediss.

FIG. 18. Free energies of bcc and fcc iron as functions of atomic
volume at T = 1300 K. They are calculated using forward and
backward switching. The fitted curves are third-order polynomials.
We used the same parameters in Figs. 12 and 13.

All the results given in this paper were computed using the
forward switching only. We now evaluate the systematic error
to ensure the correctness of our conclusion. We performed a
backward switching calculation at 1300 K using exactly the
same parameters as those used for producing data shown in
Figs. 12 and 13. Similarly to Fig. 1, we plot the Helmholtz
free energy versus atomic volume for both bcc and fcc cases
in Fig. 18. The y axis in the two figures have the same scale.
We see that the difference between the values computed using
forward and backward switching is significantly smaller than
the free energy difference between bcc and fcc phases. The
free energy of the fcc phase is still lower than the bcc phase
by 2 meV per atom.

All the values computed using backward switching are
offset upwards by no more than 0.15 meV. At the bottom of the
third order polynomial fitted curves, they differ by 0.14 meV
in the bcc case and 0.08 meV in the fcc case. It turns out
that the effect of dissipative heat changes our conclusion by
approximately (0.14 − 0.08)/2 = 0.03 meV per atom, which
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is two orders of magnitude smaller than the calculated free
energy difference between bcc and fcc phases, i.e., 2 meV per
atom, and is an order of magnitude smaller than the fitting

error [Fig. 14(b)]. Hence we are able to conclude that the
systematic error is negligible and does not affect the accuracy
of our simulations.
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