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Atomic theory of viscoelastic response and memory effects in metallic glasses
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An atomic-scale theory of the viscoelastic response of metallic glasses is derived from first principles, using a
Zwanzig-Caldeira-Leggett system-bath Hamiltonian as a starting point within the framework of nonaffine linear
response to mechanical deformation. This approach provides a generalized Langevin equation (GLE) as the
average equation of motion for an atom or ion in the material, from which non-Markovian nonaffine viscoelastic
moduli are extracted. These can be evaluated using the vibrational density of states (DOS) as input, where the
boson peak plays a prominent role in the mechanics. To compare with experimental data for binary ZrCu alloys,
a numerical DOS was obtained from simulations of this system, which also take electronic degrees of freedom
into account via the embedded-atom method for the interatomic potential. It is shown that the viscoelastic
α-relaxation, including the α-wing asymmetry in the loss modulus, can be very well described by the theory
if the memory kernel (the non-Markovian friction) in the GLE is taken to be a stretched-exponential decaying
function of time. This finding directly implies strong memory effects in the atomic-scale dynamics and suggests
that the α-relaxation time is related to the characteristic time scale over which atoms retain memory of their
previous collision history. This memory time grows dramatically below the glass transition.
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I. INTRODUCTION

The mechanism by which supercooled liquids undergo a
liquid-solid transition at or around the glass transition temper-
ature Tg has remained elusive [1–3]. The α-relaxation process
describes the slow decay of density correlations and is typically
related to the intermediate scattering function, although it can
also be observed in the mechanical relaxation, as well as in the
dielectric response [4]. Within the energy landscape picture,
the α-relaxation can be interpreted as the transition of the
system from one metabasin to another by means of a collective
thermally activated jump over a large energy barrier, a process
that, for high-dimensional systems, can be well described
by replica symmetry-breaking and related approaches [5–7].
While the calorimetric glass transition may be quite smooth,
the vanishing of the low-frequency shear modulus near Tg can
be, instead, very dramatic, with a sudden drop by orders of
magnitude [8] that can be related to marginal stability [9].

Compared with traditional disordered materials, metallic
glasses (MGs) exhibit extraordinary physical properties in
terms of their ability to sustain large loads prior to yielding
and their ductility [10]. However, although previous atomic
scales theories based on defect physics and lattice dynamics
have provided a good understanding of mechanical relaxation
and internal friction in crystalline metals [11], unraveling from
the same microscopic scale the relation between viscoelasticity
and dynamical heterogeneity for metallic glasses has been a
long-term challenge.
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With the advent of MGs as the next-generation metallic
materials for technological applications, extensive experimen-
tal investigations like the stress-relaxation technique have
brought a wealth of observations about the viscoelasticity
and anelasticity of these materials. A lot of research has
been done on the stress relaxation of various metallic glasses,
which claims that localized plastic flow could be activated
during viscoelastic and plastic deformation [12,13]. The whole
relaxation spectrum of viscoelastic materials is usually fitted
by the Kohlrausch (stretched exponential) function, which is
simply an empirical model and hence does not arise from any
physical mechanism.

The most used and successful microscopic framework
that has been applied to the atomic and molecular dynamics
and relaxation of supercooled liquids above Tg is the mode-
coupling theory (MCT) [14,15]. Other theories have focused
on the mesoscopic-level description of nonlinear deformation
such as the shear-transformation zone (STZ) [16–18]. A
recent theory based on the coherent-potential approximation
and on the continuum assumption of a heterogeneously
fluctuating modulus has achieved success in the comparison
with experimental data of linear dynamic moduli of metallic
glasses [19] but does not provide microscopic atomic-scale
insights given its continuum macroscopic character and does
not account for electronic effects.

The main limitations for developing an atomic-scale theory
of viscoelasticity and of the dynamic mechanical response of
MGs are as follows: (i) The atomic-scale dynamics of glasses
under deformation is strongly nonaffine [20,21], meaning that
additional displacements on top of the affine displacements
prescribed by the strain tensor are required to relax quenched

2469-9950/2017/96(9)/094203(10) 094203-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevB.96.094203


CUI, YANG, QIAO, JIANG, DAI, WANG, AND ZACCONE PHYSICAL REVIEW B 96, 094203 (2017)

neighboring forces caused by the lack of centrosymmetry of
the disordered lattice [22]. (ii) The vibrational density of
states (DOS) which governs the atomic-scale dynamics is
rich in low-energy soft modes (boson peak) whose physical
origin has been elusive [23,24] and only recently has been
traced back to mesoscopic phonon scattering processes and
the Ioffe-Regel crossover [25], which are also in relation to the
lack of centrosymmetry. (iii) There is currently no established
understanding for the atomic-scale internal friction, which is
crucial to deriving viscoelastic sum rules and is associated
with memory effects which are known to be important for
metallic glass [26]. (iv) The interatomic interaction is strongly
nonlocal, also due to the role of delocalized electrons which
affect the interatomic interaction (see Appendix C).

Here we provide an answer to all these issues in a unifying
way by deriving a nonaffine atomic-scale theory of viscoelastic
response and relaxation of metallic glasses in a bottom-up
way starting from a microscopic Hamiltonian. We use the
Zwanzig-Caldeira-Leggett (ZCL) system-bath Hamiltonian to
derive an average equation of motion for a tagged atom (or
ion), which turns out to be a generalized Langevin equation
(GLE), with a non-Markovian atomic-scale friction (memory
kernel). The memory kernel arises from integrating out the fast
degrees of freedom of the atomic motion [27,28]. Although
it is currently not possible to specify the functional form
of the time dependence of the friction within ZCL models,
a stretched-exponential form for the microscopic friction in
supercooled liquids was derived by Sjoegren and Sjoelander
based on many-body kinetic theory [29].

