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Universal short-time quantum critical dynamics of finite-size systems
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We investigate the short-time quantum critical dynamics in the imaginary-time relaxation processes of finite-
size systems. Universal scaling behaviors exist in the imaginary-time evolution. In particular, the system undergoes
a critical initial slip stage characterized by an exponent θ , in which an initial power-law increase emerges in the
imaginary-time correlation function when the initial state has a zero order parameter and a vanishing correlation
length. Under different initial conditions, the quantum critical point and critical exponents can be determined
from the universal scaling behaviors. We apply the method to the one- and two-dimensional transverse field Ising
models using quantum Monte Carlo (QMC) simulations. In the one-dimensional case, we locate the quantum
critical point at (h/J )c = 1.000 03(8) in the thermodynamic limit, and we estimate the critical initial slip exponent
θ = 0.3734(2) and the static exponent β/ν = 0.1251(2) by analyzing data on chains of length L = 32–256 and
48–256, respectively. For the two-dimensional square-lattice system, the critical coupling ratio is given by
3.044 51(7) in the thermodynamic limit, while the critical exponents are θ = 0.209(4) and β/ν = 0.518(1)
estimated by data on systems of size L = 24–64 and 32–64, respectively. Remarkably, the critical initial slip
exponents obtained in both models are notably distinct from their classical counterparts due to the essential
differences between classical and quantum dynamics. The short-time critical dynamics and the imaginary-time
relaxation QMC approach can be readily adapted to various models.
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I. INTRODUCTION

The understanding of nonequilibrium dynamics in inter-
acting many-body quantum systems is a crucial issue in
modern physics, with increasing focus stimulated by the
experimental developments in the field of cold atoms [1].
Different approaches can be used to take a system out of
equilibrium, such as applying a driving field or pumping
energy into the system. Among these approaches, one simple
but interesting candidate is to impose a sudden quench on an
equilibrium system [2,3]. After the sudden quench, the system
may go through different types of nonequilibrium processes.
For instance, it can gradually relax back to equilibrium or enter
a quasisteady prethermal state and end up in a thermalized
state [4], depending on the setup of the system and the
dynamics that governs the evolution. Experimental interest
in quantum quench dynamics has been increasing [5–9],
and much theoretical effort has also been made. Some
studies have focused on the postquench long-time universal
scaling behaviors [10–18], while others addressed the transient
dynamics in the short-time regime after the quench [19–29].

In the late 1980s, Janssen et al. [30] and Huse [31]
discovered the universal short-time critical dynamics (STCD)
in classical phase transitions. Universal scaling behaviors
are found in the relaxation process after performing a
sudden quench to the critical point from high temperature
with a small order parameter M0 and vanishing correlation
length [30,32,33]. The emergence of the initial power-law
increase in the order parameter, characterized as the critical ini-
tial slip with an independent exponent θ , is an important feature
of the STCD. In the short-time regime, after a transient micro-
scopic period, the order parameter increases as M(t) ∝ M0t

θ .
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The characteristic time scale of this short-time regime depends
on M0 and scales as tcr ∼ M

−z/x0
0 , in which x0 = θz + β/ν

is the scaling dimension of M0 [30,34]. After tcr, the initial
condition becomes irrelevant and the behavior of M(t) crosses
over to the well-known long-time power-law decay M(t) ∼
t−β/νz [30]. In the past few decades, STCD has become a
powerful tool in studying critical properties [32,33,35,36], and
it has been successfully applied to various models [37–49].

The classical STCD has been studied extensively (see
Ref. [38] for a review), while the same issue in quantum
systems has been attracting increasing attention in recent years.
Experimentally, a temporal scaling crossover is observed in
the time evolution of an isolated one-dimensional (1D) two-
component Bose gas when quenched into the vicinity of the
critical point [9]. The critical initial slip and the crossover to the
long-time noncritical regime are found in the correlation length
of the order parameter [9]. Theoretical interest has focused on
several aspects, including open and isolated quantum systems
as well as real- and imaginary-time evolutions [20–29,50,51].
References [21,22] present investigations on an N -component
ϕ4 model coupled to an external bath, where the critical initial
slip and long-time power-law decay are found in the real-time
relaxation of quantum open systems. A renormalization-group
analysis by Chiocchetta et al. [28] shows the existence of
the critical initial slip and dynamical crossovers between
different scaling regimes in prethermal states. Depending on
the dimension and the energy scale injected by the quench,
crossover can exist between two critical initial slip stages with
different exponents θ ’s governed by a quantum and a classical
prethermal fixed point, respectively [28]. Due to the unitary
nature of real-time evolution, only the prethermal stage has
similar evolution behaviors to the classical case [25–28]. In
contrast, in imaginary time, high-energy excited states decay
so fast that the evolution is governed by low-energy levels
close to the ground state, and it exhibits universal power
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laws [20,50]. A scaling theory for the quantum STCD in
imaginary time was proposed in Ref. [20] and realized in
1D Ising systems. The critical initial slip also appears in the
imaginary-time evolutions of quantum systems, i.e., the time
dependence of the order parameter in Ref. [30] also holds
in imaginary time M(τ ) ∝ M0τ

θ for a small finite M0 [20].
The critical initial slip terminates at time scale τcr ∼ M

−z/x0
0 ,

which is called the initial-value time [34], and it crosses over
to the universal long-time power-law decay M(τ ) ∼ τ−β/νz.
The value of the critical initial slip exponent is found to be
θ = 0.373 [20] in the 1D transverse field Ising model (TFIM),
in sharp contrast to its classical counterpart, namely the two-
dimensional (2D) classical Ising model θ = 0.191(1) [38,52].

