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Physical properties of the tetragonal CuMnAs: A first-principles study
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Electronic, magnetic, and transport properties of the antiferromagnetic (AFM) CuMnAs alloy with tetragonal
structure, promising for the AFM spintronics, are studied from first principles using the Vienna ab initio simulation
package. We investigate the site occupation of sublattices and the lattice parameters of three competing phases.
We analyze the factors that determine which of the three conceivable structures will prevail. We then estimate
formation energies of possible defects for the experimentally prepared lattice structure. MnCu and CuMn antisites
as well as Mn ↔ Cu swaps and vacancies on Mn or Cu sublattices were identified as possible candidates for
defects in CuMnAs. We find that the interactions of the growing thin film with the substrate and with vacuum
as well as the electron correlations are important for the phase stability while the effect of defects is weak.
In the next step, using the tight-binding linear muffin-tin orbital method for the experimental structure, we
estimate transport properties for systems containing defects with low formation energies. Finally, we determine
the exchange interactions and estimate the Néel temperature of the AFM-CuMnAs alloy using the Monte Carlo
approach. A good agreement of the calculated resistivity and Néel temperature with experimental data makes it
possible to draw conclusions concerning the competing phases.
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I. INTRODUCTION

The tetragonal antiferromagnetic (AFM) CuMnAs phase
prepared by the molecular-beam epitaxy (MBE) on the
GaAs(001) and GaP(001) substrates has recently attracted
considerable experimental and theoretical interest in connec-
tion with so-called AFM spintronics [1–4]. The combined
experimental and theoretical study [2] (see also Ref. [5])
has led to a proposal of basic structural parameters that
were used in first-principles calculations assuming an ideal
structure without defects [2]. On the other hand, the experiment
for this phase provides the basic physical parameters: the
residual resistivity around 90 μ�cm for T = 5 K [2], the Néel
temperature around 480 K [6], and the local Mn moments
around 3.6 μB at room temperature [2]; its value at lower
temperature will be higher (see also Sec. III D). The transport
studies (the residual resistivity) thus indicate the presence
of defects whose origin and concentrations are known only
very approximately (sample grown on the GaAs substrate)
[5]. Identification of possible defects and their formation
energies thus represent a challenge for the theory. The same
also concerns an estimate of the residual resistivity and the
Néel temperature. The Néel temperature is closely related to
corresponding exchange interactions and, in turn, also to the
values of local Mn magnetic moments.

Another interesting issue concerns the sample preparation.
The CuMnAs in the bulk phase crystallizes in the orthorhombic
phase [7] while the studied tetragonal phase does not exist as
a bulk phase in nature and can only be prepared as a film by
the MBE on a suitable substrate or by separation [8] from an
ingot.
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The aim of the present study is thus twofold. First, we will
determine theoretically the structure of the tetragonal phase by
optimizing the lattice parameters (a = b and c in the present
case) and positions of Cu, Mn, and As atoms inside the unit
cell. We also investigate the effect of the substrate, defects, and
of electron correlations [9] on the phase stability. Moreover, we
estimate the formation energies of possible defects. Second,
we will calculate relevant physical quantities such as the local
Mn moments, exchange interactions, and the Néel temperature
as well as the residual resistivity due to specific defects. These
quantities will be determined in the framework of the unified
first-principle electronic structure model and compared with
the experiment.

II. FORMALISM

The AFM-CuMnAs prepared by the MBE has a tetragonal
structure [2,10] with the space group P4/nmm (No. 129) [11].
The experimental lattice parameters are a = b = 3.82 Å and
c = 6.318 Å. The atomic basis contains two formula units
(six atoms), Cu atoms are in the basal plane of the tetragonal
lattice (Wyckoff position 2a), there are two parallel layers of
As atoms (Wyckoff position 2c), and two layers of Mn atoms
(Wyckoff position 2c) with oppositely oriented moments (see
Fig. 1). The interstitial sites are located in Wyckoff position
2b. The relative positions of atoms (in units of c) are zCu =
0.0, zMn = uc = 0.330, and zAs = vc = 0.266.

We call this structure phase I. In the other possible structure,
which we call phase II, Mn atoms are in position 2a, and Cu
and As atoms occupy position 2c. Finally, there could be a
structure (denoted as phase III) with As atoms in the basal
plane (2a) and Cu and Mn atoms in position 2c.