In order to test the theory we use stress-relaxation ex-
periments on a Cu50Zr50 glassy system. Furthermore, the
vibrational DOS is needed as input to calculate the viscoelastic
response. To this aim, we used numerical simulations of the
same metallic glasses which take also electronic structure
effects into account at the level of the embedded-atom method
(EAM).

II. EXPERIMENTS

Thanks to the thermal stability of CuZr-based metallic
glass, MG ribbons made up of Cu50Zr50 with a length over
7 mm were processed using the melt-spinning technique in
an inert argon atmosphere. Differential scanning calorimetry
(DSC) was used to determine the thermal properties of
the samples that have a glass transition temperature Tg at
670 K at a heating rate of 20 K/min. The tensile stress
relaxation experiments were performed with a TA Q800
dynamic mechanical analyzer. To eliminate any influences
from initial states, the MG ribbons were heated above Tg before
the measurements. The tensile stress relaxation, carried out at
a constant strain of 0.4%, was loaded on the model alloy for
24 h after an initial 3-min equilibrium. The resultant stress
relaxation in a form of time dependency that is fitted by the
Kohlrausch function σ (t) = σ0 exp[−(t/τ )β], with σ0 being
stress relaxation at t = 0, is given in Fig. 1 for three different
temperatures: Tg (670 K), 0.9Tg (603 K), and 0.8Tg (536 K).
Note that we have roughly estimated σ∞, which is σ (t) at
t = ∞, to be zero for the three temperatures.

Note that in Fig. 1 the fitting is excellent apart from
deviations which are due to processes other than the α-
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FIG. 1. Kohlrausch empirical fits (solid lines) of experimental
data (symbols). From top to bottom the lines and symbols correspond
to temperatures in the following order: 536, 603, 670 K (Tg). Solid
curves are Kohlrausch σ (t) ∼ exp −(t/τ )β empirical fittings used to
calibrate results, where the parameters β and τ were chosen to be
0.69 and 0.87 min, 0.55 and 4.03 min, and 0.55 and 14.87 min for Tg ,
0.9Tg , and 0.8Tg respectively.

relaxation (e.g., other long-time or low-frequency relaxation
processes). In this work we want to focus on a theory of
α-relaxation and its associated viscoelastic response without
considering other processes. In the following, we use the
fitted Kohlrausch function to obtain the dynamic moduli E′
and E′′ in the frequency domain (see Appendix D). In this
way, we will target only the α-relaxation and consistently
focus our attention on the comparison between our theory
(for α-relaxation) and data extracted from experiments where
effects other than α-relaxation have been removed.

III. MOLECULAR DYNAMICS SIMULATIONS
WITH EAM POTENTIALS

In molecular dynamics (MD) simulations, we utilized the
Finnis-Sinclair-type EAM potentials optimized for realistic
amorphous Cu-Zr structures [30]. Seven independent Cu50Zr50

MG models were obtained by quenching the system at a
cooling rate of 1010 K/s from a liquid state equilibrated
at 2000 K with a different initial position and velocity
distribution. Each model was composed of 8192 atoms, and
external pressure was held at zero during the quenching
process using a Parrinello-Rahman barostat [31]. Periodic
boundary conditions were imposed automatically. The result-
ing vibrational DOSs averaged from seven independent glassy
models are shown in Fig. 2. It can be easily seen that the
eigenfrequency spectrum is not sensitive to temperature.

IV. THEORY

In condensed-matter physics, the ZCL system-bath model is
widely applied to low-temperature quantum physics problems,
especially in quantum tunneling in superconductors and in
chemical-reaction-rate theory. Aiming at deriving a suitable
equation of motion for a tagged atom (or ion) in a metal-
lic glass, we extend this approach to atomic dynamics in
disordered materials by taking into account the disordered
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FIG. 2. Vibrational density of states (DOS) from a simulated
Cu50Zr50 system. Solid, dashed, and dotted lines correspond to DOS
at a 670, 603, and 536 K, respectively. The curves have been shifted
upward in order to be distinguishable for the reader. The inset shows
the DOS normalized by the Debye law ω2

p , which shows clear
evidence of a strong boson peak.

environment as well as the dissipation. In the construction of
this approach, it is well known that one cannot consider anhar-
monicity [28]. However, anharmonicity is indirectly taken into
account in our framework through both the vibrational DOS
and the emergent friction kernel, as shown below.

In the ZCL approach, the Hamiltonian of a tagged atom
coupled to all the very many other atoms in the material (treated
as harmonic oscillators) is given by [27]

H = P 2

2m
+ V (Q)

+ 1

2

N∑
α=1

[
p2

α

mα

+ mαω2
α

(
Xα − Fα(Q)

mαω2
α

)2]
, (1)

where the first two terms are the Hamiltonian of tagged particle

with (effective) mass m, while 1
2

∑N
α=1( p2

α

mα
+ mαω2

αX2
α) is the

Hamiltonian of the bath of harmonic oscillators coupled to the
tagged particle with linear coupling function Fα(Q) = cαQ,
where cα are the coupling-strength coefficients, which are
different for all the different atoms with which the tagged
atom interacts (e.g., cα is expected to be large for nearby
atoms and small for atoms far away in the material). This
configuration gives rise to a second-order inhomogeneous
differential equation for the position of the αth oscillator of
the bath, whose solution leads to the following GLE:

mQ̈ = −V ′(Q) −
∫ t

−∞

ν(t − t ′)
m

dQ

dt ′
dt ′ + Fp(t).