Even with the progress made by density-matrix
renormalization-group and related matrix-product state meth-
ods [53–55], real-time dynamics is difficult to deal with com-
putationally for most quantum systems, especially for higher
dimensions. As demonstrated in Refs. [17,56–59], real-time
and imaginary-time dynamics bear so many similarities that
some scaling properties of real-time dynamics can be predicted
by the imaginary-time dynamics. Recent developments in
the quantum Monte Carlo (QMC) approach [56–58] have
shed light on the possibility to simulate the imaginary-
time relaxation process in a wide range of “sign-problem”
free quantum models, offering a promising way to study the
quantum STCD.

In this work, we study the quantum STCD of finite-size
systems in imaginary-time relaxation, and we apply it to both
the 1D and 2D TFIMs using a ground-state projection QMC
approach. The quantum critical point and critical exponents (θ
and β/ν) are extracted from the universal scaling behaviors.
The key result of our work is the capture of the critical initial
slip of the 2D square-lattice TFIM. To our knowledge, the
critical initial slip exponent θ of the 2D TFIM has not been
computed yet. In the meantime, we obtain the θ of the 1D
TFIM, which soundly confirms the result found in Ref. [20].
In both cases, the critical initial slip exponents are distinct from
their classical counterparts. Our results show the capability of
the quantum STCD method in determining critical properties,
and they shed light on future applications to other models.

The rest of the paper is organized in the following way. In
Sec. II we first briefly review the imaginary-time dynamics. In
Sec. III we generalize the scaling theory for the quantum STCD
to finite-size systems in imaginary time. The key idea of the
projector QMC method is outlined in Sec. IV, while Sec. V
introduces the properties of the models studied. Numerical
results of the 1D and 2D TFIMs are presented in Sec. VI, and
a summary is given in Sec. VII.

II. IMAGINARY-TIME DYNAMICS

In this section, we discuss the imaginary-time evolution
of a quantum state |ψ(τ )〉. By performing the standard Wick
rotation of t → −iτ , the Schrödinger equation describes the
imaginary-time evolution of the wave function as [60,61]

∂

∂τ
|ψ(τ )〉 = −H |ψ(τ )〉, (1)

with the Planck constant being 1 and the normalization
condition 〈ψ(τ )|ψ(τ )〉 = 1. A formal solution of Eq. (1) is

given by

|ψ(τ )〉 = Z−1
0 e−τH |ψ(τ0)〉, (2)

in which e−τH is the imaginary-time evolution operator, and
the normalization factor Z0 is

Z0 = ||e−τH |ψ(τ0)〉||, (3)

where || · · · || denotes a modulo operation.
In the energy representation, Eq. (2) reads

|ψ(τ )〉 = Z−1
0

∑
i

cie
−Eiτ |i〉

= Z−1
0 e−E0τ

∑
i

cie
−(Ei−E0)τ |i〉 ∼ c0|0〉 + c1e

−	τ |1〉,

(4)

where the coefficients are given by the overlap of the initial
state and the ith eigenstate of the Hamiltonian ci = 〈i|ψ(τ0)〉,
and 	 = E1 − E0 is the gap between the first excited state
and the ground state. It is indicated in Eq. (4) that the high-
energy levels decay too fast to be non-negligible, and |ψ(τ )〉 is
governed by the low-energy levels during the imaginary-time
evolution [20].

As pointed out in Ref. [50], a dissipative equation of the
probability to find a given eigenstate can be derived from
the Schrödinger equation, and it is argued that this dissipative
equation in fact exhibits similar evolution properties to the
classical master equation, especially the critical initial slip in
the short-time stage, although the dynamics are essentially
different [50].

III. QUANTUM SHORT-TIME CRITICAL DYNAMICS
IN FINITE-SIZE SYSTEMS

In this section, we discuss the quantum STCD in finite-size
systems during the imaginary-time evolution under different
quench protocols.

When a system is initially off-critical with a vanishing
correlation length, a sudden quench to the critical point triggers
relaxation [20,30]. In imaginary time, universal scaling behav-
iors are found after a short period of nonuniversal microscopic
time scale τmic [20]. Taking the system size into account, the
scaling form of an observable P is given by [20]

P (τ,g,M0,L) = bφP (τ ′,g′,M ′
0,L

′), (5)

where τ ′ = b−zτ , g′ = b1/νg, M ′
0 = bx0M0, and L′ = b−1L

for an arbitrary scaling factor b. The arguments τ , g, M0, and
L refer to the imaginary time, the distance to the critical point,
the initial value of the order parameter, and the system size,
respectively. x0 is the scaling dimension of M0, satisfying
x0 = θz + β/ν as in the classical case [20,30,34], and φ is
related to the critical exponent of the quantity studied. We
consider two initial conditions M0 = 0 and M0 = Msat (Msat

being the saturated value of the order parameter) since they
are both fixed points of the scaling transformation.

With φ = −β/ν, the kth moment of the order parameter
follows [20,30,32,33]

Mk(τ,g,M0,L) = b−kβ/νMk(b−zτ,b1/νg,bx0M0,b
−1L). (6)

094304-2



UNIVERSAL SHORT-TIME QUANTUM CRITICAL . . . PHYSICAL REVIEW B 96, 094304 (2017)

At the critical point g = 0, setting the scaling factor b = τ 1/z,
one reaches

Mk(τ,M0,L) = τ−kβ/νzfM (τ x0/zM0,τ
−1/zL), (7)

where fM is a scaling function related to Mk (similar notations
apply in context). We focus on k = 1 (corresponding to
the order parameter) and k = 2. In infinite systems, when
M0 is small but finite, the critical initial slip M(τ ) ∝ M0τ

θ

appears by expanding τ x0/zM0 in the short-time regime τ �
M

−z/x0
0 [20]. The presence of a finite system size in Eq. (7)

implies that the relaxation involves another characteristic time
scale Lz, which is known as the finite-size relaxation time, that
controls the scale of the short-time regime [34,35].

