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Direct experimental determination of spiral spin structures via the dichroism extinction
effect in resonant elastic soft x-ray scattering
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Long-wavelength spin spiral structures are ubiquitous in a large variety of magnetic materials. The detailed
magnetic structure can take many variations owing to their different physical origins. Therefore, the unambiguous
structural determination is crucial for understanding these spin systems, though such a task is experimentally
challenging. Here, we show that ordered spin spiral structures can be fully determined in a single measurement
by dichroic resonant elastic x-ray scattering using circularly polarized light. It is found that at certain geometrical
conditions, the circular dichroism of the diffraction vanishes completely, revealing a one-to-one correspondence
with the spin structure. We demonstrate both theoretically and experimentally this experimental principle,
which allows for unambiguous structure determination immediately from the measured signal, whereby no
modeling-based data refinement is needed. This largely expands the capabilities of conventional magnetic
characterization techniques.
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I. INTRODUCTION

Spin spiral order is a general type of long-range magnetic
order, which can be found in many materials systems. It
appears as long-wavelength periodic spin chains in real space,
within which the individual spins rotate or precess in a common
rotation plane (CRP), forming an incommensurate, modulated
magnetic lattice. For most cases, the entire structure breaks
inversion symmetry, thus right- and left-handed structures
with chirality C = 1 and −1 can be found, respectively. The
chirality is defined as C = sgn[qh · (Si × Sj )], where Si,j are
two neighboring spins along the propagation direction, and qh

is the propagation wave vector of the spin modulation.
Spin spiral order can take many different appearances

depending on the underlying mechanism. The prototypical
systems are rare-earth metals, such as Ho [1], Tb, and Dy [2],
in which the long-range Ruderman-Kittel-Kasuya-Yosida in-
teraction is the key ingredient that stabilizes the modulated spin
state. The CRP is perpendicular to the propagation wave vector
qh, forming a proper-screw helix [3–5]. In noncentrosymmet-
ric chiral magnets such as MnSi [6], Fe1−xCoxSi [7], FeGe [8],
and Cu2OSeO3 [9] which are in the cubic space group P 213,
and Cr1/3NbS2 [10] in the hexagonal space group P 6322, the
bulk-type Dzyaloshinskii-Moriya interaction (DMI) is via a
weak spin-orbit coupling. Therefore, due to the competition
between the ferromagnetic-type exchange interaction and
DMI, long-wavelength helical modulations are formed as
the ground state, similar to the magnetic structures found in
rare-earth metals. Applying a magnetic field transforms the
proper-screw helix into a longitudinal conical spiral in which
the spins precess along qh within the same CRP, however, with
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a component that is along the propagation direction [6,11]. On
the other hand, in ferroelectric materials, the competing su-
perexchange interactions lead to cycloidal-type spin spirals, in
which the CRP is parallel to qh, as evidenced in the perovskite
magnetites RMnO3 (R = Tb, Dy,...) [12,13]. A similar type
can be found in thin-film systems as well. For example, in
monolayer Fe on Ir(111) films, the natural inversion symmetry
is broken at the surface, resulting in surface DMI. This leads to
a cycloidal spin spiral state, exhibiting a long-range-ordered
Néel-type domain-wall structure [14]. A similar scenario is
also found in multilayered thin-film systems with strong
spin-orbit coupling, in which the interfacial DMI plays a
role [15,16]. Moreover, spinel-type ferroelectric materials
such as CoCr2O4 [17] and Y-type hexaferrite Ba2Mg2Fe12O22

[18] show transverse-conical spin structures, in which the
CRP is the same as for the cycloidal type, however, with
a net magnetization component that is perpendicular to qh.
In another spinel structure, ZnCr2Se4 [19], the CRP of the
helix can be driven by external magnetic field to an arbitrary
angle. Furthermore, in Fe pnictides itinerant compounds, the
quasinesting of the Fermi surfaces lead to a spin-density-wave
state, appearing as the modulation of the itinerant electron spin
polarization in a helical fashion [20]. However, the angle of the
CRP is more complicated [21]. Similar spin spiral states are
also found in bilayer magnetite [22], as well as bubble-domain
systems [23], in which spiral order is due to competing
interactions within the classic micromagnetic framework [24].

Due to the emerging interest in topologically ordered
magnetic materials [25], multiferroic materials [4], as well
as Fe-based superconductivity [26], spin spiral structures are
drawing enormous attention. The accurate structural determi-
nation of the spiral motif is the most crucial experimental task
for understanding these systems. In fact, the exact spiral motif
structure can be represented by the CRP angle and the conical
angle. As shown in Fig. 1(a), we define a base helix with its
CRP normal to qh. It takes a right-handed chirality. Based
on the base-helix structure, the CRP will have to be rotated
about the pitch (η) and yaw (φ) axes [cf. Fig. 1(b)]. Therefore,
the angles (φ,η) fully describe the CRP. Next, as shown in
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FIG. 1. Measurement geometry. (a) A modulated spin spiral can
be represented by a propagation vector qh, and a common rotation
plane, in which the spins rotate (green). For the so-called base helix,
defined as a right-handed proper-screw-type helix, the surface normal
of the common rotation plane is along qh. (b) Depending on the pitch
(η), yaw (φ), and cone (ξ ) angles that position the common rotation
plane in space, all possible types of spin spirals can be described.
For measuring the exact structure of the spin spiral, resonant elastic
x-ray scattering is used. First, the diffraction condition for qh has
to be fulfilled. Second, the circular dichroism signal is obtained as
the intensity difference between left- and right-circularly polarized
light illumination. The so-called azimuthal DREXS is performed by
taking azimuthal � scans of qh. (c) The conical angle ξ describes the
angle between the spin vector and the surface normal of the common
rotation plane.