As is standard for normal-mode analysis, we introduce
the rescaled tagged-particle displacement q = Q

√
m in the

Hamiltonian, such that the resulting equation of motion, using
mass-rescaled coordinates, becomes

q̈ = −V ′(q) −
∫ t

−∞
ν(t − t ′)

dq

dt ′
dt ′ + Fp(t). (2)

Note that V (Q) and V (q) are not the same function due to
the change of variable from Q to q. Upon focusing on the

athermal limit of the dynamics for T < Tg , the noise term
Fp(t) can be ignored, which amounts to assuming low thermal
noise and frozen-in atomic positions, which is a meaningful
approximation below Tg . Also, for dynamical response to an
oscillatory strain one can average the dynamical equation over
many cycles, which amounts to a time average. Since the
noise Fp has zero mean [27], an average over many cycles
could be effectively similar to an ensemble average, thus
leaving 〈Fp〉 = 0 in the above equation. Since the system
is nonergodic below Tg , nothing guarantees that this is true
a priori, but there is initial evidence that this approximation
might be reasonable in the linear regime where the response
converges to a reproducible noise-free average stress [32].

As shown in Ref. [27], the friction coefficient ν arises from
the long-range coupling between atoms in the ZCL model,
which effectively takes care of long-range and many-body
anharmonic tails of interatomic interaction (see Appendix A
for further discussion about ν). In our theory, the effect of T

is taken care of by the DOS and also the parameters of the
memory kernel will turn out to be T dependent, as shown
below.

Upon applying a deformation described by the strain tensor
η, the nonaffine dynamics of a tagged particle i interacting

with other atoms satisfies the following equation for the
displacement {xi(t) = q̊

i
(t) − q̊

i
} around a known rest frame

q̊
i

(see Appendix B for details of derivation):

d2xi

dt2
+

∫ t

−∞
ν(t − t ′)

dxi

dt ′
dt ′ + H

ij
xj = 	i,xxηxx, (3)

which can be solved by performing Fourier transformation
followed by normal-mode decomposition that decomposes the
3N -vector x̃, which contains positions of all atoms, into normal
modes x̃ = ˆ̃xp(ω)φp (p is the index labeling normal modes).
Note that we focus on time-dependent uniaxial strain ηxx(t).
For this case, the vector 	i,xx represents the force per unit strain
acting on atom i due to the motion of its nearest neighbors,
which are moving towards their respective affine positions
(see, e.g., [33] for a more detailed discussion), and in our
case also includes electronic effects empirically via the EAM
potential (see Appendix C).

From now on we drop all i and j indices, and all matrices
and vectors are meant to be 3N×3N and 3N -dimensional,
respectively. After taking Fourier transformation, we have

−ω2x̃ + iν̃(ω)ωx̃ + Hx̃ = 	xxη̃xx.

Next, we take normal-mode decomposition. This is equiv-
alent to diagonalizing the matrices H . The 3N×3N matrix

H can be decomposed as H = �D�−1 = �D�T , where
D is a diagonal matrix filled with the eigenvalues of H ;
that is, in components, Dpp = ω2

p. Further, the matrix �

consists of the eigenvectors φ
i

of the Hessian, i.e., � =
(φ1, . . . ,φp, . . . ,φ3N ), and is an orthogonal matrix. First, we
left multiply both sides with the matrix �−1 = �T ,

−ω2(�T x̃) + iν̃(ω)ω(�T x̃) + D(�T x̃) = �T 	xxη̃xx,

where we used the fact that D is diagonal. From the definition

of �T , we have �T x̃ = (x̃ · φ1, . . . ,x̃ · φp, . . . ,x̃ · φ3N )T .
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That is, if we rewrite the above equation as a system of 3N

linear equations, the equation for the pth mode reads

−ω2x̃ · φp + iων̃(ω)x̃ · φp + ω2
px̃ · φp = 	xx · φpη̃xx.

We recall the definition of normal modes as x̃(ω) =
ˆ̃xp(ω)φp and ˆ̃xp(ω) = x̃(ω) · φp, where the hat denotes the
coefficient of the projected quantity. Thus, we obtain

−ω2 ˆ̃xp(ω) + iν̃(ω)ω ˆ̃xp(ω) + ω2
p

ˆ̃xp(ω) = ˆ̃xp(ω)η̃xx,

from which an explicit expression for ˆ̃xp(ω) can easily be
found.

It was shown in previous work [33] that 	̂xx is self-
averaging, and one can introduce the smooth correlator func-
tion �xxxx(ω) = 〈	̂p,xx	̂p,xx〉p∈{ω,ω+δω} on frequency shells.
Following the general procedure of Ref. [33] to find the
oscillatory stress for a dynamic nonaffine deformation, the
stress is obtained to first order in strain amplitude as a function
of ω as

σ̃xx(ω) = EAη̃(ω) − 1

V

∑
p

	̂p,xx
ˆ̃xp(ω)

= EAη̃(ω) + 1

V

∑
p

	̂p,xx	̂p,xx

ω2 − ω2
p − iν̃(ω)ω

η̃(ω)

= Exxxx(ω)η̃(ω). (4)

In the thermodynamic limit with continuous spectrum, we
replace the discrete sum over 3N degrees of freedom with an
integral over eigenfrequencies of the Debye frequency ωD , and
we thus obtain the complex Young’s modulus as

E∗(ω) = EA − 3ρ

∫ ωD

0

D(ωp)�(ωp)

ω2
p − ω2 + iν̃(ω)ω

dωp, (5)

where we have dropped the Cartesian indices for convenience
since we are focusing on uniaxial extension and ρ = N/V

denotes the atomic density of the solid. This is a crucial result
of this paper. It differs from a previous result obtained in
Ref. [33] because the friction coefficient is non-Markovian,
and hence frequency dependent, whereas in Ref. [33] it is just
a constant, corresponding to Markovian dynamics. This will
turn out to be a fundamental difference because, as we show
below, metallic glass data cannot be described by a friction
coefficient which is constant with frequency. Furthermore, this
result is derived here from a microscopic Hamiltonian.

