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Controllable quantum scars in semiconductor quantum dots
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Quantum scars are enhancements of quantum probability density along classical periodic orbits. We study
the recently discovered phenomenon of strong perturbation-induced quantum scarring in the two-dimensional
harmonic oscillator exposed to a homogeneous magnetic field. We demonstrate that both the geometry and
the orientation of the scars are fully controllable with a magnetic field and a focused perturbative potential,
respectively. These properties may open a path into an experimental scheme to manipulate electric currents in
nanostructures fabricated in a two-dimensional electron gas.
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I. INTRODUCTION

Quantum scars [1,2] are tracks of enhanced probability
density in the eigenstates of a quantum system. They occur
along short unstable periodic orbits (POs) of the corresponding
chaotic classical system. While being an interesting example of
the correspondence between classical and quantum mechanics,
quantum scars also show how quantum mechanics may sup-
press classical chaos and make certain systems more accessible
for applications. In particular, the enhanced probability density
of the scars provides a path for quantum transport across an
otherwise chaotic system.

A new type of quantum scarring was recently discovered
by some of the present authors [3]. It was found that
local perturbations (potential “bumps”) on a two-dimensional
(2D) radially symmetric quantum well produce high-energy
eigenstates that contain scars of short POs of the corresponding
unperturbed (without bumps) system. Even though similar
in appearance to ordinary quantum scars, these scars have a
fundamentally different origin. They result from resonances
in the unperturbed classical system, which in turn create
semiclassical near-degeneracies in the unperturbed quantum
system. Localized perturbations then form scarred eigen-
states from these near-degenerate “resonant sets” because the
scarred states effectively extremize the perturbation. These
perturbation-induced (PI) scars are unusually strong compared
to ordinary scars, to the extent that wave packets can be
transported through the perturbed system, along the scars, with
higher fidelity than through the unperturbed system, even with
randomly placed perturbations [3].

In this paper we study these perturbation-induced scars in
a 2D quantum harmonic oscillator exposed to a perpendicular
homogeneous magnetic field. This system has direct experi-
mental relevance as it is a prototype model for semiconductor
quantum dots in the 2D electron gas [4]. Previous studies
combining experiments and theory have confirmed the validity
of the harmonic approximation to model the external confining
potential of electrons in the quantum dot, up to the quantum
Hall regime reached with a strong magnetic field [5,6].
Furthermore, the role of external impurities in 2D quantum
dots has been quantitatively identified through the measured
differential magnetoconductance that displays the quantum

eigenstates [7]. We show that, once perturbed by Gaussian
impurities, the high-energy eigenstates of the system are
strongly scarred by POs of the unperturbed system, and
the shape of these scars can be conveniently tuned via the
magnetic field. Furthermore, in the last part of this paper we
replace the impurities with a single perturbation, representing
a controllable nanotip [8], and use the “pinning” property of
the scars to control the scars with the nanotip. Together, these
methods of controlling the strong perturbation-induced scars
could be used to coherently modulate quantum transport in
nanoscale quantum dots.

II. MODEL SYSTEM

All values and equations below are given in atomic units
(a.u.). The Hamiltonian for a perturbed 2D quantum harmonic
oscillator is

H = 1
2 (−i∇ + A)2 + 1

2ω2
0r

2 + Vimp, (1)

where A is the vector potential of the magnetic field. We set the
confinement strength ω0 to unity for convenience and assume
the magnetic field B is oriented perpendicular to the 2D plane.
We model the perturbation Vimp as a sum of Gaussian bumps
with amplitude M , that is,

Vimp(r) =
∑

i

M exp

[
− (r − ri)2

2σ 2

]
.

We focus on the case where the the bumps are positioned
randomly with a uniform mean density of two bumps per unit
square. In the energy range considered here, E = 50–100,
hundreds of bumps exist in the classically allowed region.
The full width at half maximum (FWHM) of the Gaussian
bumps 2

√
2 ln 2σ is 0.235, which is comparable to the local

wavelength of the eigenstates considered. The amplitude of
the bumps is set to M = 4, which causes strong PI scarring in
this energy regime.

We solve the eigenstates of the Hamiltonian of Eq. (1)
using the ITP2D code [9]. This code utilizes the imagi-
nary time propagation method, which is particularly suited
for 2D problems with strong perpendicular magnetic fields
because of the existence of an exact factorization of the
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exponential kinetic-energy operator in a magnetic field [10].
The eigenstates and energies can be compared to the well-
known solutions of an unperturbed system. The unperturbed
energies correspond to the Fock-Darwin (FD) spectrum [11]:

EFD
k,l = (2k + |l| + 1)

√
1 + 1

4
B2 − 1

2
lB, (2)

where k ∈ N and l ∈ Z. In the limit B → ∞, the states
condensate into Landau levels. The FD spectrum is observed
experimentally in semiconductor quantum dots (see, e.g.,
Ref. [12]).