Fig. 1(c), a conical angle ξ is assigned (0◦ � ξ � 90◦), which
spans between spin vector and CRP normal. Thus, using the
set of angles (φ,η,ξ ), all types of harmonic spin spirals are
uniquely represented. In other words, if the three angles can be
measured experimentally, the exact spin motif is determined.

Nevertheless, the unambiguous determination of the three
angles has remained elusive so far, largely due to the inherent
limitations in terms of spatial resolution and/or vectorial
magnetization sensitivity of the state-of-the-art magnetic char-
acterization techniques [16,27–30]. On the other hand, neutron
[31] and conventional magnetic x-ray diffraction experiments
(either in non-resonant or resonant cases) [32–35] accurately
measure the modulation wave vector, however, the determina-
tion of the motif structure is critically dependent on modeling-
based structure factor refinement, assisted by theoretical
calculations, often not leading to a unique solution. Here, we
show that such spiral spin structures give rise to exclusive
dichroic resonant elastic x-ray scattering (DREXS) signatures
using circularly polarized soft x rays, from which the CRP
angle can be accurately measured. If available, the conical
angle ξ can be subsequently retrieved for certain materials.

For magnetic systems, x-ray magnetic circular dichro-
ism has become the foremost technique to study spin and
orbital properties of materials, obtainable by applying the
magneto-optical sum rules [36]. Distinct from x-ray absorption
spectroscopy measurement of standard x-ray magnetic circular
dichroism, DREXS may reveal the underlying structural

information for magnetically ordered chiral systems. In the
past, several studies have indicated that chiral spin order is
closely related to the x-ray magnetic diffraction signals using
circularly polarized light [35,37–41]. For example, in patterned
ferromagnetic stripes, DREXS measured by comparing the
difference in diffracted intensity between left- and right-
circularly polarized incident x rays, reveals the chirality of
the spin domain structure [38]. Also, it was demonstrated
using a full polarization analysis of the scattered beam that
for multiferroic TbMnO3 the circularly polarized x rays are
sensitive to the handedness of the cycloidal-type spin spiral
order [40]. However, chirality is the only structural parameter
that can be directly retrieved so far using circularly polarized
light for magnetic x-ray diffraction, while the rest of the spiral
structural information cannot be determined straightforwardly.
Here, we show a generally applied DREXS strategy that not
only determines the chirality of the spin spirals, but also
fully retrieves the information about the CRP. We demonstrate
both theoretically and experimentally that for an arbitrary spin
helix, the DREXS surprisingly vanishes at certain geometrical
conditions, which are specific signatures of a particular spiral
structure. We summarize this phenomenon as the dichroism
extinction effect, which can be applied to unambiguously
determine the detailed structure of chiral magnetic order,
inaccessible to any other methods.

II. DICHROIC RESONANT ELASTIC X-RAY
SCATTERING (DREXS)

The geometry for performing our DREXS experiment
is shown in Fig. 1, in which the resonant elastic x-ray
diffraction condition for a scattering wave vector Q is met. The
incommensurate magnetic structure with modulation wave
vector qh appears as satellites around a crystalline lattice peak
G in reciprocal space. G needs to be oriented along the z axis,
while qh resides within the x-y plane and can be oriented at
an arbitrary azimuthal angle �. This can be achieved either
by rotating the sample azimuthally, or by using a magnetic
field that drives the orientation of qh (assuming the material
is susceptible to this field). Consequently, Q = G + qh. Here,
the dichroic signal, central to the measurement rule, is defined
as the diffraction intensity difference in the same geometry
using left- and right-circularly polarized incident light (see Ap-
pendix). By definition, absorption of a left- (right-) circularly
polarized photon changes the magnetic quantum number m

of the atom as �m = −1 (�m = +1) [36,42]. By measuring
the DREXS for � varying from 0◦ to 360◦, an azimuthal
circular dichroism profile is obtained. This profile forms the
core of our measurement strategy for retrieving the detailed
spin motif structure. As derived in Appendix B, the full set
of angles (φ,η,ξ ) (see Figs. 1 and 2 for an illustration) is
explicitly expressed by the azimuthal DREXS intensity

ID(�) = −Y sin2 ξ [cos θ sin η + sin θ cos η cos(� + φ)],
(1)

where θ is the incident angle satisfying the diffraction
condition for the scattering wave vector Q that is a known value
for an experiment, and Y is a constant. The DREXS intensity
follows a sinusoidal curve [see Figs. 2(b), 2(d), 2(f), 2(h),
and 2(j)], which goes under certain conditions completely
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FIG. 2. Correspondence between the common rotation plane and
dichroism extinction condition. (a) Spin motif structure with η = 0◦

and φ = 0◦ (base helix), and (b) corresponding azimuthal DREXS
profile (blue curve). The first extinction condition is marked by the
blue triangle. The dotted red curve shows the azimuthal DREXS
for the opposite chirality, for which the first extinction condition is
marked by the red triangle. (c)–(j) Real-space spin motif structures
with different η and φ (left-hand side) and corresponding azimuthal
DREXS profiles (blue curves, right-hand side). The red curves are
the calculated results for real-space spin structures with opposite
chirality. For η �= 0◦, the second extinction conditions are marked by
the green triangles. On the right-hand side, the numerical values for
�

(1)
ext and �

(2)
ext for both chiralities are listed.

extinct. In the following, we generalize a principle based on
Eq. (1), which allows us for determining (φ,η) immediately
from the direct measurement result, without any data refine-
ment efforts.