In the numerical simulations, the DOS is actually not a
continuous function but discrete. Thus, in Eq. (5) we replace
the DOS with its spectral representation given by a sum of
δ functions. Since under each temperature, we have seven
simulated samples with different configurations for position
and velocity to calculate the DOS, we take the same fitting
parameters for each sample and find that they all generate
the same results. Hence, in Figs. 3 and 4, we simply show
the results from one out of these seven simulated systems. The
DOS is calculated by diagonalizing the Hessian matrix for the
interaction energy of an atom in CuZr alloys in mass-rescaled
coordinates, which is also used to calculate the 	i vectors and
hence �(ωp). Analytical expressions for the Hessian and for
	i as a function of the EAM interaction are derived in the
Appendix C.

FIG. 3. Real part of the complex viscoelastic modulus. From right
to left solid lines represent E′ for Tg , 0.9Tg , and 0.8Tg respectively,
from the Kohlrausch best fitting of our experimental data. Symbols are
calculated based on our theory. For Tg , 0.9Tg , and 0.8Tg , b was chosen
to be 0.72, 0.58, and 0.58; r was taken to be 1.2×10−6, 7×10−6, and
3.4×10−6. ν(0) = 0.137 is the same for all temperatures. Rescaling
constants have been taken to adjust the height.

We then rewrite E∗(ω) as a sum over a discrete distribution
of ωp from the MD simulation of the DOS, E∗(ω) = E′(ω) +
iE′′(ω):

E′(ω) = EA − A
∑

p

�(ωp)
(
ω2

p − ω2 + ν̃2ω
)

(
ω2

p − ω2 + ν̃2ω
)2 + (ων̃1)2

, (6)

E′′(ω) = B
∑

p

�(ωp)(ων̃1)(
ω2

p − ω2 + ν̃2ω
)2 + (ων̃1)2

, (7)

FIG. 4. Imaginary part of the complex viscoelastic modulus.
From right to left solid lines represent E′′ for Tg , 0.9Tg , and 0.8Tg ,
respectively, from empirical Kohlrausch fittings of the experimental
data. Symbols are calculated from our theory. For Tg , 0.9Tg , and
0.8Tg , b in the memory kernel of our theory was chosen to be 0.72,
0.58, and 0.58; r was taken to be 1.2×10−6,7×10−6, and 3.4×10−6.
ν(0) = 0.137 is the same for all temperatures. Rescaling constants
have been taken to adjust the height.
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where EA, A, and B are rescaling constants to be calibrated in
the comparison. ν̃1 and ν̃2 are the real and (minus) imaginary
parts of ν̃(ω), which is the Fourier transform of ν(t), ν̃(ω) =
ν̃1(ω) − iν̃2(ω). We have chosen the ansatz of ν(t) = ν0e

−rtb

motivated by previous theoretical work [29], where b = 0.3
was found to work well for molecular glasses in Ref. [34].
Here a larger value of b appears to be appropriate for metallic
glass [35].

Apart from the ZCL Hamiltonian, the Nose-Hoover method
also provides a route towards estimating the time-dependent
non-Markovian friction [36]. After carrying out a simulation
in the canonical ensemble below Tg , one obtains a simple-
exponential decay of the friction coefficient, with which,
however, one cannot reproduce the experimentally measured
curves of E′ and E′′ over any interval in frequency. This
problem might be due to the limitations of using the Nose-
Hoover method for nonequilibrium systems.

In general, the determination of the memory kernel is
an open problem for which several approaches have been
proposed very recently, most of which have been tested only
on model systems so far [37–41]. In future work, our proposed
framework can be combined with projection-operator methods
[37,40] to derive the memory kernel used here from first
principles.

V. RESULTS AND DISCUSSION

Before presenting a comparison between our theory and
the empirical best-fitting Kohlrausch stretched-exponential
relaxation fitting of experimental data for Cu50Zr50, we first
convert the linear response of the material to applied stress
from time-dependent compliance to the frequency-dependent
dynamic moduli for a uniaxial strain of amplitude ε0:

E′(ω) = σ∞
ε0

+ σ0ω

ε0

∫ ∞

0
e−(t/τ )β sin ωtdt, (8)

E′′(ω) = σ0ω

ε0

∫ ∞

0
e−(t/τ )β cos ωtdt. (9)

A detailed derivation of this result is reported in Appendix D.
In Fig. 3 we plot the comparisons for E′(ω) at Tg = 670 K,

i.e., exactly at Tg , from Eqs. (6) and (8). In this case, it is clear
that our theoretical model is in excellent agreement with the
transformed experimental data and is also very close to the
Kohlrausch function. This shows how crucial soft modes are,
as well as the memory effects embodied in the non-Markovian
friction, for the understanding of the viscoelastic response
and of α-relaxation below the glass transition. In Fig. 4, we
present fittings of the loss modulus E′′(ω). Also in this case, it
is seen that our theory, given by Eq. (7), provides an excellent
description of the experimental data. Note that, for clarity
of presentation, we have changed the unit of time to shift
curves horizontally. This means we have arbitrary units on the
abscissa and ordinate.

Remarkably, our theoretical model provides the long-
sought crucial and direct connection between the excess of
low-energy (boson-peak) modes of the DOS at Tg , the memory
effects in the dynamics, and the corresponding features of the
response such as the α-wing asymmetry in E′′(ω). It is, in fact,

impossible to achieve a fitting of the data using a Debye model
for the DOS which has no excess of soft modes.

Even more crucially, in contrast to previous approaches, our
theory shows that memory effects are as important as the boson
peak modes for describing the experimental data. We have,
indeed, checked that using a constant (Markovian) friction
ν = const or even a simple-exponential time dependence for
ν(t), it is not possible to describe the experimental data.
Only a stretched-exponential form of ν(t) with a value of the
stretching exponent in the range 0.58–0.72, which decreases
upon decreasing T further down from Tg , allows us to describe
the data. Since ν in our theory physically represents the
spectrum of dynamic coupling between an atom and all
other atoms in the material, this result implies that every
atom is long range coupled to many other atoms beyond the
nearest-neighbor shell, which is the result of the anharmonicity
of the interaction and of the nonlocality of the electronic
contributions to the interatomic interaction.