When M0 = 0 and g = 0, M2(τ,L) obeys

M2(τ,L) = L−2β/νfM (τ/Lz) (8)

if one choose b = L. Only the finite-size relaxation time Lz is
involved in the scaling form of M2(τ,L) since the initial-value
time M

−z/x0
0 diverges as M0 → 0.

In analogy to the classical case [31,39], we consider

C(τ ) ≡ lim
M0→0

M(τ )

M0
, (9)

which is called the imaginary-time correlation function since
it measures the correlation of the order parameter between the
initial state and the state at τ as indicated in Appendix A.
Combining Eqs. (6) and (9), the scaling form is given by

C(τ,L) = LθzfC(τ/Lz), (10)

with the scaling factor b = L. In infinite systems, as indicated
in Eq. (9), the behavior of C(τ ) is characterized by the critical
initial slip exponent as well, C(τ ) ∝ τ θ [39], while the order
parameter is incapable of showing the critical initial slip when
M0 = 0, since symmetry restricts M(τ ) = 0 [20,30,34,35]. In
the presence of a finite system size, C(τ,L) shows a power-law
increase with an exponent θz for fixed τ/Lz.

When M0 = Msat and g varies, let us consider a quantity
Q related to the average sign of the order parameter, defined
as [62,63]

Q(τ ) ≡ 〈sgn(M(τ ))〉 (11)

in which sgn is the sign function and 〈· · · 〉 denotes the
nonequilibrium average. Q(τ ) records the system’s memory of
the initial condition during the relaxation, which decays from
the initial value Q0 = 1 to the equilibrium value. As argued in
Refs. [62,63], in Ising systems, φ is 0, leading to the scaling
form

Q(τ,g,L) = fQ(τ/Lz,L1/νg), (12)

with b = L. It is clear that for fixed τ/Lz, different system sizes
undergo curve crossing of Q(τ,g,L) at g = 0, in analogy to
the Binder cumulants [32,33,64,65].

The scaling behaviors of M2(τ,L), C(τ,L), and Q(τ,g,L)
are useful in detecting the quantum critical point and critical
exponents.

(i) With M0 = Msat, the scaling form of Q indicates that
for fixed τ/Lz, a series of size-dependent critical points can be
extracted by performing curve-crossing analysis for different

system sizes [65]. The quantum critical point is therefore
obtained by extrapolating to L → ∞ [64,65].

(ii) With M0 = 0, when τ/Lz is fixed, M2(L) and C(L) have
power-law behaviors, giving the critical exponents −2β/ν and
θz. The requirements of small M0 and extrapolation to M0 →
0 to compute θ in previous investigations [36–38,49,52] are
therefore avoided. Note that Eq. (8) also holds when M0 =
Msat and g = 0, meaning that β/ν can be measured in the long-
time regime (τcr ∼ 1) under this initial condition as well [20].

(iii) To get reliable estimates of the critical exponents, the
leading scaling correction should be taken into account. We
use the ansatz [38,66,67]

A(L) = aLσ (1 + bL−ω) (13)

to extract the critical exponents and the leading correction
exponent ω. In Eq. (13), A(L) corresponds to M2(L) or C(L)
for fixed τ/Lz, and σ is equal to −2β/ν and θz accordingly.
The quantum STCD provides access to the critical properties
while the system is relaxing towards the ground state, and it
overcomes the critical slowing down problem (in the sense of
physical time) [20,32,33], requiring much less computational
effort compared with traditional finite-size scaling studies.

IV. QUANTUM MONTE CARLO METHOD

The method we employ is the projector QMC algorithm
based on the stochastic series expansion (SSE), which allows
us to obtain the relaxation properties of a system after
evolving an imaginary time τ [56–58,68]. The idea of the
QMC algorithm is to substitute the imaginary-time evolution
operator e−τH with its Taylor expansion series and perform
importance samplings in the configuration space, which
contains information needed to compute the expectation values
of physical quantities.

Following Eqs. (1) and (2), the partition function Z is
defined as

Z = 〈(τ )|(τ )〉 = 〈ψ(τ0)|e−τH e−τH |ψ(τ0)〉, (14)

in which |(τ )〉 = e−τH |ψ(τ0)〉. Divide the Hamiltonian into
a sum of bond operators

H = −
Nop∑
b=1

Hb, (15)

and series-expand the exponential factor e−τH with β = 2τ .
Equation (14) then becomes [68,69]

Z =
∞∑
n

∑
Sn

〈ψ(τ0)|β
n

n!
Sn|ψ(τ0)〉, (16)

where Sn denotes the operator sequence of bond operators.
To calculate precise expectation values at imaginary time

τ , a binomial factor w(n,k) = (
n

k

)
/2n should be inserted into

Eq. (16) [68,69],

Z =
∞∑
n

∑
Sn

βn

n!
〈ψ(τ0)|

k∑
n

w(n,k)Sk
n|ψ(τ0)〉, (17)

in which Sk
n is an operator sequence of length n with an

imaginary “cut” at position k running through it, and w(n,k)
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satisfies
n∑

n1=0

w(n,n1) = 1, ∀ n. (18)

In fact, w(n,k) comes out immediately if one expands the
two exponential factors independently, and concatenates and
samples the operator sequences together. w(n,k) describes
contributions of different propagations along the imaginary-
time direction and plays an important role when it aims at
computing precise results of the states after small lengths of
evolutions [68]. As the operator sequence grows longer, the
influence of w(n,k) becomes smaller and the partition function
reduces to Eq. (16), suggesting that measurements can be taken
in the middle of the operator sequence.