We define the nodes of the sinusoidal curve as the first
extinction condition, denoted by

ID
(
�

(1)
ext

) = I
average
D = Imax

D − Imin
D . (2)

For a more rigorous definition of the extinction conditions, see
Appendix C. The yaw angle of the spin motif is given by

φ = π

2
− �

(1)
ext . (3)

Next, we define the second extinction condition as the
azimuthal angle �

(2)
ext for which ID(�(2)

ext ) = 0. Consequently,
the pitch angle η is obtained as

η = tan−1 [
tan θ sin

(
�

(2)
ext − �

(1)
ext

)]
. (4)

Note that there are usually two separate second extinction
conditions, both leading to the same η.

Figure 2(a) shows the base helix motif with η = 0◦ and
φ = 0◦, which forms a three-dimensional periodic spin lattice.
The result of the calculation of the DREXS profile is shown
in Fig. 2(b) (blue curve). In this case, the sinusoidal curve is
symmetric about the � axis. Therefore, �

(1)
ext = �

(2)
ext = 90◦,

and η = φ = 0◦ is obtained, in agreement with the real-space
structure. If the chirality of the spin spiral is reversed, the
subsequent dichroic profile will reverse its sign as well. The red
curve in Fig. 2(b) is the DREXS curve calculated for the spin
structure with opposite chirality. Here, �

(1)
ext = �

(2)
ext = 270◦,

leading to η = 0◦, φ = −180◦. Further examples of η = 0◦
cases are shown in Figs. 2(c)–2(f).

Figure 2(g) shows a spin motif with nonzero η canting
of the common rotation plane. As a result, the dichroic
profile is shifted along the ID axis [blue curve in Fig. 2(h)].
From the DREXS curve, we first find that �

(1)
ext = 90◦ (blue

triangle) by determining the azimuthal angle at the minimum
(0◦) and then adding 90◦, resulting in φ = 0◦. The second
extinction condition gives �

(2)
ext ≈ 152◦ (green triangle). For

the calculation, θ ≈ 48.2◦ was used, which is the diffraction
condition for the chiral magnet Cu2OSeO3 [11], resulting in
η ≈ 45◦ which is in excellent agreement with the real-space
structure parameters. For the red curve, �

(1)
ext = 270◦ and

�
(2)
ext = 152◦, leading to φ = −180◦ and η ≈ −45◦. This case

describes a helix with opposite chirality. The same rules can be
applied to other types of spiral structures, as shown in Fig. 2.

III. AZIMUTHAL DREXS

The azimuthal DREXS measurements can be summarized
using compact two-dimensional maps. In Fig. 3(b), the
DREXS profiles for all possible yaw angles for η = 0◦ spin
spirals are plotted. As can been seen, each particular φ

corresponds to a unique DREXS profile. This is also true for all
possible φ = 0◦ helices with varying η, as shown in Fig. 3(c).
This one-to-one correspondence represents mathematically a
unique relationship between the spin structure and the resulting
dichroism extinction conditions.

Next, a more general geometry is discussed. Aside from
simply rotating the spiral wave vector qh azimuthally within
the x-y plane, qh can in fact be oriented in any direction, ef-
fectively describing a sphere that is centered at the Bragg peak
G. The azimuthal DREXS is the equator of this sphere. Three
different types of spin spirals are calculated, and the resulting
DREXS spheres are shown in Figs. 3(d), 3(f), and 3(h). For
clarity, the corresponding stereographic projections are plotted
below in Figs. 3(e), 3(g), and 3(i). First, each of the helices
corresponds to a distinct spherical dichroic map. Second,
already the equator, i.e., the azimuthal DREXS profile, and
thus the associated dichroism extinction conditions, contain
the full characteristic DREXS information for an arbitrary
spin helix. Therefore, and this is of particular importance from
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°)

FIG. 3. General features of the dichroism extinction effect.
(a) Azimuthal DREXS geometry in which a � scan is performed
by rotating qh over a range of 360◦ within the qx-qy plane. (b) For
η = 0◦ spin motif structures, each distinct yaw angle φ has a unique
azimuthal DREXS profile. (c) For φ = 0◦ spin motifs, each pitch
angle η also has a unique corresponding azimuthal DREXS signal.
(d) Circular dichroism sphere for an η = 0◦ and φ = 0◦ helix
structure. Each point (qx,qy,qz) on the sphere corresponds to an
orientation of the spin-helix wave vector. The color encodes the
value of the circular dichroism signal. (e) Azimuthal stereographic
projection of (d) (top view from above the north pole). The equator,
corresponding to the � circle in our experimental geometry, is
indicated by the black circle. Red dots mark equivalent points on
the sphere and the stereographic projection map. Panels (f), (g) and
(h), (i) show equivalent plots for other structures. The azimuthal
circular dichroism signal at the equator is unique for each type of
helix, thereby greatly simplifying the measurement.

an experimental point of view, performing only azimuthal
DREXS scans is sufficient to completely capture the physical
properties of this spin system.