Also, our theoretical analysis shows that the time scale τm

over which atoms retain memory of their previous collision
history, τm = r (−1/b) in our model, also increases upon de-
creasing the temperature, by more than an order of magnitude
overall, from τm ≈ 1.67×108 at T = Tg to τm ≈ 7.72×108 at
T = 0.9Tg to τm ≈ 2.68×109 at T = 0.8Tg .

VI. CONCLUSION

We have developed a dissipative nonaffine lattice dynamics
of metallic glass in a bottom-up approach starting all the
way from a microscopic Hamiltonian for the motion of a
tagged atom coupled to all other atoms in the material. The
theory leads to a generalized Langevin equation that we
have used in combination with nonaffine dynamics to derive
the dynamic viscoelastic moduli E′(ω) and E′′(ω), which
are functions of the vibrational DOS and of the emergent non-
Markovian atomic-scale friction coefficient (memory kernel)
that embodies the long-range coupling between atoms.

The predictions of our theory compare very well with
experimental data for the uniaxial viscoelastic response of
CuZr metallic glasses using the DOS from MD simulations of
the same system. Importantly, no agreement can be found
using either a DOS that does not feature an excess of
boson-peak modes at low frequency or a time dependence
of the non-Markovian friction in the equation of motion which
differs from a stretched-exponential function. This finding
indicates strong memory effects at the atomic level, possibly
due to the nonlocal electronic component of interaction. It
was also shown that the α-wing asymmetry in E′′ grows upon
decreasing the temperature below Tg , which is linked to the
dramatic growth of the characteristic time scale of the memory
effect in our model, τm = r (−1/b) in our analysis above. Hence,
a link exists between the α time and the characteristic time
scale over which atoms retain memory of their previous
collision history.

Hence, this analysis establishes that, in order to explain
the mechanical α-relaxation and the α-wing asymmetry in
metallic glass, an excess of soft vibrational modes and strong
memory effects in the dynamics due to nonlocal electronic
coupling between many atoms are necessary ingredients that
cannot be neglected. Furthermore, our approach is directly
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applicable to a variety of glassy and partly ordered systems
that feature a boson peak, hence not only metallic glasses
but also polymer glasses [42], silica glasses [43], and even
quartz [44], by suitably extending the theory to include bond-
bending interactions, which are needed to describe covalent
bonds. Hence, this framework opens up the way for a truly
atomic-level predictive and quantitative description of me-
chanical response and relaxation in disordered materials.
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APPENDIX A: THE MEMORY KERNEL
FOR THE MICROSCOPIC FRICTION

The ZCL Hamiltonian does not put any constraint on the
form of the memory function ν(t), which can take any form
depending on the values of the coefficients cα [27]. Hence,
a shortcoming of ZCL-type models is that, in general, the
spectrum of coupling constants {cα} is not accessible from
theory alone.

However, for a supercooled liquid, a relationship between
the time-dependent friction, which is dominated by slow
collective dynamics, and the intermediate structure factor
has been famously derived within kinetic theory (Boltzmann
equation) by Sjoegren and Sjoelander [29] (see also Ref. [45]):

ν(t) = ρkBT

6π2m

∫ ∞

0
dkk4Fs(k,t)[c(k)]2F (k,t), (A1)

where c(k) is the direct correlation function of liquid-state
theory, Fs(k,t) is the self-part of the intermediate scattering
function, and F (k,t) is the intermediate scattering function
[29]. All of these quantities are functions of the wave vector
k, and the integral over k leaves a time dependence of ν(t)
which is exclusively given by the product Fs(k,t)S(k,t). For
a chemically homogeneous system, the approximate identity
Fs(k,t)S(k,t) ∼ F (k,t)2 holds in the long-time regime.

From an approximate solution to mode coupling theory
(MCT) and also from experiments and simulations, we know
that in supercooled liquids F (k,t) ∼ exp(−t/τ )ξ , with values
of the stretching exponent that normally lie in the range ξ =
0.5–0.7 [46]. In turn, this argument gives ν(t) ∼ exp[−rtb],
with stretching exponent b in the range between 0.2 and 0.3
for molecular glasses [34]. For metallic glass, we find b =
0.58–0.75, corresponding to ξ = 0.76–0.85, which is close
to experimental determinations for supercooled metallic melts
[35], where ξ ≈ 0.8 in the supercooled regime near the glass
transition temperature.

APPENDIX B: DERIVATION OF EQUATION (3)
IN THE MAIN TEXT

1. Generalized Langevin equation

In nonaffine lattice dynamics, Eq. (3) in the main text,
without the thermal noise term, is a generalized Langevin
equation for nonaffine motions in a disordered solid subjected
to strain that we derive here. Our starting point is Eq. (2)
in the main text, which is derived from the Caldeira-Leggett
system-bath Hamiltonian in mass-rescaled coordinates:

q̈ = −V ′(q) −
∫ t

−∞
ν(t − t ′)

dq

dt ′
dt ′ + Fp(t). (B1)

Here V (q) represents the potential field of the tagged particle
at position q, and f = −V ′(q) represents the force acting on
a tagged particle due to its interaction with other particles
(atoms) in the material. The thermal-noise term Fp(t) is
dropped in the subsequent analysis since it has zero mean
and it is generally found to vanish upon averaging over several
oscillation cycles [32].

2. Nonaffine deformations

In this section we will use Eq. (B1) as a starting point to
derive the equation of motion of a tagged atom in a disordered
solid metal undergoing an elastic deformation.