Theoretical lattice parameters a and c, as well as atomic
positions in the unit cell, are determined by VASP calculations
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FIG. 1. The lattice structure of phase I of tetragonal AFM
CuMnAs consisting of two nonmagnetic Cu/As sublattices
(black/grey color), and two Mn sublattices with the antiparallel spin
orientations (indicated by arrows). The possible interstitial positions
(Wyckoff position 2b) are shown by hatched circles. For phase II, the
positions of Cu and Mn atoms are interchanged.

(Vienna ab initio simulation package using the projector
augmented wave scheme [12]) with different exchange cor-
relation potentials, namely, the LDA (Vosko-Wilk-Nusair,
VWN) [13], the GGA (Perdew-Burke-Ernzerhof, PBE) [14],
and the GGA+U with a simple empirical on-site Coulomb
interaction U related to Mn d-orbitals [15]. The supercell
VASP calculations (48 atoms) are used to determine formation
energies of possible simple defects assuming the experimental
lattice structure. For VASP calculations, we have used plane
waves up to 350 eV and the Brillouin zone sampling with 270
special k-points in the irreducible three-dimensional wedge
and corresponding number of k-points in the supercell.

The transport coefficients, exchange interactions, and the
Néel temperature are determined using the Green function
formulation of the tight-binding linear muffin-tin orbital (TB-
LMTO) method in which the effect of disorder (defects) is
described by the coherent potential approximation (CPA) [16].
The TB-LMTO method employs the atomic sphere approxi-
mation and is thus less accurate than the VASP technique.
We have therefore compared relevant electronic properties
[local moments and densities of states (DOS)] with the VASP
results for the ideal, defect-free AFM-CuMnAs assuming
the experimental structure. This is an important check for
more complex, noncubic structures (see, e.g., Ref. [17]).
Calculations are done using the VWN exchange-correlation
potential, but we also check the robustness of the result
with respect to the electron correlations (on-site Coulomb
interaction model). We have neglected the spin-orbit effects
in both approaches.

The transport studies employ the Kubo-Greenwood lin-
ear response theory in which the disorder-induced vertex-
corrections are included in the CPA [18]. Their inclusion is
simplified by the present formulation of the velocity as the

intersite hopping [19], which leads to nonrandom velocity
matrices.

The effective exchange interactions between Mn atoms
for a given shell s, Js , are determined by the Liechtenstein
mapping procedure [20] generalized to random alloys [21]. As
a result, we obtain the effective Heisenberg Hamiltonian H =
−∑

ij Jij ei · ej , which will be used for the estimate of the Néel
temperature. The indices i and j run over all sites occupied
by Mn atoms, Jij denote the pair exchange interactions, and
the unit vectors ei define the local moment directions. We
note that the positive/negative values of Js correspond to the
ferromagnetic (FM)/AFM interactions and that the values of
magnetic moments are included in their definitions [20,21].
The exchange interactions depend on the reference magnetic
state from which they are extracted. In particular, in the
present case we employ two reference states, namely, the AFM
state and the disordered local moment (DLM) state [22]. The
DLM approach describes the paramagnetic state above the
critical temperature with fluctuating Mn moments and is thus
better suited for the estimate of the critical (Néel) temperature
for the transition between the AFM and paramagnetic states
as compared to the AFM reference state corresponding to
zero temperature. The DLM state is treated as a random
equiconcentration binary alloy of moments pointing randomly
in opposite directions and can be thus naturally treated using
the CPA [22]. In both cases, however, local moments on Cu
and As atoms are strictly zero. It should be noted that, due
to the two Mn sublattices, we will have two sets of exchange
parameters, intra- and intersublattice ones. We remark that the
DLM state will be also used in transport studies.

To study the thermodynamic properties of CuMnAs, we
employed classical Monte Carlo (MC) simulations based
on the Metropolis algorithm [23] applied to the constructed
Heisenberg Hamiltonian. For simulations, we used a three-
dimensional supercell composed of 16 × 16 × 16 elementary
CuMnAs cells with periodic boundary conditions. The simu-
lations were carried out assuming zero applied magnetic field
and disregarding magnetocrystalline anisotropy. The local Mn
magnetic moments, as large as 3.80 μB, were assumed to
be independent of temperature. We started the simulation
from an initial temperature 900 K, which decreased by a step
�T = 10 K. At each temperature, 2 × 105 MC steps were
performed. To accumulate the statistics, we simultaneously
simulated five independent identical systems.