IV. ROLE OF THE CONE ANGLE IN DREXS

Now, we address the role of the cone angle ξ in DREXS
measurements. As seen in Eq. (1), ξ only scales the amplitude
of the dichroism signal. This means that it is only the CRP that
defines a specific type of spin spiral. This is also reflected from
the representation of an arbitrary spiral type in Fig. 1. In other
words, a conical spiral actually belongs to the same category
as the ξ = 90◦ helix. Therefore, for an unknown modulated
spin structure, first the CRP should be determined, regardless
of the value of ξ . The influence of ξ is further demonstrated
in Fig. 4, in which the azimuthal DREXS profiles for different
conical angles are simulated. Indeed, ξ does not affect the
fundamental properties specified by the extinction conditions
at all, and only the amplitude is scaled. The larger that ξ is, the
higher the DREXS signal. At ξ = 0◦, a ferromagneticlike order

FIG. 4. Conical spirals and their dichroism extinction conditions.
(a) A η = 0◦, φ = 0◦ conical spiral is essentially of the same type as a
proper-screw helix (i.e., the base helix), however, with a 0◦ < ξ < 90◦

tilt angle. (b) For any allowed ξ angle, the extinction condition for
the azimuthal DREXS remains independent of ξ . The amplitude of
the dichroism indicates the value of ξ . These features are universal
for all conical structures, as illustrated by another example of a spiral
structure in (c) and (d).

is reached, fully smearing out the dichroism signal. Therefore,
in order to retrieve the conical angle ξ , the comparison of the
dichroism signal of a ξ = 90◦ helix and a conical spiral state
has to be measured. This can usually be achieved by applying
an external magnetic field in the ξ = 90◦ helical state, if the
material is susceptible to the magnetic field. A conical spiral
with finite ξ will thus form, with an identical common rotation
plane to that of the helical state [25]. Therefore, based on
Eq. (1), when performing a measurement at the same azimuthal
angle �, the measured DREXS signal I for a spin spiral with
finite conical angle ξ relates to the ξ = 90◦ helical DREXS
amplitude I0 by I/I0 = sin2ξ . Consequently,

ξ = sin−1(
√

I/I0). (5)
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FIG. 5. Experimental demonstration of the dichroism extinction effect. (a) Schematic of the magnetic phase diagram showing the helical,
conical, and skyrmion lattice phase (SkX). The TC is 57.5 K. (b) Reciprocal space map of the helical state of Cu2OSeO3 at 20 K and 0 mT,
measured by resonant x-ray diffraction in the (hk1) plane. Two pairs of helical peaks are found, resulting from lateral domains. (c) DREXS
reciprocal space map in the helical state showing opposite contrast for both partners of a Friedel pair (±qh). (d) Azimuthal DREXS plot
measured in the helical state. The solid red curve is a fit to the data, using Eq. (2), giving values of η = 0◦ and φ = −180◦. (e), (f) Reciprocal
space map [in the (hk1) plane] and circular dichroism map for the conical state, respectively. Note that the magnetic field is applied along the
x axis in real space. (g) Azimuthal DREXS plot for the conical state. As in (c), the fit to the data using Eq. (2) yields η = 0◦ and φ = −180◦.
On the other hand, the reduced amplitude [compared to (c), with identical incident x-ray flux] indicates that this state has a conical spiral
structure with finite ξ . (h) DREXS as a function of the external field at 57 K, where the +qh values correspond to � = 0◦ and the −qh values
to � = 180◦. The magnetic phases are indicated and cover, in order of increasing field, the SkX, conical, and ferrimagnetic (field-polarized)
phase. Note that in the phase transition region (blue region), the SkX and the conical state coexist. (i) Evolution of the conical angle ξ as a
function of magnetic field. Note that in the helical state, ξ = 90◦.

Using the experimental measurement principles specified in
Eqs. (3)–(5), the full set of structure parameters (φ,η,ξ ) that
characterize any given type of spin spiral can be determined.

V. EXPERIMENTAL VERIFICATION

Next, we experimentally demonstrate this principle us-
ing a Cu2OSeO3 single crystal. DREXS experiments were
carried out in the RASOR diffractometer on beamline I10
(Diamond Light Source, UK). Single crystals of Cu2OSeO3

were precharacterized by x-ray diffraction and electron back-
scattering diffraction to confirm the crystalline quality and
single chirality. Magnetometry measurements were performed
to map out the magnetic phase diagram [see schematic in
Fig. 5(a)], showing the helical, conical, and skyrmion phases,
consistent with susceptibility and neutron data presented in
Refs. [9,43]. The polished crystal surface was (001) oriented
for the subsequent resonant x-ray scattering measurements.
The incident soft x-ray beam with variable polarization was

tuned to an energy around the Cu L3 edge. An energy scan
across the Cu edge is shown in Fig. 3(b) in Ref. [44]. The
experimental geometry is depicted in Fig. 1(a). The scattered
beam is captured by either a CCD camera or a photodiode
point detector. The modulated magnetic structure leads to
satellites surrounding the structural peaks in reciprocal space.
Azimuthal DREXS measurements are performed by varying
the incident light polarization, while measuring the diffraction
intensities for helical/conical peaks at varying �.