Using the same notation as in Ref. [33], we assume
particles lie in a unit cell described by three Bravais vectors
h = (a,b,c). Thus, the interaction potential depends on both
q

i
and h, U = U(q

i
,h), and any vector q is mapped onto a

cubic reference cell: q = h s,sα ∈ [−0.5,0.5]. We use the unit

cell as it is prior to deformation as the reference frame h̊

and denote the deformed cell by h. When the tagged particle
undergoes a displacement to the position q

i
, the process can

be understood to consist of two steps: Initially, we have q
i
=

F q̊
i
, where F = h · h̊−1

is the deformation gradient tensor. F
describes an affine transformation of the unit cell, whereas q̊

i

remains unchanged. In the second step of the process, particles
perform nonaffine displacements by relaxing to their nearest
equilibrium position {q

i
}, keeping h (and hence F ) fixed.

Those new coordinates are generally different from the affine
positions derived by the reference coordinates, {q

i
} �= {F q̊

i
}.

For small deformations the nonaffine equilibrium positions of
the particles are a continuous function of h: {q

i
} = {q

i
(h)}.

3. Deriving the equation of motion
for the nonaffine displacement

We thus rewrite Eq. (B1) for a tagged atom in a three-
dimensional (3D) cell which moves with an affine velocity
prescribed by the deformation gradient tensor Ḟ :

q̈
i
= f

i
−

∫ t

−∞
ν(t − t ′)( ˙̊q

i
− u)dt ′,

where f
i
= −∂U/∂q

i
generalizes −V ′(q) in Eq. (B1) to

a tagged atom in a 3D lattice. Furthermore, we used the
Galilean transformations to express the particle velocity in
the moving frame: q̇

i
= ˙̊q

i
− u, where u = Ḟ q̊

i
represents

the local velocity of the moving frame. This is consistent with
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our use of the circle on the variables to signify that they are
measured with respect to the reference rest frame.

In terms of the original rest frame {q̊
i
}, the equation of

motion can be written as

F ¨̊q
i
= f

i
−

∫ t

−∞
ν0e

−r(t−t ′)b
dq̊

i

dt ′
dt ′. (B2)

The terms F̈ q̊
i
and

∫ t

−∞ ν0e
−r(t−t ′)b Ḟ q̊

i
dt ′ are not allowed into

the equation of motion because they depend on the position
of the particle and therefore have to vanish for a system with
translational invariance, as noted already by Andersen [47]
and by Ray and Rahman [48].

We work in the linear regime of small strain
‖F − 1‖  1. We make a perturbative expansion in terms of
the small displacement {xi(t) = q̊

i
(t) − q̊

i
} around a known

rest frame q̊
i
. That is, we take F = 1 + δF + · · · , where δF =

ε = F − 1 is the small parameter, and r̊ i(t) = r̊ i + xi(t),
where xi is the nonaffine displacement. We substitute this
into Eq. (B2):

(1 + δF + · · · )
d2xi

dt2

= δf
i
− (1 + δF + · · · )

∫ t

−∞
ν0e

−r(t−t ′)b dxi

dt ′
dt ′. (B3)

For the term δf
i
, we use the following definition of η:

η = 1
2 (FT F − 1) → 1

2 (ε + εT ),

where the second limit comes from ‖F − 1‖  1. Hence,
in this limit of small deformations, η coincides with the

strain tensor of linearized elasticity e = 1
2 (ε + εT ). Also,

considering that f
i
= 0 identically because of mechanical

equilibrium, we have

δf
i
=

∂f
i

∂q̊
j

δq̊
j
+

∂f
i

∂η
: δη.

Hence, upon retaining only zero-order terms in the expan-
sion in Eq. (B3) and using the definitions of the Hessian

∂f
i

∂q̊
j

δq̊
j

= −H
ij
xj

and of the nonaffine force

	i,κχ =
∂f

i

∂ηκχ

|η→0,

we finally obtain, for the case of uniaxial elongation,

d2xi

dt2
+

∫ t

−∞
ν(t − t ′)

dxi

dt ′
dt ′ + H

ij
xj = 	i,xxηxx, (B4)

which is Eq. (3) in the main text.

APPENDIX C: THE HESSIAN AND THE AFFINE
FORCE FIELD FOR BINARY METALLIC GLASSES

USING THE EAM POTENTIAL

In order to calculate the dynamics and the viscoelastic
response, we need to evaluate the interaction energy between

atoms in the material. In particular, we need to find expressions
for the Hessian matrix and for the affine force field 	i,κχ as a
function of the interatomic interaction potential. To this aim,
we use the embedded-atom model (EAM). Upon considering
the various contributions to the interaction potential between
atoms in the CuZr- based MGs, the total potential energy acting
on a tagged atom i (we drop the label i) is given by

Ui = FM

⎛
⎝∑

j �=i

ρMN (Qij )

⎞
⎠ + 1

2

∑
j �=i

ψMN (Qij ). (C1)

Here Qij represents the radial distance of atom i from atom
j , which is the modulus of the vector Q

j
− Q

i
; ρN is the

contribution to the electronic charge density from atom j of
type N at the location of atom i of type M , ψMN is a pairwise
potential between an atom of type M and an atom of type
N , and FM is the embedding function that gives the energy
required to place the tagged atom i of type M into the electron
cloud. Hence, the total potential is the sum over all particles,
U = ∑

i Ui .
The many-body nature of the EAM potential is a result of

the embedding energy term. Both summations in the formula
are over all neighbors j of atom i within the cutoff distance
[49]. Then we can get the net force acting on a tagged atom
using the following set of relations:

nij =
Q

ij

Qij

, (C2)

ρ̄i =
∑
j �=i

ρMN (Qij ), ρ̄j =
∑
i �=j

ρMN (Qij ), (C3)

Zij = ∂Ui

∂Qij

= 1

2

∂ψMN (Qij )

∂Qij

+ ∂FM

∂ρ̄i

∂ρMN (Qij )

∂Qij

, (C4)

f
i
= − ∂U

∂Q
i

= − ∂Ui

∂Q
i

− ∂
∑

k �=i Uk

∂Q
i

= − ∂Ui

∂Q
i

− ∂
∑

k �=i Uk

∂Qik

∂Qik

∂Q
i

= − ∂Ui

∂Q
i

+ ∂
∑

k �=i Uk

∂Qik

Q
ik

Qik

= − ∂Ui

∂Q
i

+
∑
k �=i

Zki

Q
ik

Qik

.