III. RESULTS AND DISCUSSION

A. Ground state of the ideal tetragonal AFM-CuMnAs

Assuming the ideal tetragonal AFM-CuMnAs, two natural
questions arise: (i) the occupation of atomic positions inside
the elementary cell by Cu, Mn, and As atoms, i.e., which
phase (I, II, or III) corresponds to the ground state; and (ii)
optimal lattice parameters a = b, and c and the coordinates
of atoms inside the unit cell. This structure allows both the
FM alignment (e.g., in CrMnAs [10]) and the AFM alignment
(like in CuMnAs), but also more complex magnetic structures
could exist if one considers larger unit cells, but here we limit
ourselves to the case of six atoms per unit cell observed in the
experiment [2].
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TABLE I. Total energies per elementary cell of phase II with
respect to phase I (energy zero) are shown assuming the (frozen)
experimental geometry (label 0) as well as the optimized one. Also
shown are lattice parameters a, c, the relative z coordinates of Cu, Mn,
As atoms inside the unit cell, its volume V , and the local Mn-moments
mMn. In the bottom part of the table, the nearest-neighbor distances
between various atom pairs in all structures are given.

Phase I0 Phase I Phase II0 Phase II

a [Å] 3.82 3.69 3.82 3.85
c [Å] 6.32 6.40 6.32 5.94

V [Å
3
] 92.20 87.14 92.20 88.05

zCu 0.00 0.00 0.670 0.682
zMn 0.670 0.651 0.00 0.00
zAs 0.266 0.273 0.266 0.270
mMn [μB ] 3.70 3.41 2.96 2.78
�Etot [eV] 0.0 0.0 −0.078 −0.102

dCu−Cu [Å] 2.70 2.61 3.45 3.48
dCu−Mn [Å] 2.82 2.90 2.82 2.70
dCu−As [Å] 2.55 2.54 2.55 2.74
dMn−As [Å] 2.55 2.66 2.55 2.51
dMn−Mn [Å] 3.45 3.24 2.70 2.72
dAs−As [Å] 3.82 3.69 3.82 3.85

Results of extensive calculations in the framework of the
VASP and GGA-PBE are summarized in Table I for the
optimized phases I and II together with distances between
atoms. We have also included results for the experimental
geometry [2].

The following conclusions are made: (i) The ground state is
phase II, but with the energy preference with respect to phase I
being only about 0.1 eV per unit cell. The lattice parameter c is
about 6% smaller as compared to the grown sample, while the
lattice parameter a is similar; (ii) In phase I, the result is just
the opposite: The lattice parameter c is similar to that in the
grown sample, but the lattice parameter a is smaller by 3.5%;
(iii) Theoretical volumes for phases I and II were smaller as
compared to the experimental one, thus indicating a possible
role played by the substrate; (iv) The energy preference of
phase II as compared to phase I (by about 0.08 eV per unit
cell) is obtained also for the experimental structure; (v) The
values of local Mn moments are strongly underestimated in
both phases II and III as compared to the experiment; and (vi)
The total energy of phase III (with As atoms in the basal plane)
was estimated for the experimental lattice parameters, but with
optimized atom positions. It was higher than that of phase I
by 2.97 eV. Calculated interatomic distances among atoms
(Table I) also indicate a possible experimental test—using
the Extended X-ray Absorption Fine Structure experiment,
which could distinguish between possible phases, namely, by
checking the nearest-neighbor Mn-Mn distances which differ
significantly and do not interfere with distances between other
atom pairs. Additional arguments in favor of phase I will be
given below based on the transport studies and an estimate of
the Néel temperature.

For phase I at the experimental geometry, we have also
estimated total energies of the FM and nonmagnetic CuMnAs
phases (+0.29 eV and +2.82 eV), respectively. Corresponding

TABLE II. Total energy differences (per elementary cell) between
phases I0 and II0, �Etot = EII0 − EI0 , as a function of the on-site
Hubbard parameter U . Also shown are corresponding local Mn
moments.

U [eV] 0 0.41 0.83 1.25

mMn
I0

[μB ] 3.70 3.80 3.90 3.99

mMn
II0

[μB ] 2.96 3.15 3.31 3.46

�Etot[eV] −0.078 +0.102 +0.278 +0.443

total energies are higher as compared to the AFM total
energies so that they can be excluded as possible ground state
candidates. On the other hand, the energy difference between
the AFM and FM states is smaller for phase II as compared to
phase I (+0.069 eV and +0.29 eV, respectively). Such a result
is compatible with exchange interactions of both phases I and
II, namely with dominating AFM interactions for the former
and competing FM and AFM interactions for the latter [see
Figs. 4(b) and 4(c) below].