Cu2OSeO3 is a noncentrosymmetric helimagnet that carries
long-wavelength spiral spin structures due to the presence of
the Dzyaloshinskii-Moriya interaction [9,45]. At zero field,
below the magnetic ordering temperature, the system exhibits
a multidomain helical state (ξ = 90◦) with propagation wave
vectors [qh ≈ 0.0158 reciprocal lattice units (r.l.u.)] locked
along the h, k, and l directions in reciprocal space [43,46].

The REXS data for the helical state were obtained using
σ -polarized incident light. The plot in the (hk1) plane, shown
in Fig. 5(b), is consistent with other reports in the literature
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[11,44,47]. For generating this reciprocal space map, ω-2θ

scans were performed ±2.5◦ around the (001) peak. The
plot in the (hk1) plane is obtained by processing a series of
CCD images, as described in great detail in the Supplemental
Material to Ref. [11]. Two sets of Friedel pairs are found within
the (hk1) plane, corresponding to two helical domains, locked
by the weak cubic anisotropy.

We then carry out DREXS under the same measurement
conditions. For DREXS, RSMs in the (hk1) plane are obtained
for both left- and right-circularly polarized light, and then
subtracted to obtain the DREXS reciprocal space map. As
shown in Fig. 5(c), a clear difference in dichroism between the
partners of each Friedel pair is found. Starting from � = 0◦
(the qx axis), the DREXS undergoes a positive → negative →
negative → positive transition. From this dichroic pattern, one
can immediately determine the chirality of the helix as being
left handed [i.e., opposite to the system shown in Fig. 2(a)],
by comparison with Figs. 2(b) and 2(d).

Detailed azimuthal DREXS scans were performed by
varying the azimuthal angle from 0◦ to 360◦, sampling on
a single helical domain by reducing the beam size. The mea-
sured DREXS profile [Fig. 5(d)] is a well-defined sinusoidal
curve, normalized to 1 for the helical state, which is almost
symmetric about the � axis. This means that �

(1)
ext = �

(2)
ext ,

leading to η = 0◦. Further, �(1)
ext ≈ 270◦ leading to φ ≈ −180◦.

Consequently, by applying our measurement principle, it can
be unambiguously concluded that the helical structure is a
proper-screw-type helix with left-handed chirality. The fitted
result, using the azimuthal DREXS equation with φ = −180◦
and η = 0◦ is shown by the red line, which is in excellent
agreement with the spin structure model.

By increasing the magnetic field to 50 mT (applied along
the x direction), the helical state evolves into a single-domain
conical state with a finite ξ angle. The conical phase leads
to the well-known twofold-symmetric diffraction pattern in
σ -polarized REXS, as shown in Fig. 5(e). The observed
dichroism again suggests that the conical spiral has left-handed
chirality, in agreement with the helical state. The measured az-
imuthal DREXS profile is shown in Fig. 5(g). It bears a large re-
semblance with that shown in Fig. 5(d), except that in Fig. 5(g)
the normalized dichroism amplitude is reduced. By extracting
the extinction conditions (�(1)

ext = �
(2)
ext ≈ 270◦), we can clearly

conclude that the conical state shares the identical common
rotation plane to that of the helical state and that the smaller
DREXS intensity indicates the presence of a conical ξ angle.

In order to measure the exact conical angle ξ , field-
dependent DREXS is performed. Figure 5(h) shows the
dichroism signal as a function of magnetic field at � = 0◦ for
the conical Friedel pair (qh and −qh). At 57 K, a finite magnetic
field will first stabilize the skyrmion lattice phase, which has
no conical peaks (which would be located at different positions
in reciprocal space) [11]. With increasing field, the skyrmion
lattice phase will undergo a first-order phase transition to the
conical state, evidenced by the sudden enhancement of the
conical DREXS signal as shown in Fig. 5(h). A further field
increase will gradually reduce ξ , leading to a reduction of the
dichroism signal, according to Eq. (1). A larger field will finally
destroy the conical structure, by dragging all the spins to align
parallel (field-polarized state), giving rise to zero diffraction
intensity at ±qh [11]. As a reference, we also measured the

helical DREXS signal for a ξ = 90◦ system at � = 0◦, under
identical experimental conditions. This way, based on Eq. (5),
the exact value of ξ as a function of magnetic field can be
retrieved [cf. Fig. 5(i)]. As a result, the full set of structure
parameters (φ,η,ξ ) of both the helical and the conical phases
of Cu2OSeO3 were unambiguously determined.

VI. SUMMARY AND CONCLUSIONS

In summary, we have demonstrated a magneto-optical
principle by combining resonant x-ray scattering and
circular dichroism. We show that for a particular chiral
spin modulation structure, the signal varies with azimuthal
rotation, following a well-defined analytical relationship. The
systematic extinctions unambiguously reveal the underlying
magnetic structure. We formulate experimental rules that can
be used to directly determine the spin motif structure with
high accuracy, which goes beyond the capabilities of other
magnetic characterization techniques.