Before considering further the quantum solutions of the
Hamiltonian we briefly discuss the corresponding classical
system. The unperturbed 2D harmonic oscillator in a perpen-
dicular magnetic field is analytically solvable as described
in the Supplementary Material [13] and Ref. [14]. The POs
are associated with classical resonances where the oscillation
frequencies of the radial and the angular motion are com-
mensurable. In the following, the notation (vθ ,vr ) refers to
a resonance where the orbit circles the origin vθ times in vr

radial oscillations. The resonances occur only at certain values

(2,13)
(1,6)

(2,11)
(1,5)

(2,9)
(1,4)
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FIG. 1. Scaled (arb. units) density of states as a function of the
magnetic field for an unperturbed (lower panel) and perturbed (upper
panel) two-dimensional harmonic oscillator. The dashed vertical
lines indicate the resonances (vθ ,vr ) that correspond to a substantial
abundance of scarred eigenstates in the perturbed case (see Fig. 2).

of the magnetic field given by

B = vr/vθ − 2√
vr/vθ − 1

. (3)

By classical simulations using the BILL2D program [15] we
have confirmed that a perturbation with amplitude M = 4 is
sufficient to destroy classical long-term stability in the system.
Any remaining structures in the otherwise chaotic Poincaré
surface of a section are vanishingly small compared to h̄ = 1.

III. QUANTUM SCARS

Next we describe the quantum solutions of the system.
To visualize the spectrum of a few thousand lowest energies
as a function of B we show in Fig. 1 the density of states
(DOS) computed as a sum of the states with a Gaussian
energy window of 0.001 a.u. The upper and lower panel
correspond to the perturbed (with bumps) and unperturbed
system, respectively. The B values indicating resonances
(vθ ,vr ) are marked by dashed vertical lines. The upper panel
of Fig. 1 shows that the bumps are sufficiently weak to not
completely destroy the FD degeneracies.

As expected from the theory of PI scarring, the eigenstates
of the perturbed system show clear scars corresponding to
the POs of the unperturbed system. Because of the classical
resonance condition (3) these scars appear at specific values
of the magnetic field where short classical periodic orbits
are possible. Examples of the scars are shown in Fig. 2.
The eigenstate number varies between 400 and 3900. The
proportion of strongly scarred states among the eigenstates
varies from 10 to 60% at bump amplitude M = 4. The
proportion and strength of scarred states depend on the degree
of degeneracy in the spectrum: more and stronger scars appear
when more energy levels are (nearly) crossing. The specific

FIG. 2. Examples of scars in a perturbed two-dimensional har-
monic oscillator in a magnetic field. The geometries of the scars can
be attributed to the classical resonances (vθ ,vr ) and the corresponding
periodic orbits in the unperturbed system.
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FIG. 3. (a, b) Examples of scarred eigenstates at B ≈ 0.7 found
in a system with several impurities and a single impurity with M = 4,
respectively. The locations and FWHMs of the impurities are denoted
with blue dots. (c) Overlap between the scarred state and the impurity
potential, 〈ψ |Vimp(θ )|ψ〉, as a function of the rotation angle with
respect to the original orientation Vimp. The upper (blue) and lower
(red) curves correspond to the situations in (a) and (b), respectively.
The lower curve has been multiplied by a factor of 6 for visibility.

shape of the scar for a chosen resonance (vθ ,vr ) depends
on the energy. For example, the two examples shown for
the triangular geometry (1,3) in Fig. 2 correspond to orbits
with opposite directions, which are not equivalent because the
magnetic field breaks time-reversal symmetry.

As pointed out in Ref. [3], because the scarred states
maximize the perturbation Vimp they are oriented to coincide
with as many bumps as possible. This pinning effect is
demonstrated in Fig. 3(a). Even a single perturbation bump
can produce a strong scar that is pinned to its location, as
illustrated in Fig. 3(b).

As another view on the pinning effect, Fig. 3(c) shows the
overlap between the scarred state and the impurity potential,
〈ψ |Vimp(θ )|ψ〉, as a function of the rotation angle with respect
to the original orientation Vimp. This is shown for both the
multiple-bump (upper curve) and the single-bump (lower
curve) cases, corresponding to situations in Figs. 3(a) and 3(b),
respectively. The three distinctive maxima in both cases
confirm that the scar is pinned to a location that maximizes the
perturbation.

FIG. 4. Schematic figure on the utilization of scars in nanostruc-
tures. The magnetic field (here B = 0) determines the geometry of
the scar (here linear), the energy range refines the geometry further
(here longitudinal), and an external voltage gate generates a local
perturbation (here the pink dot) that pins the scar, thus determining
the orientation.

By creating a single perturbation with, e.g., a conducting
nanotip [8], the pinning effect can be used to force the
scars to a specific orientation. Together, the magnetic field
and the pinning effect provide complete external control
over the strength, shape, and orientation of the scars. By
selecting which parts of the system are connected by the
scar paths, this provides a method to modulate quantum
transport in nanostructures in a scheme depicted in Fig. 4.
A successful experiment requires that the system is otherwise
clean from external impurities such as migrated ions from the
substrate [7]. In addition, a sufficient energy range in transport
is required as the scars are more abundant at high energies
(level number �500). In the future, we will study this effect in
more detail using realistic quantum transport calculations.

IV. SUMMARY

To summarize, we have shown that perturbation-induced
quantum scars are found in a two-dimensional harmonic
oscillator exposed to an external magnetic field. The scars
are relatively strong, and their abundance and geometry can
be controlled by tuning the magnetic field. By controlling the
orientation of the scars though their tendency to pin to the
local perturbations, we reach perfect control of the scarring
using external parameters. This scheme, using a conducting
nanotip as the pinning impurity, may open up a path into
“scartronics,” where scars are exploited to coherently control
quantum transport in nanoscale quantum systems.
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