While the semilocal GGA exchange-correlation potential is
generally considered to be an optimal choice for the structure
optimization, the GGA+U approach is sometimes used to find
the theoretical description in some systems, tuning of band
gaps, magnetic moments, the critical temperatures, etc. (see,
e.g., a recent study of the AFM MnTe) [9]. We present here
a similar study of the effect of electron correlations on the
lattice structure and magnetic moments in the AFM-CuMnAs
assuming that the Hubbard parameter U is limited to d orbitals
of Mn atoms, which is an acceptable model for narrow Mn
bands (Table II).

Electron correlations stabilize phase I0 as compared to
phase II0. Already for U = 0.4 eV, phase I0 has a lower
total energy than phase II0. Assuming U around 1 eV, the
local Mn moment (3.9−4.0 μB) also agrees reasonably well
considering that it was measured at room temperature. We
have also tested the effect of lattice relaxations and found only
slight quantitative modifications not changing the qualitative
picture.

There are two other effects which could influence the
calculated phase stability, namely, that samples are grown on
the particular substrate and the presence of impurities in the
sample. The real samples are grown on the As-/P-terminated
GaAs(001)/GaP(001) faces [24]. We have tried to elucidate
a possible role of the substrate using a simple model which
simulates this case, namely, the system consisting of five layers
of GaP simulating the substrate with an extra layer of P atoms
(P-rich conditions) which interface with four multilayers of
CuMnAs, either in phase I (the bottom layer is Cu one) or in
the phase II structure (the bottom layer is Mn one). Such a
system separated by a vacuum layer is periodically repeated
and studied by the supercell method. We used the VASP-GGA,
fixed the substrate layers, but allowed relaxation of an extra
layer of P atoms, and atoms inside CuMnAs. We also varied
spin orientations—the AFM orientation was either between
Mn layers or inside each Mn layer. In all cases, the AFM
orientation between Mn layers was preferred. Finally, we have
also tested models with frozen experimental sample geometry.
In all cases, we have obtained the preference of phase I; the
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TABLE III. The formation energies FE for various substitutional
defects in the tetragonal AFM-CuMnAs. Also studied was the Mn
interstitial (Mnint, see Fig. 1). The symbol XY denotes the X defect
on the Y sublattice. Defects are sorted according to their formation
energies; the values for unrelaxed atom positions are given in
parenthesis.

Defect FE [eV] Defect FE [eV]

VacMn −0.13 (−0.23) Mnint +1.62 (+2.15)
VacCu −0.13 (−0.10) AsCu +1.73 (+2.66)
MnCu −0.04 (−0.06) AsMn +1.77 (+1.90)
CuMn +0.33 (+0.27) MnAs +2.00 (+1.95)
CuAs +1.15 (+1.06) VacAs +2.18 (+2.22)

energy difference in its favor was quite substantial and varied
between 0.8 and 1 eV per elementary cell with 42 atoms.

The present model fulfills the basic requirement for com-
parison of total energies, namely, the same number of atoms
in supercells. The model correctly includes sample/vacuum
and sample/substrate interfaces as it is in a real system. On
the other hand, it has certain limitations as we do not consider
possible switching between phases I and II during the growth.
One should keep in mind that theoretical calculations assume
zero temperature and give the global minimum of energy, while
a real sample exists in a nonequilibrium state due to sample
preparation and it can be in the local energy minimum.

We refer the reader to the end of the next section as concerns
a possible effect of impurities on the phase stability.

B. Formation energies of defects in AFM-CuMnAs

Structural study [5] and measurements of residual resistiv-
ity (90 μ�cm) indicate that the samples contain defects. An
estimate of the formation energies (FE) of defects is a tool
that can identify possible candidates. A complete study of all
possible defects, similar to that done for a cubic FM-NiMnSb
[25] is beyond the scope of the present paper. Rather, we choose
a few possible candidates as in the study for related CuMnSb
alloy [26]. We have estimated FE for chosen substitutional
defects including vacancies, as well as for Mn interstitial, and
listed them in Table III.