There are three aspects worth noting for further applying
this principle to a wider range of materials. First, our measure-
ment strategy requires that the incommensurate magnetic prop-
agation wave vector lies within the x-y plane, which is probed
as magnetic satellite peaks that decorate a structural peak. This
is not always the case for soft x-ray resonant scattering, as the
wavelength of the incident light is normally long. For materials
with shorter lattice constants, such as MnSi and FeGe, no struc-
tural peak is accessible in the experimental geometry shown
in Fig. 1(c). Nevertheless, one can use the surface diffraction
geometry [38,48–50]. Then, the incommensurate spiral peaks
appear as magnetic crystalline truncation rods. In this case,
at higher incident angles for “longer rods” close to θ = 45◦,
the scattering geometry for performing dichroism extinction
analysis can be achieved. Therefore, in theory, DREXS is
capable of characterizing all types of long-wavelength spin
spiral materials regardless of their lattice constants. Second, it
is essential to confirm that the magnetic order is of a spin-spiral
type before performing the dichroism extinction analysis. In
fact, this problem is self-solving by observing a dichroic
feature in the magnetic peaks. As illustrated in Figs. 5(c)
and 5(f), the Friedel pair of the modulated magnetic peaks will
show dichroism, which is the unique feature of spin-spiral-type
order. On the other hand, if the magnetic order is not of a spiral
type, there is no dichroic difference between the Friedel pairs.
In this way, the magnetic structure is determined in one single
experiment. Third, it is worth mentioning that the proposed
technique for retrieving the conical angle ξ is not applicable
to all materials. In fact, only materials hosting ξ = 90◦ spirals
and where the conical phases are susceptible to an applied
magnetic field are suitable for DREXS.

Our experimental strategy can be extended to include
nonresonant x-ray magnetic scattering in both the soft and
hard x-ray regions with modifications. Although the light-
matter interaction process is fundamentally different for hard
x-ray magnetic scattering and nonresonant magnetic x-ray
scattering, the geometrical effect is similar [51–53]. There-
fore, a similar dichroism extinction effect can be expected.
Consequently, this experimental principle is a universal
method for the exploration of helical magnetic materials.
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APPENDIX A: POLARIZATION DEPENDENCE OF
RESONANT ELASTIC X-RAY SCATTERING

We develop our model starting from the well-established
equations for resonant elastic x-ray scattering (REXS) in mag-
netic systems [39,51–53]. In the electric dipole approximation,
for a single magnetic ion at site n that carries a magnetic
moment mn, the REXS form factor is given by

f res = f0(ε∗
s · εi) − if1(ε∗

s × εi) · mn, (A1)

where εi and εs are the incident and scattered light polarization,
and f0 and f1 the energy-dependent charge and linear magnetic
term, respectively. At fixed photon energy, the factors f0 and f1

become constant complex numbers. Higher-order terms can be
neglected here as they do not contribute to the measured signals
in the proposed method. The scattering intensity I (q) for an
incommensurate spin lattice, in the first Born approximation,
can then be written as [39]

I (q) = |F res
1 (q)|2, with (A2)

F res
1 (q) = −i

∫
dr2f1(ε∗

s × εi) · m(r) eiq·r

= −iF1 (ε∗
s × εi) · M(q), (A3)

where |F1| is the Fourier transform of f1, and M(q) the Fourier
transform of the real-space magnetization configuration m(r).
Here, the continuum approximation is used such that m(r) can
be regarded as a continuous vector field of the magnetization.

Next, the dependence on εs and εi is considered. As will
be shown below, using the density matrix approach, the
specific scattered light polarization εs does not play a role
since I (q) is summed over all values of εs . The geometry
used to carry out the polarization-dependent scattering cross
section is illustrated in Fig. 1 in the main text. The choice
of Cartesian coordinates is governed by the scattering plane,
i.e., the x-z plane is parallel to the scattering plane, and the
x-y plane is perpendicular to the diffraction wave vector Q.
This also defines the reciprocal space (qx,qy,qz). Therefore,
ki = k(cos θ,0, sin θ ), ks = k(cos θ,0,− sin θ ), and ks × ki =
k(0,−2 cos θ sin θ,0), where k is the length of the x-ray wave
vector (given by the photon energy) and θ is the Bragg angle
satisfying the diffraction condition for the wave vector Q.

We then define the 2 × 2 density matrix μ for the light
polarization as

μ = 1

2
(P0σ0 + P · σ ) = 1

2

(
P0 + P1 P2 − iP3

P2 + iP3 P0 − P1

)
, (A4)

where σ0 =
(

1 0
0 1

)
, and σ are the Pauli matrices σ1 =

(
1 0
0 −1

)
, σ2 =

(
0 1
1 0

)
, σ3 =

(
0 −i

i 0

)
. P = (P1,P2,P3)

is the Poincaré-Stokes representation of the light polariza-
tion. For circularly polarized light, P0 = 1, P1 = 0, P2 = 0,
P3 = ±1.