The expansion order n can be truncated to some maxi-
mum order nmax without causing detectable errors [69]. The
expectation value of an observable O is given by 〈O(τ )〉 =
〈(τ )|O|(τ )〉/Z as in the standard SSE algorithm. In
the presence of w(n,k), measurements should be taken at
different positions of the operator sequence, bringing different
contributions to 〈O(τ )〉 [68].

V. MODEL

The models we study here are the transverse field Ising
models, defined by the Hamiltonian

H = −J

Ld∑
〈i,j〉

σ z
i σ z

j − h

Ld∑
i

σ x
i , (19)

in which 〈i,j 〉 are nearest-neighbor sites and σx and σ z are the
Pauli matrices. The couplings J are chosen to be ferromagnetic
interactions (J > 0), and h is an external field in the transverse
direction. The order parameter is given by the magnetization
M = 〈σ z〉, and the periodic boundary condition is used.

The 1D TFIM can be solved rigorously by mapping into
the 2D classical Ising model [70]. The critical point of the or-
dered/disordered quantum phase transition is (h/J )c = 1. The
static exponents of interest here are β = 1/8 and ν = 1, and the
dynamic exponent is z = 1 [71–73]. Application of the STCD
to the 2D classical Ising model has attracted much numerical
attention [36–38,49,52]. The critical initial slip arises in the
short-time regime with an exponent θ = 0.191(1) [38,52]. For
the 1D TFIM, Ref. [20] extracts the critical initial slip exponent
from the imaginary-time relaxation, giving θ = 0.373, which
is almost twice as large as its classical counterpart.

Due to the fact that the 2D TFIM has no rigorous solution,
much numerical effort has been devoted to studying its
properties, including locating the critical point with high pre-
cision [58,74–76] and extracting critical exponents [76–78].
For the 2D square-lattice TFIM, an exact diagonalization
study on a 6 × 6 lattice [74] gives the critical point (h/J )c =
3.044 97(18), and a recent work using quasiadiabatic QMC
claims a higher-precision estimate (h/J )c = 3.044 58(7) [58].
The dynamic exponent has an exact result z = 1 [71–73],
while the static exponents are shared with the 3D classical
Ising model since they belong to the same universality class.
A recent study of the 3D Ising universality class estimates
β/ν = 0.518 14(5), which is not directly reported in Ref. [79]
but can be obtained using the scaling relation β/ν = (1 + η)/2

with η = 0.036 27(10) [79]. In Ref. [80], an STCD study of the
3D classical Ising model gives β/ν = 0.517(2) along with the
critical initial slip exponent θ = 0.108(2). To our knowledge,
the critical initial slip of the 2D TFIM has not been studied yet.

VI. NUMERICAL RESULTS

In this section, we present results of the 1D and 2D TFIMs.
Two different initial conditions M0 both with vanishing
correlation length are employed here. We shall first use
M0 = Msat = 1, which is a state with all spins in the up
direction |⇑〉. Quenches from this ordered state to the vicinity
of the critical point are imposed so that the critical coupling hc

(for simplicity, J = 1) can be detected through the finite-size-
scaling analysis of Q(τ,g,L). The other initial condition is a
state with all spins aligned along the transverse direction |⇒〉
with M0 = 0. The critical initial slip can be observed during
the relaxation, and the exponents θ , β/ν are extracted from the
scaling behaviors of C(τ,L) and M2(τ,L). The exact value of
z = 1 [71–73] for both models is used in the scaling relations.

In the QMC simulations, both local and cluster updates are
carried out to perform efficient samplings [81]. The compu-
tational time scales as Ldτ [81] and therefore proportional
to Ld+z (as the ratio τ/Lz is fixed), but still, a large amount
of effort required to achieve the ground state, corresponding
to much larger τ/Lz, is saved by the quantum STCD. The
convergence and autocorrelations of the QMC algorithm are
discussed in Appendix B.

A. 1D transverse field Ising model

The 1D TFIM provides a rigorous testing ground for the
QMC algorithm and the scaling for the quantum STCD in
finite-size systems.

When the system is quenched from |⇑〉 to the vicinity of the
critical point, the scaling behavior of Q(τ,g,L) is described
by Eq. (12). We investigate Q’s dependence on the tunable
parameter h for different system sizes, as shown in the upper
panel of Fig. 1. The argument g in Eq. (12) is replaced by
h − hc in order to carry out curve-crossing analysis. We fixed
the evolution time at τ = L/4 for L from 8 to 128 and extract
the crossing points of system-size pairs of L and 2L [65]
by fitting Q(h) using polynomial forms (up to cubic terms).
Panel (b) of Fig. 1 shows the size dependence of the crossing
points. By fitting to the form of hc(L) = hc + aL−ω [82] and
extrapolating to L → ∞, we obtain the critical point hc =
1.000 03(8) with ω = 2.33(1), in good agreement with the
exact result hc = 1 [71–73].

The fittings are performed by searching for parameters to
have the goodness of fit χ2 per degree of freedom NDOF close
to 1. To estimate the statistical errors of the fitting parameters,
we generate different sets of data by adding Gaussian noise
to the data, with the magnitude of the noise equal to the error
bars of the data [69]. Repeating the fits for a large number
of times, the standard deviation of the distributions gives the
error bars of the fitting parameters [69]. The same way of error
estimating is used in the following results.