The supercell VASP method and GGA-PBE was applied
to the referenced 48-atom supercell Cu16Mn16As16 and to
corresponding supercells containing specific defects. For
example, Cu15Mn17As16 supercell simulates the MnCu defect
concentration of 6.25%. We have used the experimental lattice
parameters. The accurate determination of FE is a challenging
task (see, e.g., a recent review [27]). Here we employ the
simplest possible approach in which the FE is defined as FE =
Etot[def] −Etot[id] −∑

i niEi , where Etot[def] and Etot[id]
are total energies of the supercells with (def) and without
(id) defects, ni indicates the number of atoms of type i (i =
Cu, Mn, As, vacancy) that have been added to (ni > 0) or
removed from (ni < 0) the supercell when the defect is formed,
and Ei are total energies of atoms in their most probable
bulk phase [27]. Strictly speaking, instead of Ei , one should
employ corresponding chemical potentials of these species,
which may depend on the temperature, defect concentration,
the presence of other defects, etc. The above choice represents

a rough, but acceptable approximation. It was used, e.g., in
Refs. [25,26] for cubic semi-Heusler NiMnSb and CuMnSb
alloys. We have chosen for Ei the total energies of fcc-Cu,
AFM-Mn (L10-lattice), and rhombohedral As. The choice for
Mn is the same as in Ref. [25], although, in the OQMD (Open
Quantum Materials Database [28]), a more complex structure
is used [29]. It should be noted that actual values for the
FE may depend on the choice of these energies and on the
determination of Etot[def]. While the lattice parameters (a,
c) were kept fixed in all cases, we have optimized atomic
positions inside the supercell. We have also tested the model
with frozen atomic positions like in the ideal structure, but
there were only small quantitative differences. Results are
summarized in Table III with the following conclusions: (i)
MnCu and CuMn are, similarly, as in the cubic CuMnSb, the
most probable candidates for possible defects. In addition,
vacancies on Mn and Cu sublattices have small FE. We note
that a small FE for Mn vacancy [25] was also found for
NiMnSb alloy; (ii) Mn interstitials have, contrary to CuMnSb
or NiMnSb, a much larger FE due to tetragonal vs cubic
structure with natural vacancy sites in the latter; (iii) Also
MnAs or AsMn and related defects have large FE similar to MnSb

and SbMn in NiMnSb or CuMnSb [25,26]; and (iv) Although
the FE of Mn ↔ Cu swaps was not explicitly studied, one
can roughly estimate it as the sum of FE of MnCu and CuMn,
assuming that they are not correlated [26]. Consequently, the
Mn ↔ Cu swaps are also possible candidates. To resume,
we regard the defects with FE in tenths of eV as proba-
ble, while those with FE above 1 eV we do not further
consider.

Essentially zero (small negative) FE for Mn-Cu swap
correlates with the fact that corresponding total energies of
phases I and II have very similar energies (see Table I), phase
II has the total energy even slightly lower. Besides the FE, the
formation of defects depends on delicate details of the impurity
kinetics, which is not considered here. Anyway, defects with
low FEs are more probable candidates than those with larger
FEs even at the nonequilibrium conditions. We will therefore
investigate below the influence of these more probable defects
on transport properties. It should be noted that defects play
a less important role on the value of the Néel temperature
as compared to the resistivity, so that we limit ourselves to
defect-free samples when calculating Néel temperature.

We have further studied the possible effect of impurities
on the phase stability. We have taken two defect types with
low and high formation energies (see below), namely MnCu

and MnAs, and also investigated the effect of the defect con-
centrations (supercells simulating the defect concentrations
6.25% and 12.5%, respectively). Neither the defect type nor
the higher defect concentration were able to change the energy
preference of phase II.

C. Transport properties of AFM-CuMnAs

We will estimate residual resistivities due to possible
defect types found in the previous section, namely, MnCu,
CuMn, Mn vacancy, and Mn ↔ Cu swap, assuming the defect
concentration of 5% in each case.

To this end we employ the linear-response theory as
formulated in the TB-LMTO-CPA method [19], including
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FIG. 2. Comparison of total and local densities of states (DOS)
for the phase I of AFM-CuMnAs alloy evaluated using (a) VASP
method and (b) the TB-LMTO method in the LDA framework.
The spin-resolved local Mn-DOS are shown (majority spin—blue,
minority spin—red). The local Cu (dashed line) and As DOS (dotted
line) are spin-independent.

disorder-induced vertex-corrections [18], and neglect possible
relativistic effects (spin-orbit interaction) for simplicity.