The density matrix μ = ∑
λ |λ〉pλ〈λ| specifies the polariza-

tion state for the incident light, with the degree of polarization
P = 〈σ 〉 = Tr[σ · μ], where |λ〉 is the incident polarization
eigenstate, with probability pλ, and Tr stands for trace. The
polarization state for the scattered light can then be written
as μs = F · μ · F†, where F is the scattering form factor.
The scattering cross section is obtained by summing over all
scattered light polarizations

I (Q) = Tr[μs] = Tr[F · μ · F†]. (A5)

Evaluation of Eq. (A5), using F and μ given in Eqs. (A3)
and (A4), yields [39]

I (Q) = 1
2 |F1|2(P0 + P1)|ks · M(Q)|2

+ 1
2 |F1|2(P0−P1)[|ki ·M(Q)|2+|(ks ×ki)·M(Q)|2]

− |F1|2Re{(P2 + iP3)[ks ·M∗(Q)](ks ×ki)·M(Q)},
(A6)

in which ki and ks are tuned to fulfill the diffraction condition
for Q. Here, we use the diffraction wave vector Q as the
argument, as it relates to the vector sum over the Bragg peak
G and spin spiral propagation wave vector qh by Q = G + qh.

Plugging P = (1,0,0, ± 1) into Eq. (A6) gives the circular
dichroism in the REXS condition (i.e., DREXS) at Q as

ID(Q) = 2|F1|2 Im{[ks · M∗(Q)](ks × ki) · M(Q)}. (A7)

APPENDIX B: CIRCULAR DICHROISM FOR
AN ARBITRARY SPIN MODULATION

We first define the base helix of the motif as a proper-screw
helix with right-handed chirality. qh propagates along the x di-
rection as shown in Fig. 2(a) in the main text. It is expressed as

m1 = MS cos ξ,

m2 = MS sin ξ cos(qh · r),

m3 = MS sin ξ sin(qh · r),

(B1)

where m = (m1,m2,m3), MS is the saturation magnetization,
and ξ is the cone angle. Note that there should also be
cos(qh · r + κ) and sin(qh · r + κ) terms in Eq. (B1) that
describe the real-space phase shift κ of the spins within the
motif. This will also appear in the expressions of the Fourier
transforms. However, this phase information will vanish
when calculating the circular dichroism intensity, obtained by
inserting the expressions into Eq. (A7). The underlying reason
for their disappearance is that the scattering amplitudes are
squared (the famous “phase problem”), resulting in the same
values for κ , independent of the phase. Therefore, without loss
of generality, κ = 0 can be chosen to simplify the derivation.

Next, the rotations η and φ are applied to the helix. This
is equivalent to the combined rotation operation RφRη m,
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where

Rφ =
⎛
⎝cos φ − sin φ 0

sin φ cos φ 0
0 0 1

⎞
⎠

and

Rη =
⎛
⎝cos η 0 − sin η

0 1 0
sin η 0 cos η

⎞
⎠.

Thereafter, the helix can be written as

m1 = − MS sin ξ cos φ sin η sin(qh · r)

− MS sin ξ sin φ cos(qh · r) + C1,

m2 = − MS sin ξ sin φ sin η sin(qh · r)

+ MS sin ξ cos φ cos(qh · r) + C2,

m3 = MS sin ξ cos η sin(qh · r) + C3, (B2)

where C1, C2, and C3 are a function of ξ , and independent of r.
When the Fourier transform is performed, these terms become
δ functions, which are only nonzero at the origin of reciprocal
space q = 0. Thus, their detailed functions are not relevant at
this point.

In our azimuthal geometry for the diffractive XMCD, qh

is required to propagate within the qx-qy plane. We define
� = 0◦ as the angle where qh is along the positive qx direction.
In real space, this corresponds to the helix pitch being oriented
along x. Therefore, in our scattering coordinate system, a
rotation of the helix by � will give rise to the magnetization
profile of R�m (see Fig. 1 in the main text), where

R� =
⎛
⎝cos � − sin � 0

sin � cos � 0
0 0 1

⎞
⎠.

To meet the diffraction condition Q = G + qh at �, Q has
to be brought into the scattering plane. In a common four-circle
diffractometer, this is achieved by compensating the diffraction
offset by the other two rotation axes, i.e., the K axis, which
is perpendicular to both the � axis (i.e., the main axis rotates
within the scattering plane) and the � axis, as well as the �

axis. Consequently, the components of the magnetic structure
transform into ⎛

⎝m′
1

m′
2

m′
3

⎞
⎠ = R�RK

⎛
⎝m1

m2

m3

⎞
⎠, (B3)

where RK and R� are the rotation matrices for the K and �

axes. The combination of these two rotations brings Q into the
scattering plane for fulfilling the diffraction condition.

However, it is essential to note that this change would
be negligible for most of the long-wavelength modulated
magnetic structures. For instance, qa = 0.0158 for Cu2OSeO3

(cf. Ref. [11]), where a is the lattice constant. Therefore, for
G = (0,0,1) and Q = G + qh, the change of both K and � is
less than 0.9◦ for all � angles. This makes the effect ofRK and
R� negligible as well. In the long-wavelength approximation,
we can then take ⎛

⎝m′
1

m′
2

m′
3

⎞
⎠ ≈

⎛
⎝m1

m2

m3

⎞
⎠.