Next we prepare the system in the state |⇒〉 and suddenly
quench it to the critical point hc = 1 at τ = 0. After a short
microscopic period, the critical initial slip starts to emerge.
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FIG. 1. Under the initial condition of M0 = 1 and vanishing
correlation length, curve-crossing analysis for the 1D TFIM. System
size varies from L = 8 to 128. Panel (a) shows the dependence on h

of Q for different system sizes. The exact result z = 1 is used, and the
ratio of τ/L is 1/4. Size-dependent crossing points are determined
by Q(h) of L and 2L as shown in panel (b). The solid line is a
fit to the form of hc(L) = hc + aL−ω [82] with hc = 1.000 03(8)
and ω = 2.33(1). To guide the eyes, we use different symbols to give
examples of extracting crossing points of L and 2L, and others system
sizes computed are indicated by dashed lines in panel (a). All data
are presented with error bars but are too small to distinguish. The
crossing point of L = 8 and 16 falls beyond the plot.

We compute the imaginary-time correlation function C(τ,L)
according to Appendix A in QMC simulations. As illustrated
in Fig. 2, for τ = L/8, C(L) behaves as a power-law form
with the critical initial slip exponent θ . We perform power-law
fitting using the form of C(L) = aLθ to extract θ . In Fig. 2(b),
we plot θ as a function of 1/Lmin (Lmin being the minimal
system size included into the fit) to show the dependence
on the fitting range. Each point is obtained by performing
power-law fitting with/without correction in the range from
Lmin to Lmin+p. When there is no correction included, p = 4
is used so as to satisfy the minimum requirement of NDOF = 1,
while in the presence of correction, p is set to 6. As can be
seen in Fig. 2(b), θ only fluctuates slightly even for small
system sizes. Therefore, we use the same form to fit the data
within the range from L = 32 to 256, yielding the critical
initial slip exponent θ = 0.3734(2), in excellent agreement
with Ref. [20]. No finite-size correction is included since C(L)
is well described by the power-law form except two smallest
system sizes. We also read off the result θ = 0.3733(7) given
by the fitting range that consists of the largest system sizes
L = 128 to 256 to provide knowledge about the magnitudes
of statistical errors involved in Fig. 2(b). The value of θ of the
1D TFIM is very different from the result of the 2D classical
Ising model θ = 0.191(1) [38,52].

4 10 20 40 100 250

L
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5
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C
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(a)

τ = L/8

τ = L/16

τ = L/8

τ = L/16

0 0.02 0.04 0.06 0.08

1/Lmin

0.370

0.375

0.380

θ

(b)
τ = L/16, aLθ(1 + bL−ω)

τ = L/8, aLθ

τ = L/16, aLθ(1 + bL−ω)

τ = L/8, aLθ

FIG. 2. (a) The imaginary-time correlation function vs system
size L (L = 8,16, . . . ,256) in a log-log plot. The initial condition
is M0 = 0 and two ratio of τ/L are considered. Solid lines are fits
to the power-law form in the absence/presence of the leading finite-
size correction for τ/L = 1/8 and 1/16, respectively. The fitting
range dependence of θ is shown in panel (b), in which the solid line
represents the known value 0.373 from Ref. [20]. For τ/L = 1/8,
the critical initial slip exponent is given by θ = 0.3734(2) within
the fitting range from L = 32 to 256, along with a prefactor a =
0.853(4). No finite-size correction is included to the fitting form,
while for τ/L = 1/16, correction is needed to give θ = 0.3733(6),
along with ω = 1.2(4), a = 0.71(3), and b = 1.0(2), in the fitting
range L = 56–128. For a discussion, see the text.

We also include C(L) of τ = L/16 in Fig. 2 to show the
influence of different time-space ratios. Finite-size correction
is needed to produce good fits. As shown in Fig. 2(b), the
dependence on the fitting range is more obvious than the case
τ/L = 1/8. Even though θ of Lmin = 40 and 56 are already
close, to be on the safe side we only use the range starting
from the largest Lmin (i.e., L = 56–128) to represent the result
of τ/L = 1/16, which reads θ = 0.3733(6), agreeing with the
result of τ/L = 1/8 within error bars. The choice of τ/L

does not affect the asymptotic behavior but only results in
different finite-size corrections. Depending on the quantity
studied, optimal ratio(s) that alleviate finite-size correction
may exist. For C(L), τ/L = 1/8 is close to the optimal value
so that there is little finite-size effect remaining.

The static critical exponent β/ν can be measured under the
same initial condition, as shown in Fig. 3. For τ = L/8, we
compare the result in the presence and absence of correction,
both with NDOF = 1, as illustrated in Fig. 3(b). The exponent
β/ν only fluctuates slightly when finite-size correction is
included, while in the absence of correction β/ν changes
with varying fitting range. Using Eq. (13), the largest system
sizes starting from Lmin = 96 give β/ν = 0.1249(8). Since
β/ν agrees within error bars when Lmin � 48, we expand the
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τ/L = 1/8, aL−2β/ν(1 + bL−ω)

τ/L = 1/8, aL−2β/ν

FIG. 3. (a) The second moment of the order parameter vs system
size L (L = 8,16, . . . ,256) in log-log scale. The initial condition
and the ratio τ/L are identical to the measurement of C(L). Panel
(b) compares the dependence of β/ν on the fitting range when
different fitting forms are used. The solid line marks the exact result
1/8 [71–73]. In the presence of correction, the fits are indicated by
solid lines in panel (a). For τ/L = 1/8, the final estimates are β/ν =
0.1251(2), ω = 1.07(2), and the prefactors being a = 0.796(2),
b = 0.39(2) based on data between L = 48 and 256. For τ/L =
1/16, in the range L = 56–128, β/ν is given by 0.1253(5), along
with ω = 1.16(3) and a = 0.511(3), b = 1.9(1). See the text for a
discussion.

range to L = 48–256 and obtain β/ν = 0.1251(2), in good
agreement with the exact result β/ν = 1/8 [71–73].