We will first demonstrate that the present tetragonal AFM-
CuMnAs alloy can be described properly by the TB-LMTO
method similarly as we did recently [17] for topological
insulator Bi2Te3. Careful tests have led to the conclusion that
we can use a model without empty spheres and assuming
the same atomic Wigner-Seitz radii. We present in Figs. 2(a)
and 2(b) the DOSs for an ideal tetragonal AFM-CuMnAs as
calculated by the VASP and TB-LMTO methods, respectively,
using the VWN exchange-correlation potential in both cases.
A very good agreement between both DOSs is obtained. A
similarly good agreement was also obtained for phase II and
for models with empirical Hubbard U (not shown).

Concerning the transport properties, there is an important
difference between MnCu defects or Mn ↔ Cu swaps on one
side and CuMn defects or Mn vacancies on the other hand. First,
the frustration of the MnCu moments is obvious (see Fig. 1). We
have therefore considered two limiting models: (i) Collinear
moment alignments, both the parallel or antiparallel (P/AP)
to the nearest native Mn sublattices, which have the same
total energy, and (ii) the DLM state applied to MnCu moments
characterizing an ideal frustrated state. We have found (5%
defects) that the total energy for the DLM-MnCu is smaller
by a negligible 0.17 meV per formula unit. Second, a virtual
bound state (VBS) is present at the Fermi energy for MnCu and
Mn ↔ Cu swap defects and it is missing for CuMn defects or
Mn vacancies.

The VBS in the DOS for MnCu defect is shown in Figs. 3(a)
and 3(b) for the VASP and TB-LMTO methods, respectively.
We have assumed the DLM-MnCu model for the TB-LMTO
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FIG. 3. The total and local densities of states (DOS) for the
reference AFM-CuMnAs alloy with 5% of extra Mn atoms on Cu
sublattices (a) VASP result, (b) LMTO. We show only the local
Mn-DOS on Cu sublattice (majority spin—blue, minority spin—red)
to show the pronounced virtual bound state at the Fermi energy in
minority states.

while, for the VASP, we again used 48-atom supercell with
a single Mn atom on the Cu site (the concentration 6.25%).
It should be noted that a similar VBS was found in the TB-
LMTO approach, also for the collinear P/AP model, and/or
for the Mn ↔ Cu swap model (not shown). The presence of
impurity states at the Fermi energy will lead to a stronger
scattering due to the VBS (MnCu or Mn ↔ Cu defects) and
thus larger resistivity (for a comparable defect concentrations)
as compared to the CuMn defect or Mn vacancy.

We have verified that the VBS exists at the Fermi energy
and also for the LDA+U model. The final remark is related
to the transport geometry, namely, to the fact that the current
can flow either in the (x,y)-plane (in-plane current), used in
the experiment, or normal to it, i.e., in the z-direction (out-of-
plane current). We have summarized some typical results for
different defects in Table IV.

The following conclusions can be drawn: (i) The resistivity
in the z direction for all models (the ρzz component) is much
larger than that in the (x,y) plane; (ii) The in-plane resistivity
for the DLM state is more symmetric, i.e., ρxx and ρyy com-
ponents are the same while, for the collinear P/AP alignment,
they are different, because the presence of ordered moments
on a nonmagnetic sublattice lowers the symmetry of the
system; (iii) Resistivities roughly follow linear concentration
dependence, so one can say that defect concentrations between
3.5% to 5% can reproduce the experimental (planar) resistivity
of 90 μ�cm for MnCu or Mn ↔ Cu swap defects while much
larger defect concentrations are needed for CuMn defects or
Mn vacancies (no VBS state at the Fermi energy); (iv) The
resistivity for Mn ↔ Cu swaps is slightly larger as compared to
that for MnCu defect for the same defect concentrations due to
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TABLE IV. The calculated resistivities (in μ�cm) for tetragonal
AFM-CuMnAs with 5% of different defect types (models A to G).
The resistivity of the paramagnetic state (SDR) is also shown (Model
G). The experimental values for the sample with unspecified amount
of defects [2] are about 90/160 μ�cm as measured at temperatures
T = 5 K/300 K, respectively.