(C5)

Note that f
i
, and H

ij
below, are in general different functions

when expressed as functions of bare coordinate Q rather than
mass-rescaled coordinate q, but we use here the same symbols
in order to avoid too heavy notation.

The Hessian is then written for i �= j as

H
ij
|i �=j = ∂2U

∂Q
i
Q

j

=
∂ ∂Ui

∂Q
i

∂Q
j

−
∂

∑
k �=i Zki

Q
ik

Qik

∂Q
j

= ∂2Ui

∂Q
i
∂Q

j

− ∂Zji

∂Q
j

Q
ji

Qji

− Zji

∂
Q

ij

Qij

∂Q
j

−
∂

∑
k �=i,k �=j Zki

Q
ik

Qik

∂Q
j

094203-7



CUI, YANG, QIAO, JIANG, DAI, WANG, AND ZACCONE PHYSICAL REVIEW B 96, 094203 (2017)

= ∂2Ui

∂Q
i
∂Q

j

− ∂Zji

∂Qij

∂Qij

∂Q
j

⊗
Q

ij

Qij

− Zji

∂
Q

ij

Qij

Q
j

−
∑

k �=i,k �=j

∂Zki

∂Q
j

⊗ Q
ik

rik

, (C6)

with

∂
Q

ij

Qij

∂Q
j

= I3×3

Qij

−
Q

ij
⊗ Q

ij

Q3
ij

, (C7)

and

H
ii

= ∂2U
∂Q

i
Q

i

= ∂2Ui

∂Q2
i

− ∂
∑

k �=i Zki

∂Q
j

Q
ik

Qik

−
∑
k �=i

Zki

∂
Q

ik

Qik

∂Q
i

= ∂2Ui

∂Q2
i

+ ∂
∑

k �=i Zji

∂Q
j

Q
ik

Qik

⊗ Q
ik

Qik

−
∑
k �=i

Zki

∂
Q

ik

Qik

∂Q
i

= ∂2Ui

∂Q2
i

+ ∂
∑

k �=i Zji

∂Q
j

Q
ik

Qik

⊗ Q
ik

Qik

+
∑
k �=i

Zki

(
I3×3

Qik

− Q
ik

⊗ Q
ik

Q3
ik

)
(C8)

for the diagonal i = j elements.

To find 	i,κχ = ∂f
i

∂ηκχ
|η→0 = ∑

j 	ij,κχ , we write

	α
ij,κχ = −Sij,αβ

∂Q
β

ij

∂ηκχ

= −1

2
Sij,αβ

(
δβκQ

χ

ij + δβχQκ
ij

)
, (C9)

with

S
ij

= ∂2Ui

∂Q
ij
∂Q

ij

= ∂

∂Q
ij

(
∂U

∂Q
ij

)
= ∂

∂Q
ij

(∑
k

∂Uk

∂Q
ij

)

= ∂

∂Q
ij

⎛
⎝∑

k,l �=k

∂Uk

∂Qlk

∂Qlk

∂Q
ij

⎞
⎠

= ∂

∂Q
ij

(
∂Ui

∂Qji

∂Qji

∂Q
ji

+ ∂Uj

∂Qji

∂Qji

∂Q
ji

)
∂Ui

∂Qji

∂Qji

∂Q
ji

= ∂

∂Q
ij

(
Zij

Q
ij

Qij

+ Zji

Q
ij

Qij

)

= ∂

∂Q
ij

(Zijnij + Zjinij )

= ∂Zij

∂Q
ij

nij + Zij

∂nij

∂Q
ij

+ ∂Zji

∂Q
ij

nij + Zji

∂nij

∂Q
ji

= ∂

∂Q
ij

(
∂Ui

∂Q
ij

)
nij + Zij

∂

∂Q
ij

(
Q

ij

Qij

)

+ ∂

∂Q
ij

(
∂Uj

∂Q
ij

)
nij + Zji

∂

∂Q
ij

(
Q

ij

Qij

)

=
∑

k

∂
(

∂Ui

∂Qij

)
∂Qik

∂Qik

∂Q
ij

nij + Zij

Qij − Q
ij

∂Qij

∂Q
ij

Q2
ij

+
∑

k

∂
( ∂Uj

∂Qij

)
∂Qjk

∂Qjk

∂Q
ij

nij + Zji

Qij − Q
ij

∂Qij

∂Q
ij

Q2
ij

= ∂2Ui

∂2Qij

nijnij + Zij

(1 − nijnij )

Qij

+ ∂2Uj

∂2Qij

nijnij

+ Zji

(1 − nijnij )

Qij

. (C10)

To distinguish S from H , one can rewrite H (i �= j ) as

H
ij

= ∂2U
∂Q

i
∂Q

j

= ∂

∂Q
i

(∑
k

∂Uk

∂Q
j

)
= ∂

∂Q
i

⎛
⎝∑

k,l �=k

∂Uk

∂Qkl

∂Qkl

∂Q
j

⎞
⎠

= ∂

∂Q
i

⎛
⎝∑

l �=j

∂Uj

∂Qjl

∂Qjl

∂Q
j

+
∑

k �=j,l �=k

∂Uk

∂Qkl

∂Qkl

∂Q
j

⎞
⎠

= ∂

∂Q
i

⎛
⎝∑

l �=j

∂Uj

∂Qjl

∂Qjl

∂Q
j

+
∑
k �=j

∂Uk

∂Qkj

∂Qkj

∂Q
j

⎞
⎠

= ∂

∂Q
i

⎛
⎝∑

l �=j

∂Uj

∂Qjl

Q
jl

∂Qjl

+
∑
k �=j

∂Uk

∂Qkj

Q
jk

∂Qjk

⎞
⎠

=
∑
k �=j

∂

∂Q
i

(
∂Uj

∂Qjk

Q
jk

Qjk

+ ∂Uk

∂Qkj

Q
jk

Qjk

)