Likewise, we plot M2(L) for τ/L = 1/16 in Fig. 3(a) and
the dependence of β/ν on the fitting range in panel (b). Even
in the presence of correction, β/ν only becomes close when
Lmin � 48. To be safe, we use the result of the largest Lmin =
56 to represent the final result β/ν = 0.1253(5), consistent
with the result of τ/L = 1/8 and the exact value as well.
Figure 3(b) also implies that to get a more reliable estimate,
larger systems should be involved.

We therefore arrive at the final estimates of θ and β/ν for
the 1D TFIM,

θ = 0.3734(2),

β/ν = 0.1251(2),

based on analysis of the data of τ/L = 1/8 within the fitting
range L = 32–256 and 48–256, respectively. Note that the
errors here for the exponents θ and β/ν (as well as ω, a, and b)
are only statistical variations among the data points in a given
range. Our results agree nicely with the rigorous solutions
[71–73] and the numerical results [20], demonstrating the
validity of the quantum STCD and the QMC algorithm in
detecting critical properties.
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FIG. 4. Curve-crossing analysis for the 2D TFIM with M0 = 1.
System size varies from L = 4 to 40. Panel (a) shows the dependence
on h of Q for different system sizes. The exact result z = 1 is used, and
the ratio τ/L is 1/4. Size-dependent crossing points are determined
by Q(h) of L and 2L as shown in panel (b). The solid line is a fit
to the form of hc(L) = hc + aL−ω [82] with hc = 3.044 51(7) and
ω = 2.44(3). Similar to Fig. 1, three Q(h) curves are highlighted
while others are indicated by dashed lines. The crossing point of
L = 4 and 8 is too far away to show in the plot.

B. 2D transverse field Ising model

In the following, we apply the quantum STCD to the 2D
TFIM.

As in the 1D case, we shall first determine the critical
point by carrying out curve-crossing analysis of Q(h,L) with
τ = L/4 and M0 = 1, as illustrated in Fig. 4. Crossing points
of different system size pairs of L and 2L are extracted using
polynomial fits (up to cubic terms) of the Q(h,L) [65]. Using
the form of hc(L) = hc + aL−ω [64], we estimate the critical
coupling hc = 3.044 51(7), in good agreement with the result
in Ref. [58], in which the calculations are carried out on
systems of similar sizes to those in this study.

When the system is suddenly quenched from the state
|⇒〉 to the critical point hc = 3.044 51, as expected, the
initial increase of C(τ,L) arises after a transient microscopic
period. In Fig. 5, we plot C(L) for τ = L/4 and compare
the exponent θ obtained using different fitting forms. When
there is no correction, the power-law form only captures the
behavior of C(L) for large systems, and small system sizes
should be discarded in order to get good fits. With the leading
correction, the results are improved and become converged
(within error bars) for large Lmin. For comparison, we mark the
result θ = 0.210(7) of Lmin = 44 in the presence of correction
using a dashed line in Fig. 5(b). Since θ converges when
Lmin � 24, we use Eq. (13) to fit data in the range L = 24–64,
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FIG. 5. (a) The imaginary-time correlation function vs system
size L (L = 4,6, . . . ,64) in a log-log plot. The evolution time is
τ = L/4 and the initial condition is M0 = 0. The solid line is a fit to
the form of C(L) = aLθ (1 + bL−ω) in the range from L = 24 to 64.
The critical initial slip exponent is determined as θ = 0.209(4) with
the correction exponent ω = 2.25(6) and a = 0.601(5), b = −9.4(6).
(b) Dependence of θ on the fitting range estimated in different fitting
ranges using a power-law form with/without correction. The dashed
line marks the result of Lmin = 44. See text for a discussion.

yielding θ = 0.209(4), along with the leading correction
exponent ω = 2.25(6). The value of θ is again distinct from
its classical counterpart, the 3D classical Ising model, θ =
0.108(2) [80]. In both one and two dimensions, the quantum
models have a critical initial slip exponent approximately
twice as large as their classical counterparts. In fact, there
is no reason to expect that the critical initial slip exponents
are in the d to d + z classical/quantum correspondence.
Though they are both dissipative, the dynamics governing
the two cases are essentially different. The quantum systems
are described by Schrödinger’s equation while the classical
systems follow the master equation, with different dynamic
exponents z [20,50]. Specifically, the dynamic exponents of
the 1D and 2D TFIMs both equal to 1 [71–73], while in the
2D and 3D classical Ising models, z equals 2.1667(5) [83] and
2.042(6) [80], respectively. The critical initial slip exponent
θ is dependent on the dynamical equation [20,50], and
different dynamic exponents z can lead to different values
of θ . However, additional investigations may be required
to determine whether the similar ratios of the θ ’s between
the quantum models and their classical counterparts are
coincidental.