Model ρxx ρyy ρzz

A P/AP-MnCu 104 71 147
B DLM-MnCu 111 111 171
C P/AP-Mn ↔ Cu swap 124 97 267
D DLM-Mn ↔ Cu swap 124 124 287
E CuMn 24 24 121
F Mn vacancies 36 36 155

G SDR for MnCu 234 234 363

extra scattering at CuMn defects forming the Mn ↔ Cu swap.
The Matthiessen rule is violated, namely, the sum of resistivity
for models B and E is ρxx= 135 μ�cm while for Model D it is
124 μ�cm; and (v) The effect of vertex corrections is small.

We have also tested the effect of electron correlations in
LDA+U model. As an example, we have chosen Model B
and the Hubbard parameter U = 2 eV. Calculated resistivity
components are larger due to the larger scattering on MnCu

defects, which, in turn, is due to the increase of the local Mn
moments caused by correlations. For example, for Model B
we have an increase of ρxx by about 18 μ�cm, or by 15%. We
have also considered phase II. As an example, we have again
calculated resistivity for Model B. The resistivity is smaller
(ρxx = 42 μ�cm vs 111 μ�cm for the phase I case) due to
the smaller effective scattering (smaller local MnCu moments).

As an example of the effect of temperature on transport
properties, we have calculated [30] the resistivity in the
paramagnetic (DLM) state above the Néel temperature [often
called the spin-disorder resistivity (SDR)]. The experiment [2]
indicates a large increase of the planar resistivity from about
90 μ�cm at 5 K to about 160 μ�cm at 300 K. Such a large
increase cannot be ascribed only to phonons (e.g., a phonon
contribution to the resistivity of about 25 μ�cm exists for
bcc-Fe at the Curie temperature T = 1050 K). The largest part
of contribution to the resistivity of bcc-Fe should be ascribed
to spin fluctuations. To illustrate the effect for CuMnAs as
well, one can compare Model B (Mn impurity on Cu with
the spin disorder decribed by the DLM state) and Model G
describing the paramagnetic state (SDR) in which the spin
disorder exists also on the native Mn sublattices. The calculated
SDR is around 230 μ�cm, which looks reasonable because the
temperature of measurement (300 K) is appreciably smaller
than the Néel temperature (480 K). The contribution due to
spin fluctuations monotonically increases with temperature up
to the Néel temperature and then remains constant so that the
calculated SDR seems reasonable.

The resistivity depends on the actual occupation of sublat-
tices, which is a challenging problem connected with similar
scattering crossections of atoms forming the alloy. In Ref. [5]
for a sample grown on GaAs(001), it was suggested that the
Cu lattices are fully occupied by Cu atoms while 8% of Cu and
8% of Mn atoms are found on the As sublattice, leaving about

14% vacancies on the Mn sublattice. A recent analysis [31]
for a sample grown on GaP(001) as in Ref. [2] has indicated
the presence of 10% vacancies on both the Cu and Mn lattices.
It should be emphasized that actual compositions should not
be taken literally as they depend on the annealing and can
also slightly fluctuate from sample to sample. Calculated
longitudinal resistivities for GaAs and GaP grown samples
are about 180 μ�cm and 88 μ�cm, respectively, indicating a
better agreement with the experiment [2] for samples grown
on GaP.

D. Exchange interactions and the Néel temperature

The exchange interactions in the ideal (defect-free) phase
I for both AFM- and DLM- (paramagnetic) reference states
are shown in Figs. 4(a) and 4(b), respectively, while the
corresponding interactions for phase II and assuming the
DLM-reference state are shown in Fig. 4(c). In all cases we
show interactions among atoms on the same Mn sublattice
(intrasublattice interactions) as well as among atoms on
different Mn sublattices (intersublattice interactions). All other
interactions are zero. The following conclusions can be done:
(i) Exchange interactions for the AFM reference state exhibit,
as expected, a strong leading AFM intersublattice coupling
while the intrasublattice ones are much smaller in their
absolute values; (ii) More important are interactions derived
from the paramagnetic (DLM) state. The paramagnetic state
assumes no specific magnetic order and the character of
such interactions is a precursor of the possible AFM ground
state (see also Ref. [26]). The fact that qualitative character
of both intersublattice and intrasublattice interactions is the
same as in the AFM reference state can be interpreted
as a strong indication of the AFM ground state; and (iii)
Because dominating (AFM-like) intersublattice interactions in
the paramagnetic state are smaller than those derived from the
AFM reference state, one can expect a lower Néel temperature
derived from the DLM state. We have also estimated exchange
interactions for the paramagnetic state for phase II, which
are shown in Fig. 4(c). The interactions are very different,
in particular the intersublattice ones. Consequently, one can
expect a very different Néel temperature.