=
∑
k �=j

⎡
⎣∑

l �=j

∂

∂Qjl

(
∂Uj

∂Qjk

)
∂Qjl

∂Q
i

Q
jk

Qjk

⎤
⎦ + ∂Uj

∂Qji

∂

∂Q
i

×
(

Q
ji

Qji

)
+

∑
k �=j

⎡
⎣∑

l �=j

∂

∂Qkl

(
∂Uk

∂Qjk

)
∂Qkl

∂Q
i

Q
jk

Qjk

⎤
⎦

+ ∂Ui

∂Qji

∂

∂Q
i

(
Q

ji

Qji

)

=
∑
k �=j

[
∂

∂Qji

(
∂Uj

∂Qjk

)
∂Qji

∂Q
i

Q
jk

Qjk

]
+ Zji

(−1 + nijnij )

Qij

+
∑
k �=j

⎡
⎣∑

l �=k

∂

∂Qkl

(
∂Uk

∂Qkj

)
∂Qkl

∂Q
i

Q
jk

Qjk

⎤
⎦

+ Zij

(−1 + nijnij )

Qij

=
∑
k �=j

[
∂

∂Qji

(
∂Uj

∂Qjk

)
nijnjk

]
+ Zji

(−1 + nijnij )

Qij

+
∑
k �=j,i

∂

∂Qki

(
∂Uk

∂Qkj

)
niknjk +

∑
k �=i

∂2Ui

∂Qik∂Qij

niknji

+ Zij

(−1 + nijnij )

Qij

. (C11)
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Since, in the experiment, the sample was stretched along one
direction, we let κ = χ = x, which gives

	α
ij,xx = −Sij,αxQ

x
ij . (C12)

Equations (C6), (C8), (C9), (C10), (C11), (C12) still need to be
converted from functions of the bare coordinate Q to functions
of the mass-rescaled coordinate q, using the chain rule. We
should also note that H , S and 	 will then be somewhat
different functions, but to avoid using too heavy notation we
denote them with the same symbols.

APPENDIX D: TIME-FREQUENCY CONVERSION
AND DERIVATION OF EQUATIONS (8) AND (9)

OF THE MAIN TEXT

In this Appendix we present the conversion from the vis-
coelastic response in the time domain (in which experimental
data have been taken) to the viscoelastic response in the
frequency domain. The converted data have been used for
a comparison with our theoretical predictions in the main text.

The stress response to a strain ε(t) in the time domain is
given by the Boltzmann causality principle as

σ (t) =
∫ t

−∞
E(t − t ′)ε̇(t ′)dt ′, (D1)

where E(t) is the time-dependent elastic modulus and ε̇ is the
strain rate. We take the Fourier transform of Eq. (D1):

σ̃ (ω) =
∫ ∞

−∞

∫ ∞

−∞
E(t − t ′)�(t − t ′)ε̇(t)e−iωtdt ′dt

=
∫ ∞

−∞
E(u)�(u)e−iωudu

∫ ∞

−∞
ε̇(t ′)e−iωtdt, (D2)

where �(t) is the step function and u = t − t ′. Note that
the domain of σ (t) is generally the whole real line, while
the domain of E(t) is defined only for t > 0. If the Fourier
transform exists, then we can denote it by σ̃ (ω), which is
given by

σ̃ (ω) = F[E(t)]F[ε̇(t)] = Ẽ∗(ω)ε̃(ω). (D3)

Note that the second equation is the usual expression of the
linear stress-strain relation in the frequency domain [33].

In the stress-relaxation experiments presented in the main
text, one starts by applying to the (initially relaxed) sample a
sudden deformation ε0:

ε(t < 0) = 0, ε(t > 0) = ε0 = const. (D4)

“Sudden” means that the deformation is applied over a time
much shorter than the shortest time scale of the Maxwell
distribution τmin and can thus be modeled as a Heaviside step
function. Under these conditions, one can write

ε̇0(t) = ε0δ(t), (D5)

where δ(t) is the Dirac delta function. From Eqs. (D1) and
(D5), one has

σ (t) =
∫ t

−∞
ε0E(t − t ′)δ(t ′)dt ′, (D6)

yielding

σ (t < 0) = 0, σ (t > 0) = ε0E(t). (D7)

The experimental data in the time domain have been fitted
with the Kohlrausch empirical function in order to obtain a
smooth function for the Fourier transformation. Also, this
allows us to enucleate the α-relaxation from the data. We there-
fore take the Fourier transform of the empirical Kohlrausch
function σ (t) = σ∞ + σ0e

−(t/τ )β used for the fitting of the
experimental data, which gives∫ ∞

0
[σ∞ + σ0e

−(t/τ )β ]e−iωtdt = Ẽ∗(ω)
∫ ∞

0
ε0e

−iωtdt. (D8)

Upon rearranging terms, we thus obtain

σ∞
σ0

+ iω

∫ ∞

0
e−(t/τ )β (cos ωt − i sin ωt)dt = Ẽ∗(ω)

ε0

σ0
(D9)

by using
∫ ∞

0 e−iωtdt = π (1 + i)δ(ω) + 1
iω

. This simplifies to
the real and imaginary parts of Ẽ∗(ω) = E′(ω) + iE′′(ω),
which are Eqs. (8) and (9), respectively, in the main text.
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