Next, we measure the static critical exponent β/ν in the
same way, as seen in Fig. 6. The initial condition and evolution
time are the same as the measurement of C(L). Figure 6(b)
compares the exponent β/ν obtained using different fitting
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FIG. 6. (a) The second moment of the order parameter vs
system size L in log-log scale. The initial condition is M0 = 0 and
measurements are taken at τ = L/4. The solid line is a fit to the form
of M2(L) = aL−2β/ν(1 + bL−ω) with a fitting range from L = 32
to 64. The exponent is determined to be β/ν = 0.518(1) with the
leading correction exponent ω = 0.83(2) and the prefactors being
a = 1.17(1), b = 0.13(2). (b) β/ν obtained by different fitting forms
in varying range. The solid line indicates the value from Ref. [79].
See text for a discussion.

forms. In the absence of correction, β/ν strongly depends on
the fitting range. Including the leading correction produces
steady results when Lmin � 32, among which we read off
the exponent β/ν = 0.518(2) given by the largest Lmin = 44.
Expanding the fitting range to L = 32–64, we obtained β/ν =
0.518(1), agreeing well with the 3D classical Ising model result
β/ν = 0.518 14(5) [79].

We reach our final estimates of θ and β/ν for the 2D TFIM,

θ = 0.209(4),

β/ν = 0.518(1),

using the results in the range L = 24–64 and 32–64, cor-
respondingly. Again, the errors only represent statistical
variations in the fitting range. As can be seen in Figs. 5 and 6,
with the leading finite-size correction, small system sizes down
to L = 24 and 32 [for C(L) and M2(L), respectively] can
be included in the fitting function, but subleading finite-size
corrections are still needed in order to take all sizes into
consideration.

VII. SUMMARY

In summary, we studied the quantum STCD in imaginary
relaxation of finite-size systems. By imposing different quench
protocols on equilibrium systems, critical properties can be
detected from the universal scaling behaviors, and the critical
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slowing down is avoided [20,32–35]. The method is applied
to the 1D and 2D TFIMs using QMC simulations.

We located the quantum critical points of the 1D and 2D
TFIMs with high precision, which are hc = 1.000 03(8) and
3.044 51(7), respectively. The result of the 1D TFIM agrees
excellently with the exact result [71–73], and the 2D case
is in good agreement with the critical coupling ratio given
in Ref. [58]. The emergence of the critical initial slip is
observed in both models. In one dimension, finite-size scaling
analysis on data between L = 32 and 256 gives the critical
initial slip exponent θ = 0.3734(2), in excellent agreement
with Ref. [20], but approximately twice as large as its classical
counterpart θ = 0.191(1) [38,52]. In two dimensions, though
predicted from the quantum STCD, no previous numerical
observation is reported. Remarkably, our calculations are able
to capture the critical initial slip exponent of the 2D TFIM θ =
0.209(4) within the range L = 24–64, which is again different
from the value 0.108(2) of the 3D classical Ising model [80].
Different critical initial exponents are actually expected in
the dissipative relaxation processes of quantum and classical
systems. Even though one can find equations that have similar
evolution properties in both cases, the dynamics are essentially
different. In classical systems, the master equation governs the
evolution after a sudden quench, while in quantum systems
the Schrödinger equation is responsible for the imaginary-time
evolution [20,50]. In addition, we obtained the static exponent
β/ν = 0.1251(2) of the 1D TFIM using data within L = 48
and 256, which agrees well with the exact result 1/8 [71–73].
For the 2D TFIM, we estimate β/ν to be 0.518(1) in the
range from L = 32 to 64, in good agreement with a recent
high-precision numerical estimate 0.518 14(5) [79]. It is also
helpful to notice that, in the 2D case, the nonmonotonic
behavior of β/ν as a function of Lmin indicates that there
are potential corrections to the scaling forms introduced by the
short-time effect in addition to the finite-size effect. In general,
when τ/Lz � 1 the finite-size effect plays a minor role, while
for τ/Lz � 1 the scaling forms are reduced to the static case.
In our calculations, the time-space ratio τ/Lz is fixed at values
for which both effects can come into play, while we have only
considered finite-size corrections at present. Even though the
short-time effect can be taken into account by including leading
and subleading finite-size correction terms to the scaling forms
(since τ/Lz is fixed), and we have shown that consistent
asymptotic behaviors can already be obtained with only the
leading finite-size correction included, different ratios should
indeed be considered in order to analyze the corrections caused
by the finite-size and the short-time effects to the scaling
forms in further studies. Our results manifest the capability
of the quantum STCD to determine critical properties, and
they indicate broader applications of the method to many other
“sign-problem” free models.
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APPENDIX A: MEASUREMENT OF THE
IMAGINARY-TIME CORRELATION FUNCTION

Here we discuss the measurement of the imaginary-time
correlation function C(τ ) in QMC simulations.

In the standard σ z basis, let us consider a state with a given
magnetization M0 at τ0,

|ψ(τ0)〉 =
∑

z

√
f (M0)|z〉, (A1)

which is a superposition of all 2N (N = Ld being the total
particle number) basis states with different amplitudes. The
coefficients related to M0 are given by

f (M0) =
∏
j

1

2

(
1 + M0σ

z
j

)
(A2)

if one consider constructing a state site by site [39]. To linear
terms in M0,

f (M0) = 1

2N

⎛
⎝1 + M0

∑
j

σ z
j

⎞
⎠. (A3)

The partition function in Eq. (14) becomes

Z = 1

2N

∑
z1,z2

〈z1|e−τH
√

f (M0)f (M0)e−τH |z2〉. (A4)

Plugging in Eq. (A3), one arrives at

Z = 1

2N

∑
z1,z2

〈z1|e−τH (1 + M0M)e−τH |z2〉, (A5)

where M is equal to (
∑

i σ
z
i + ∑

j σ z
j )/2. The indices i

and j correspond to a sum over the basis state |z1〉 and
|z2〉, respectively. Therefore, the magnetization at time τ is
given by

M(τ ) = 1

Z

∑
z1z2

1

2N
〈z1|e−τHMe−τH |z2〉

+ 1

Z

∑
z1z2

M0

2N
〈z1|e−τH MMe−τH |z2〉, (A6)

in which M = ∑
i σ

z
i (τ )/N . The first term on the right-hand

side vanishes due to up-down symmetry. Dividing M(τ ) by
M0 before taking the limit M0 → 0, one gets

lim
M0→0

M(τ )

M0
= 1

Z

∑
z1z2

1

2N
〈z1|e−τHMMe−τH |z2〉

= 1

N

〈
M

[∑
i

σ z
i (τ )

]〉
, (A7)

where M is averaged over the two initial states |z1〉 and |z2〉
on the boundaries of sampling space in QMC simulations.
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FIG. 7. Convergence of C(tMC) for τ = 4, L = 128. Each point
is averaged over 103 − 104 independent simulations. The dashed line
indicates the result of tMC = 800.