Consequently, the Fourier transform for q = qh yields

M1(qh) = − πMS sin ξ sin(� + φ)

+ iπMS sin ξ sin η cos(� + φ),

M2(qh) = πMS sin ξ cos(� + φ)

+ iπMS sin ξ sin η sin(� + φ),

M3(qh) = − iπMS sin ξ cos η. (B4)

Plugging this result into Eq. (A7) yields the expression
for azimuthal DREXS, shown as Eq. (1) above, where
Y = 4|F1|2π2k2M2

S cos θ sin θ . This equation describes the
functional dependence of the DREXS signal on the azimuthal
rotation of the helix, and its proportionality to the combination
of certain helix parameters. The azimuthal DREXS profile is
essentially a sinusoidal curve with a period of 2π . The yaw
angle φ will effectively shift the sinusoidal profile along �, and
the pitch angle η will introduce an asymmetry of the sinusoidal
curve. Therefore, by fitting the measured azimuthal DREXS
profile to Eq. (1), the common rotation plane of the helix motif
can be unambiguously determined.

APPENDIX C: DEFINITION OF THE FIRST AND SECOND
DICHROISM EXTINCTION CONDITIONS

First, let us first assume η = 0◦ and φ = 0◦, i.e., a base helix
as shown in Fig. 2(a). The results of the numerical calculation
for the azimuthal DREXS profile are plotted as the blue curve
in Fig. 2(b). This cosine curve is in agreement with the results
obtained from Eq. (1). There are two characteristic points,
� = 90◦ and 270◦, at which the dichroism vanishes. If the
chirality of the helix is reversed, the sign of the DREXS profile
is inverted [shown as the red curve in Fig. 2(b)].

Let us define the first extinction condition �
(1)
ext , such that

∂ID/∂�|
�=�

(1)
ext

> 0, meaning that it satisfies two conditions:

(1) ID(�(1)
ext ) = 0 and (2) ID should always evolve from negative

to positive when crossing over �
(1)
ext . Therefore, in this case,

�
(1)
ext = 90◦ for the blue curve. It is then obvious that the

structure parameter φ for the helix directly relates to the first
extinction condition by φ = π/2 − �

(1)
ext = 0◦, which agrees

with the numerical results. On the other hand, for the red
curve, �

(1)
ext = 270◦, giving rise to φ = −180◦. This suggests

that the real-space base helix in Fig. 2(a) has a yaw angle
which is rotated by −180◦ azimuthally, essentially equivalent
to the reversal of its chirality. Therefore, the first extinction
condition gives an unambiguous value for the yaw angle.

Next, we add a φ rotation, while keeping η = 0◦. In this
case,

ID ∝ −cos(� + φ) , with the first extinction condition

φ = π

2
− �

(1)
ext . (C1)

This example is illustrated in Figs. 2(c) and 2(b), in which
the base helix has a yaw canting. The numerical calculation
[Fig. 2(b)] shows that �

(1)
ext = 60◦, which further gives φ =

30◦. This is in excellent agreement with the results shown in
Fig. 2(c). Another example with φ = 90◦ and �

(1)
ext = 0◦ is

shown in Figs. 2(e) and 2(f).
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Finally, the rotation about η is included. First, as shown in
Eq. (1), one can ignore the contribution from θ , as this is a
constant which only relates to the absolute diffraction condi-
tion. Second, the direct consequence of adding the η degree of
freedom is a scaling and shifting of the cosine curve, while the
periodicity and phase of the profile is not changing (equivalent
to η = 0◦). In other words, the determination of φ using the
first extinction condition, given by Eq. (C1), is unaffected. In
comparison to the previous cases, in order to locate �

(1)
ext , the

sinusoidal curve needs to be shifted vertically to make the
curve symmetric about the horizontal axis. Alternatively, the
maxima or minima of the DREXS curve can be determined and
�

(1)
ext is obtained by adding or subtracting π/2 to those values.
The second extinction condition �

(2)
ext is defined by ID = 0.

Now, η is taken into account right from the start. This results
in

cos θ sin η = − sin θ cos η cos
(
�

(2)
ext + φ

)
, therefore

tan η = tan θ sin
(
�

(2)
ext − �

(1)
ext

)
. (C2)

Here, η = tan−1 [tan θ sin(�(2)
ext − �

(1)
ext )] uniquely specifies the

pitch angle of the generalized helix. Note that both �
(2)
ext

extinction points lead to the same η.
The results for this example are shown in Figs. 2(g)–2(j),

in which η = 45◦ effectively lowers the blue sinusoidal curve.
First, the first extinction condition �

(1)
ext = 90◦ is identified

(labeled by the blue triangle). This is obtained by shifting the
ID profile vertically to obtain a symmetric function, giving
φ = 0◦. Second, �

(2)
ext ≈ 152◦ and 206◦ are directly obtained

from the unshifted curve (marked by the green triangles). In
our calculation, we use a value of θ ≈ 48.2◦, which gives the
diffraction condition for Cu2OSeO3. This leads to η ≈ 45◦
[using Eq. (C2)], in agreement with the real-space structure.
Note that the minor difference is due to the numerical errors
in the calculation. For the red curve, �

(1)
ext = 270◦, leading to

φ = −180◦ and η ≈ −45◦. These parameters describe a helix
with opposite chirality of that shown in Fig. 2(c). The same
exercise can be carried out for the spirals in Figs. 2(g) and 2(h),
which further confirms the validity of this method.
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