The Néel temperatures were determined using the atomistic
spin dynamics (ASD) codes [32], which contain the package
for the estimate of critical temperatures using the Monte Carlo
simulations. We show in Fig. 5 the sublattice magnetizations
and the heat capacity as a function of the temperature. The
sublattice magnetizations at T = 0 K (equal to the local Mn
moments) are reduced with temperature due to spin fluctua-
tions and disappear at the Néel temperature. An internal test
of consistency of calculations is that temperature dependence
of both sublattice magnetizations should be identical and they
indeed are. The magnetization at the Néel temperature is not
zero, but rather smeared out due to the finite size of sampling
supercells used in the MC calculations. It should be noted,
however, that the zero sublattice magnetizations do not mean
that local moments are also zero. On the contrary, the local
Mn moments in the AFM and DLM states are very similar due
to the rigidity of Mn moments, with respect to their rotations.
The Néel temperature can be more precisely extracted from
the maximum of the heat capacity [see Fig. 5(b)]. The Néel
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FIG. 4. Exchange interactions for the tetragonal CuMnAs be-
tween Mn atoms as a function of the distance d (in units of the
lattice constant a): (a) Phase I, AFM state, (b) Phase I, paramagnetic
(DLM) state, and (c) Phase II, DLM state. The exchange interactions
are subdivided into two groups, namely, between Mn atoms on the
same sublattice (intrasubl) and between atoms on different sublattices
(intersubl).

temperature estimated in this way and employing exchange
interactions derived from the paramagnetic (DLM) reference
state is about 480 K [33]. This represents a good agreement of
calculated and experimental Néel temperatures, considering
that we have assumed an ideal, defect-free phase I while the
real sample [6] contains an unspecified amount of defects. The
estimated Néel temperature for the AFM reference state is
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FIG. 5. (a) Magnetizations of the Mn sublattices as a function
of temperature assuming exchange interactions derived from the
paramagnetic (DLM) state of the tetragonal CuMnAs with the phase I
structure. By symmetry, the dependence of both sublattice magnetiza-
tions on the temperature is the same. (b) The temperature dependence
of the heat capacity from which the Néel temperature can be extracted
more accurately (about 480 K).

higher, being about 680 K, as expected from larger values of
exchange interactions [Fig. 4(a) vs Fig. 4(b)]. Finally, we have
obtained a paramagnetic state using the exchange interactions
corresponding to the DLM reference state and phase II [see
Fig. 4(c)]. On the basis of this result, one can exclude phase II
as a ground state.

IV. CONCLUSIONS

We have performed an extensive ab initio study of elec-
tronic, magnetic, and transport properties of the tetragonal
AFM-CuMnAs alloy with potential technological applica-
tions. The VASP approach was used for the phase stability and
the estimate of formation energies of possible defects. In the
next step, for the experimental lattice structure, the TB-LMTO-
CPA approach was adopted to estimate transport properties and
the Néel temperature from calculated exchange interactions
by the Monte Carlo method. The main conclusions are: (i)
The theoretical optimized structure of the bulk tetragonal
AFM-CuMnAs is the phase II, but with smaller volume
than the experimental one. The same result was obtained
for the experimental lattice parameters and optimized atomic
positions inside the unit cell; (ii) We have found that electron
correlations stabilize phase I; (iii) There are indications that
the presence of the substrate favors phase I; (iv) The presence
of various defects—even at higher concentrations—does not
change the phase preference; (v) MnCu, CuMn, Mn ↔ Cu
swaps, and vacancies on Mn and Cu sublattices are defects
with low formation energies and thus probable candidates
that can explain the finite sample resistivity; (vi) Estimated
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in-plane resistivity of CuMnAs systems with MnCu defects
and Mn ↔ Cu swaps for concentrations around 3.5–5%
explains experimentally observed values while much larger
concentrations would be needed for CuMn defects or Mn
vacancies. The origin of larger resistivity can be ascribed
to the existence of the well-pronounced virtual bound state
at the Fermi energy for MnCu defect or Mn ↔ Cu swap;
and (vii) Estimated Néel temperature for ideal, defect-free
AFM-CuMnAs agrees reasonably well with the experiment,
keeping in mind that sample contains an unspecified amount

of defects. On the other hand, the ideal phase II gives a
paramagnetic state which contradicts experimental findings.
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