As indicated by the second line of Eq. (A7), C(τ ) measures
the correlation between the initial state and the state at
imaginary time τ . C(τ ) actually corresponds to 〈σ z

k (0)σ z
−k(τ )〉

with momentum k = 0 [31], where σ z
k (τ ) is the Fourier

transform of the spins at τ , and σ z
k (0) is averaged over |z1〉

and |z2〉 at τ = 0. For small k, the scaling form of C(τ )
can be generalized by including the scale transformation of
the momentum k, which reads k′ = bk. However, for large
k, the fluctuation modes are far away from the low-energy
regime, hence the behavior is not described by the scaling
form. Therefore, we restrict our calculations to the k = 0
sector, and we use a disordered initial state with M0 = 0
and vanishing correlation length, as required by the quantum
STCD for the scaling forms to apply. The critical initial
slip exponent can be conveniently extracted without suffering
from the requirements of small but finite magnetization and
extrapolation to M0 → 0.

APPENDIX B: CONVERGENCE AND
AUTOCORRELATIONS

In this Appendix, we present the convergence and the
autocorrelations for the 1D TFIM to show the performance
of the projector QMC algorithm.

To distinguish from the real time t in the main text, we use
tMC to refer to the Monte Carlo (MC) steps in the following.
One MC step consists of a full sweep of single operator updates
followed by constructions and updates of the clusters, which
are flipped with probability 1/2 [81]. The details of sampling
are described in Refs. [69,81].

As a convergence test, we compute the imaginary-time
correlation as a function of tMC for τ = 4 and L = 128
with an initially disordered state (which is | ⇒〉), shown in
Fig. 7. C(tMC) converges to the equilibrium result rapidly after
tMC � 40. Each data point in Fig. 7 is averaged over 103 − 104

independent simulations. The growth of C(tMC) at short tMC

corresponds to the increases of the cutoff expansion order nmax

(in Sec. IV) and the number of flipped clusters at the beginning
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FIG. 8. Autocorrelation functions of C(τ,L) for (a) the 1D TFIM
at τ = 16 with L = 16,32,64,128 and (b) the 2D TFIM at τ = 4
with L = 12,16,20,24 in a log-linear scale. The size-dependent
autocorrelation times are extracted by the long-time exponential
decay behaviors, as shown in the insets.

of the simulations. As tMC gets longer, C(tMC) approaches its
equilibrium value.

To accelerate equilibration, we use a τ -doubling trick,
which is very similar to the β-doubling in the standard SSE
algorithm [84]. For a given evolution time τmax, the τ -doubling
process starts from sampling a much shorter time τ = τmin with
tMC (typically a few hundred) and doubles the evolution time to
τ = 2τmin by sampling the doubled operator sequence S2n [84].
Repeating the doubling until τ = τmax, the initial configuration
is almost equilibrated since it has already a rather long history
at shorter times [84]. For the data presented in the main text,
to be safe, at the last doubling, we use tMC = 104 − 105 to
perform the equilibrations and measurements for 50–200 bins
(one bin consists of 104 − 105 MC steps, and the bin number
depends on the system sizes and the quantity studied). The
statistical errors are estimated as one standard deviation of the
average of the bin averages, which are reliable only when tMC

is much longer than the autocorrelation time so that the bin
averages can be regarded as statistically independent.

Next we discuss the autocorrelation function, which, for an
observable O, is defined as [65]

A(	t) = 〈Oi+	tOi〉 − 〈Oi〉2〈
O2

i

〉 − 〈Oi〉2
, (B1)

where the averages are over the MC time index i, and 	t is
the separation of the two configurations. A(0) is normalized to
1, and when 	t is large, A(	t) approaches 0 exponentially,

A(	t) → e−	t/�, (B2)
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where � is called the autocorrelation time. Figure 8(a) shows
the autocorrelation functions of C(τ,L) at τ = 16 for the
1D TFIM with system sizes L = 16, 32, 64, and 128 under
the initial condition of M0 = 0 and a very short correlation
length. The autocorrelation times are extracted by fitting the
long-time behaviors of A(	t) using the form in Eq. (B2), as
shown in the inset of Fig. 8(a). In fact, we expect similar
behaviors of A(	t) and � for the 2D TFIM, as shown in
Fig. 8(b), in which A(	t) is computed for C(τ,L) with τ = 4
and L = 12, 16, 20, and 24. Since the initial state has a

vanishing correlation length, after a short length of imaginary-
time evolution (not sufficient to reach the ground state), the
correlation length is still finite in the short-time regime. When
the system size grows larger than the correlation length, the
autocorrelation time becomes insensitive to the system size,
indicating that the critical slowing down problem is overcome.
The autocorrelation times are only up to a few MC steps, so
that in the simulations the number of steps we used, tMC =
104 − 105, is sufficient to generate statistically independent
configurations.
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